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Abstract

Text recognition has attracted considerable research inter-
ests because of its various applications. The cutting-edge
text recognition methods are based on attention mechanisms.
However, most of attention methods usually suffer from se-
rious alignment problem due to its recurrency alignment op-
eration, where the alignment relies on historical decoding re-
sults. To remedy this issue, we propose a decoupled attention
network (DAN), which decouples the alignment operation
from using historical decoding results. DAN is an effective,
flexible and robust end-to-end text recognizer, which consists
of three components: 1) a feature encoder that extracts visual
features from the input image; 2) a convolutional alignment
module that performs the alignment operation based on vi-
sual features from the encoder; and 3) a decoupled text de-
coder that makes final prediction by jointly using the fea-
ture map and attention maps. Experimental results show that
DAN achieves state-of-the-art performance on multiple text
recognition tasks, including offline handwritten text recogni-
tion and regular/irregular scene text recognition. Codes will
be released.1

Introduction

Text recognition has drawn much research interest in recent
years. Benefiting from the development of deep learning
and sequence-to-sequence learning, many text recognition
methods have achieved notable success (Long, He, and Yao
2018). Connectionist temporal classification (CTC) (Graves
et al. 2006) and attention mechanism (Bahdanau, Cho, and
Bengio 2015) are two most popular methods, among them
attention mechanism shows significant better performance
and has been studied frequently in recent years (Long, He,
and Yao 2018).

The attention mechanism, proposed in (Bahdanau, Cho,
and Bengio 2015) to tackle machine translation problem,
was used to handle scene text recognition in (Lee and Osin-
dero 2016; Shi et al. 2016), and since then it dominated
text recognition with the following developments (Yang et
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Figure 1: (a) Traditional attentional text recognizer, where
the alignment operation is conducted using visual informa-
tion and historical decoding information (red arrow). (b) De-
coupled attention network, where the alignment operation is
conducted using only visual information.

al. 2017; Cheng et al. 2017; Bai et al. 2018; Luo, Jin,
and Sun 2019; Li et al. 2019). The attention mechanism in
text recognition is used to align and recognize characters,
where the alignment operation has always been coupled with
the decoding operation in previous work (Shi et al. 2016;
Cheng et al. 2017; Bai et al. 2018; Li et al. 2019). As
shown in Figure 1 (a), the alignment operation of tradi-
tional attention mechanism is carried out using two types
of information. The first is a feature map that can be re-
garded as visual information from the encoder, and the sec-
ond is historical decoding information (in the form of a
recurrent hidden state (Bahdanau, Cho, and Bengio 2015;
Luong, Pham, and Manning 2015) or the embedding vector
of previous decoding result (Gehring et al. 2017; Vaswani et
al. 2017)). The main idea underlying the attention mecha-
nism is matching. Given a feature from the feature map, its
attention score is computed by scoring how well it matches
with the historical decoding information (Bahdanau, Cho,
and Bengio 2015).

Traditional attention mechanism often encounters seri-
ous alignment problem (Cheng et al. 2017; Bai et al. 2018;
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Figure 2: Visualization of fractional alignment of traditional
attention mechanism (Bahdanau, Cho, and Bengio 2015; Shi
et al. 2016) on long text.

Chorowski et al. 2015; Kim, Hori, and Watanabe 2017), This
is because the coupling relationship inevitably leads to error
accumulation and propagation. As shown in Figure 2, the
matching-based alignment is easily affected by decoding re-
sult. In the left image, the two consecutive ”ly” confuses
matching operation; in the right image, the misrecognized
result ”ing” confuses matching operation. (Kim, Hori, and
Watanabe 2017; Chorowski et al. 2015) also observed that
attention mechanism struggles to align long sequence. Thus,
it is intuitive to find a way to decouple the alignment op-
eration from the historical decoding information, so that to
reduce its negative impact.

To solve the aforementioned misalignment issue, in this
paper we decouple the decoder of the traditional attention
mechanism into an alignment module and a decoupled text
decoder, and propose a new method called decoupled atten-
tion network (DAN) for text recognition. As shown in Fig-
ure 1 (b), compared with traditional attentional scene text
recognizer, DAN needs no feedback from the decoding stage
for alignment, thus avoiding the accumulation and propa-
gation of decoding errors. The proposed DAN consists of
three components including a feature encoder, a convolu-
tional alignment module (CAM) and a decoupled text de-
coder. The feature encoder based on the convolutional neu-
ral network (CNN) extracts visual features from the input
image. The CAM, substituting the traditional score-based re-
currency alignment module, takes multi-scale visual features
from the feature encoder as input, and generates attention
maps with a fully convolutional network (Long, Shelhamer,
and Darrell 2014) (FCN) in channel-wise manner. The de-
coupled text decoder makes the final prediction by using the
feature map and attention maps with a gated recurrent unit
(GRU) (Cho et al. 2014).

In summary, our contributions are summarized as follows:

• We propose a CAM to replace the recurrency alignment
module in traditional attention decoders. The CAM con-
ducts alignment operation from visual perspective, avoid-
ing the use of historical decoding information, thus elim-
inating misalignment caused by decoding errors.

• We propose DAN, which is a effective, flexible (can be
easily switched to adapt to different scenarios) and ro-
bust (more robust to text length variation and subtle dis-
turbances) attentional text recognizer.

• DAN delivers state-of-the-art performance on several text
recognition tasks, including handwritten text recognition
and regular/irregular scene text recognition.

Related Work

Text recognition has attracted much research interest in the
computer vision community. Early work of scene text recog-
nition relied on low-level features, such as histogram of ori-
ented gradients descriptors (Wang, Babenko, and Belongie
2011), connected components (Neumann and Matas 2012),
etc. With the rapid development of deep learning, a large
number of effective methods have been proposed. These
methods can be mainly divided into two branches.

One branch is based on segmentation, it first detects char-
acters then integrates characters into the output. (Bissacco
et al. 2013) proposed a five hidden layers for character
recognition and a n-gram approach for language modeling.
(Wang et al. 2012) used a CNN to recognize characters and
adopt a non-maximum suppression to obtain the final predic-
tions. (Jaderberg, Vedaldi, and Zisserman 2014) proposed a
weight-shared CNN for unconstrained text recognition. All
of these methods require accurate individual detection of
characters, which is very challenging.

The other branch is segmentation-free, it recognizes the
text line as a whole and focuses on mapping the entire im-
age directly to a word string. (Jaderberg et al. 2016) regraded
scene text recognition as a 90k-class classification task. (Shi,
Bai, and Yao 2017) modeled scene text recognition as a se-
quence problem by integrating the advantages of both deep
convolutional neural network and recurrent neural network,
and CTC was used to train the model end-to-end. (Lee and
Osindero 2016) and (Shi et al. 2016) introduced attention
mechanism to automatically align and translate words. From
then on, more and more attention-based methods were pro-
posed for text recognition. (Cheng et al. 2017) observed the
attention drift problem and proposed a focusing net to draw
back the drifted attention, but character-level annotation was
required. (Bai et al. 2018) proposed a post-process, the edit
probability to re-estimate the alignment; but they did not
fundamentally solve misalignment. Focusing on recognition
of irregular text, (Shi et al. 2016), (Luo, Jin, and Sun 2019)
and (Zhan and Lu 2019) proposed to rectify text distortion
and recognize the rectified text with an attention-based rec-
ognizer; (Liu, Chen, and Wong 2018) proposed to rectify
text at the character level; (Yang et al. 2017) and (Liao et al.
2019) proposed to recognize text in two-dimensional per-
spective but character-level annotation is required; (Cheng
et al. 2018) proposed to capture character feature in four di-
rections. (Fang et al. 2018) proposed an attention and lan-
guage ensemble network, and multiple losses from attention
and language are accumulated for training it. (Li et al. 2019)
proposed a simple and effective model using 2D attention
mechanism.

Despite the notable success achieved by these attention-
based methods, all of them consider attention to be a cou-
pled operation between historical decoding information and
visual information, and no study to date has focused on ap-
plying attention mechanism in long text recognition to the
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Figure 3: Overall architecture of DAN, and detailed architectures of the feature encoder and the CAM. The input image has a
normalized height of H and a scaled width of W , C1 and C2 are the numbers of channels of the feature map.

best of our knowledge.

DAN
The proposed DAN aims at solving the misalignment issue
of traditional attention mechanism through decoupling the
alignment operation from using historical decoding results.
To this end, we proposed a new convolutional alignment
module (CAM) together with a decoupled text decoder to
replace the traditional decoder. The overall architecture of
DAN is illustrated in Figure 3. Details will be introduced in
the followings.

Feature Encoder

We adopt a similar CNN-based feature encoder as previous
study (Shi et al. 2018). The feature encoder F encodes the
input image x of size H ×W into feature map F :

F = F(x),F ∈ RC×H/rh×W/rw . (1)

where C , rh and rw denote the output channels, the height
and the width downsampling ratio respectively.

Convolutional Alignment Module (CAM)

As shown in Figure 3, the input of our proposed CAM is vi-
sual features of each scale from the feature encoder. These
multi-scale features are first encoded by cascade down-
sampling convolutional layers then summarized as input. In-
spired by the FCN that makes dense predictions per-pixel

channel-wise (i.e., each channel denotes a heatmap of a
class), we use a simple FCN architecture to conduct the at-
tention operation channel-wise, which is quite different from
current attention mechanism. The CAM has L layers; in the
deconvolution stage, each output feature is added with the
corresponding feature map from convolution stage. Sigmoid
function with channel-wise normalization is finally adopted
to generate attention maps A = {α1,α2, ...,αmaxT },
where maxT denotes the maximum number of channels,
i.e., the maximum number of decoding steps; and the size
of each attention map is H/rh ×W/rw.

Compared with the FCN used for semantic segmenta-
tion, the CAM plays a completely different role to model
a sequential problem. Although maxT is pre-defined and
should be fixed during training and testing, we will experi-
mentally show that the setting of maxT does not influence
the final performance as long as it is reasonable.

By controlling the downsampling ratio rh and change the
stride of CAM, DAN can be flexibly switched between 1D
and 2D form. When H/rh = 1, DAN becomes a 1D rec-
ognizer and is suitable for long and regular text recogni-
tion; When H/rh > 1(e.g., for input image with height
of 32, rh = 4 results in a feature map with height of 4),
DAN becomes a 2D recognizer and is suitable for irregu-
lar text recognition. Compared with previous 2D scene text
recognizers, (Yang et al. 2017; Liao et al. 2019) which need
character-level annotation for supervision; (Li et al. 2019)
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Figure 4: Detailed architecture of the decoupled text de-
coder. It consists of a GRU layer used to explore the con-
textual information and a linear layer to make predictions.
‘EOS’ denotes end-of-sequence symbol.

which uses a tailored 2D attention for 2D spatial relation-
ships caption, result in more complex than 1D form and has
a poor performance on regular text recognition, DAN is sig-
nificantly simple and flexible, while achieves state-of-the-art
or comparable performance both in 1D (handwritten text)
and 2D (irregular scene text) recognition.

Decoupled Text Decoder

Different from the traditional attentional decoder that con-
duct alignment and recognition concurrently, our decoupled
text decoder takes encoded features and attention maps as
input, and conducts recognition only. As shown in Figure 4,
the decoupled text decoder computes context vector ct as:

ct =

W/rw∑

x=1

H/rh∑

y=1

αt,x,yFx,y. (2)

At time step t, the classifier generates output yt:

yt = wht + b, (3)

where ht is the hidden state of the GRU, computed as:

ht = GRU((et−1, ct), ht−1), (4)

et is an embedding vector of the previous decoding result yt.
The loss function of DAN is as follows:

Loss = −

T∑

t=1

logP (gt|I, θ), (5)

where θ and gt denote all trainable parameters in the DAN
and groudtruth at step t, respectively. Just like other atten-
tional text recognizers, DAN uses word-level annotation for
training.

Table 1: Detailed configuration of the feature encoder.
‘Num’ and ‘hw’ mean number of blocks and handwritten
text recognition experiments, respectively.

Name Configuration Num
Downsampling Ratio

hw scene-1D scene-2D

Res-block0 3 × 3 conv 1 2×1 1×1 1×1

Res-block1
1 × 1 conv, 32
3 × 3 conv, 32

3 2×2 2×2 2×2

Res-block2
1 × 1 conv, 64
3 × 3 conv, 64

4 2×2 2×2 1×1

Res-block3
1 × 1 conv, 128
3 × 3 conv, 128

6 2×1 2×1 2×2

Res-block4
1 × 1 conv, 256
3 × 3 conv, 256

6 2×2 2×1 1×1

Res-block5
1 × 1 conv, 512
3 × 3 conv, 512

3 2×2 2×1 1×1

Performance Evaluation

In our experiments, two tasks are employed to evaluate the
effectiveness of DAN, including handwritten text recogni-
tion and scene text recognition. The detailed network con-
figuration of feature encoder is given in Table 1.

Offline Handwritten Text Recognition

Owing to its long sentences (up to 90 characters), diverse
writing styles, and character-touching problem, the offline
handwritten text recognition problem is highly complicated
and challenging to solve. Therefore, it is a favorable testbed
to evaluate the robustness and effectiveness of DAN.

For exhaustive comparison, we also conduct experiments
on two popular attentional decoders: Bahdanau’s attention
(Bahdanau, Cho, and Bengio 2015) and Luong’s attention
(Luong, Pham, and Manning 2015). These attentional de-
coders are widely adopted for text recognition (Shi et al.
2018; Cheng et al. 2018; Luo, Jin, and Sun 2019; Li et al.
2019). When comparing with these decoders, the CAM and
decoupled text decoder are replaced by them for the sake of
fairness.

Datasets Two public handwritten datasets are used to eval-
uate the effectiveness of DAN, including IAM (Marti and
Bunke 2002) and RIMES (Grosicki et al. 2009). The IAM
dataset is based on handwritten English text copied from the
LOB corpus. It contains 747 documents (6,482 lines) in the
training set, 116 documents (976 lines) in the validation set
and 336 documents (2,915 lines) in the test set. The RIMES
dataset consists of handwritten letters in French. There are
1,500 paragraphs (11,333 lines) in the training set, and 100
paragraphs (778 lines) in the testing set.

Implementation Details On both databases we use the
original whole-line training set with an open-source data-
augmentation toolkit2 to train the network. The height of the
input image is normalized as 192 and the width is calculated
with the original aspect ratio (up to 2048). To downsample
the feature map into 1D, we add a convolution layer with
kernel size 3×1 to the end of the feature encoder. maxT is
set to 150 in order to cover the longest line. The measure

2https://github.com/Canjie-Luo/Scene-Text-Image-
Transformer
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of performance is the Character or Word Error Rate (CER%
or WER%), corresponding to the edit distance between the
recognition result and groundtruth, normalized by the num-
ber of groundtruth characters (or words). At test time on
RIMES dataset, we crop the test image with six pre-defined
strategies (e.g., {10,10} meant that the top 10 rows and the
bottom 10 rows are cropped out), and then conduct recog-
nition on them and the original image. A recognition score
is calculated by averaging the output probabilities and the
top scored one is chosen as the final result. All the layers of
CAM except the last one are set as 128 channels in order to
cover the longest text length. No language model or lexicon
is used during experiments.

Table 2: Performance comparison on handwritten text
datasets.

Methods
IAM RIMES

WER CER WER CER

(Salvador et al. 2011) 22.4 9.8 - -
(Pham et al. 2014) 35.1 10.8 28.5 6.8

(Bluche 2016) 24.6 7.9 12.6 2.9
(Sueiras et al. 2018) 23.8 8.8 15.9 4.8

(Bhunia et al. 2019)1 17.2 8.4 10.5 6.4
(Zhang et al. 2019) 22.2 8.5 - -

DAN 19.6 6.4 8.9 2.7
1 Word-level recognition, where the words in the original

image are cropped out then recognized.

Experimental Results As shown in Table 2, DAN ex-
hibits superior performance on both datasets. On IAM
dataset, DAN outperforms previous state-of-the-art by 1.5%
on CER. Note that although (Bhunia et al. 2019) shows bet-
ter performance on WER, their method needs cropped word
images as input, while our method directly recognizes text
lines. On RIMES, it is inferior to previous state-of-the-art by
0.2% on CER; but on WER, it has a great error reduction of
3.7% (relative error reduction of 29%). The great improve-
ment in terms of WER indicates that DAN has a stronger
capability of learning semantic information, which is help-
ful for long text recognition.

Figure 5: Performance comparison of different depth L on
IAM dataset.

Ablation Study In this subsection, we will evaluate the
influence of different depth L and output length maxT of
CAM.

Table 3: Performance comparison on different output
lengths. The ‘time/iter’ means forward time per iteration on
TITAN X GPU.

output length
IAM

time/iter
WER CER

150 19.6 6.4 188.7 ms
200 19.5 6.3 189.5 ms
250 19.6 6.4 190.5 ms

Table 4: Performance comparison of different decoders. FE
denotes the feature encoder of DAN. ‘Bah’ and ‘Luong’
denote Bahdanau’s attention and Luong’s attention, respec-
tively.

Methods
IAM RIMES

WER CER WER CER

FE + Bah 25.9 9.9 9.1 3.0
FE + Luong 25.7 10.3 9.3 3.3

DAN 19.6 6.4 8.9 2.7

Output length: As shown in Table 3, different output
lengths do not influence the performance, and the compu-
tation resource of additional channels is negligible, which
indicates that DAN works well as long as the output length
is reasonably set (longer than text length).

Depth: As shown in Figure 5, the performance of DAN
degrades seriously as we reduce L, which show that the
CAM should be deep enough to reach good performance. To
successfully align one character, the reception field of CAM
must be big enough to cover the corresponding features of
this character and its neighbor regions.

Deep Insight into Eliminating Misalignments As shown
in Table 4, compared with these two widely-used attentional
decoders in the field of text recognition, DAN achieves sig-
nificantly better performance.

To fine-grained study the improvements brought by the
better alignment of DAN, we quantitatively discuss the re-
lationship between obtained improvements of DAN and
corresponding eliminated alignment errors. We propose a
simple misalignment measurement method, which is based
on the priori knowledge that all texts are written from
left to right. This method consists of two steps: 1) pick-
ing the region with maximum attention score as attention
center; 2) if current attention center is on the left side
of the previous one, recording one misalignment. We di-
vide the test samples into five groups by the text length:
[0, 30), [30, 40), [40, 50), [50, 60), [60, 70); each group con-
tains more than 100 samples. In each group, the mis-
alignments are added up then averaged to produce mean-
misalignments per image (MM/img).

The experimental results are shown in Figure 6; The
changes of CER improvement and eliminated misalign-
ments are almost the same trend, which validates the perfor-
mance gain of DAN relative to traditional attention comes
from eliminating misalignments. In Figure 7, we show some
visualization results of eliminated misalignments by our
DAN.
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Figure 6: CER improvements of DAN on different text
lengths and corresponding misalignments. ‘Bah’ and ‘Lu-
ong’ denote Bahdanau’s attention and Luong’s attention, re-
spectively.

Error Analysis Figure 8 shows some typical error sam-
ples of DAN. In Figure 8 (a), the character ‘e’ is recognized
as ‘p’ because of its confusing writing style. The misclas-
sified ‘p’ is challenging for humans without contextual in-
formation. In Figure 8 (b), a space symbol is missed by the
recognizer, because the two relevant words are too close. In
Figure 8 (c), some noise texture is recognized as a word by
DAN. However, DAN is still more robust than traditional at-
tention on these samples. In Figure 8 (c) the confusing noises
disturb the alignment operation of traditional attention and
lead to unpredictable errors, while DAN is robust in align-
ment even if extra results are generated. Considering that the
noises have almost the same texture with normal text, this
type of error is very difficult to avoid, especially for DAN
which conduct alignment only based on visual features.

Figure 7: Visualization of attention maps and recognition
results on IAM dataset. Top: original fractional images
and corresponding groundtruth; middle: attention maps and
recognition results of traditional attention; bottom: attention
maps and recognition results of DAN.

Scene Text Recognition

Scene text recognition often encounters problems owing to
the large variations in the background, appearance, resolu-
tion, text font, and so on. In this section, we will study the
effectiveness and robustness of DAN on seven datasets in-
cluding regular scene text datasets and irregular scene text

Figure 8: Visualization of typical error samples of DAN.
The order of images is same as Figure 7. (a) Substitute error
where character ‘p’ is misrecognized as ‘e’; (b) delete error
where a space symbol is missed; (c) insert error where some
textures are recognized as ‘buck’.

datasets. We will validate the performance of DAN in 1D
and 2D form (denote as DAN-1D and DAN-2D); the de-
tailed configurations of feature encoder are shown in Ta-
ble 1.

Datasets Two types of datasets are used for scene text
recognition: regular scene text datasets, including IIIT5K-
Words (Mishra, Alahari, and Jawahar 2012), Street View
Text (Wang, Babenko, and Belongie 2011), ICDAR 2003
(Lucas et al. 2003) and ICDAR 2013 (Karatzas et al. 2013);
and irregular scene text datasets, including SVT-Perspective
(Neumann and Matas 2012), CUTE80 (Risnumawan et al.
2014) and ICDAR 2015 (Karatzas et al. 2015).

IIIT5k was collected from the Internet, and contained
3,000 cropped word images for testing.

Street View Text (SVT) was collected from the Google
Street View, and contained 647 word images for testing.

ICDAR 2003 (IC03) contained 251 scene images that are
labeled with text bounding boxes. The dataset contained 867
cropped images.

ICDAR 2013 (IC13) inherited most images from IC03
and extends it with some new images. It consisted of 1,015
cropped images without associated lexicon.

SVT-Perspective (SVT-P) was collected from the side-
view angle snapshots in Google Street View, and contained
639 cropped images for testing .
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Table 5: Performance comparison on regular and irregular scene text datasets. ‘Rect’ represents rectification-based methods;
‘2D’ represents 2D-based methods.

Methods Rect 2D
Regular Irregular

IIIT5k SVT IC03 IC13 SVT-P CUTE80 IC15

(Cheng et al. 2017) 1 87.4 85.9 94.2 93.3 - - 70.6
(Cheng et al. 2018) 87.0 82.8 91.5 - 73.0 76.8 68.2

(Bai et al. 2018) 1 88.3 87.5 94.6 94.4 - - 73.9
(Liu et al. 2018) 89.4 87.1 94.7 94.0 73.9 62.5 -
(Shi et al. 2018) � 93.4 89.5 94.5 91.8 78.5 79.5 76.1

(Fang et al. 2018) 86.7 86.7 94.8 93.5 - - 71.2
(Luo, Jin, and Sun 2019) � 91.2 88.3 95.0 92.4 76.1 77.4 68.8

(Liao et al. 2019) 1 � 92.0 86.4 - 91.5 1 - 79.9 -
(Li et al. 2019) � 91.5 84.5 - 91.0 76.4 83.3 69.2

(Xie et al. 2019) � - - - - 70.1 82.6 68.9
(Zhan and Lu 2019) � 93.3 90.2 - 91.3 79.6 83.3 76.9

DAN-1D 93.3 88.4 95.2 94.2 76.8 80.6 71.8
DAN-2D � 94.3 89.2 95.0 93.9 80.0 84.4 74.5

1 character-level annotation required.

Table 6: Robustness study. ‘ac’: accuracy; ‘gap’: the gap between the original dataset; ‘ratio’: accuracy decreasing ratio.

Methods
IIIT IIIT-p IIIT-r-p IC13 IC13-ex IC13-r-ex
ac ac gap ratio ac gap ratio ac ac gap ratio ac gap ratio

CA-FCN 92.0 89.3 -2.7 2.9% 87.6 -4.4 4.8% 91.4 87.2 -3.7 4.1% 83.8 -6.9 7.6%
DAN-1D 93.3 91.5 -1.8 1.9% 88.2 -5.1 5.4% 94.2 91.2 -3.0 3.2% 86.9 -7.3 7.7%
DAN-2D 94.3 92.1 -2.2 2.3% 89.1 -5.2 5.5% 93.9 90.4 -3.5 3.7% 86.9 -7.0 7.5%

CUTE80 focused on curved text, and consisted of 80
high-resolution images taken in natural scenes. This dataset
contained 288 cropped natural images for testing.

ICDAR 2015 (IC15) contained 2,077 cropped images. A
large proportion of images were blurred and multi-oriented.

Implementation Details We train our model on synthetic
samples released by (Jaderberg et al. 2014) and (Gupta,
Vedaldi, and Zisserman 2016). For better comparison, we
compare DAN only with the methods that had also used
these two synthetic datasets. The height of the input image is
set to 32 and the width is calculated with the original aspect
ratio (up to 128). maxT is set as 25; L is set as 8; and all the
layers of CAM except the last one are set as 64. We use the
bi-directional decoder proposed in (Shi et al. 2018) for final
prediction. channels. With ADADELTA (Zeiler 2012) opti-
mization method, the learning rate is set as 1.0 and reduced
to 0.1 after the third epoch.

Experimental Results As shown in Table 5, DAN
achieves state-of-the-art or comparable performance on
most datasets. For regular scene text recognition, DAN
achieves state-of-the-art performance on IIIT5K and IC03,
and is just a little behind the current state-of-the-art on SVT
and IC13. DAN-1D performs a little better on IC03 and
IC13, because images from these two datasets are usually
clean and regular. For irregular scene text recognition, the
most advanced methods can be divided into two types: recti-
fication based and 2D based. DAN-2D achieves state-of-the-
art performance on SVT-P and CUTE80, and it exhibits the

best performance among 2D recognizers.

Robustness Study Scene text is usually affected by envi-
ronmental disturbances. To check whether DAN is sensitive
to subtle disturbances, we also conduct robustness study on
IIIT-5k and IC13 datasets, and compare DAN with the most-
recent 2D scene text recognizer, CA-FCN (Liao et al. 2019).
We add some disturbances on these two datasets as follows:

IIIT-p: Padding the images in IIIT5k with extra 10%
height vertically and 10% width horizontally by repeating
the border pixels. IIIT-r-p: 1. Separately stretching the four
vertexes of the images in IIIT5k with a random scale up to
20% of height and width respectively. 2. Repeating border
pixels to fill the quadrilateral images. 3. Transforming the
images back to axis-aligned rectangles. IC13-ex: Expand-
ing the bounding boxes of the images in IC13 to expanded
rectangles with extra 10% height and width before crop-
ping. IC13-r-ex: 1. Expanding the bounding boxes of the
images in IC13 randomly with a maximum 20% of width
and height to form expanded quadrilaterals. 2. The pixels
in axis-aligned circumscribed rectangles of those images are
cropped.

The results are shown in Table 6. In most cases DAN ex-
hibits to be more robust than CA-FCN, which again vali-
dates its robustness.

Discussion

Advances of DAN: 1) Simple. DAN uses off-the-shelf
components; all of them are easy to implement. 2) Effective.
DAN achieves state-of-the-art performance on multiple text
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recognition tasks. 3) Flexible. The form of DAN can be eas-
ily switched between 1D and 2D. 4) Robust. DAN exhibits
more reliable alignment performance when facing long text.
It is also more robust facing subtle disturbances.

Limitations of DAN: The CAM uses only visual informa-
tion for alignment operation; thus when it comes text-like
noises, it struggles to align the text. This kind of error is
shown in Figure 8 (c) and may be a common issue for most
attention mechanism.

Conclusion

In this paper, an effective, flexible and robust decoupled at-
tention network is proposed for text recognition. To address
the misalignment issue, DAN decouples the decoder of the
traditional attention mechanism into a convolutional align-
ment module and a decoupled text decoder. Compared with
the traditional attention mechanism, DAN effectively elim-
inates the alignment errors and achieves the state-of-the-art
performance. Experimental results on multiple text recogni-
tion tasks have shown its effectiveness and merit. Particu-
larly, DAN shows significant superiority when dealing with
long text recognition, such as handwritten text recognition.
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