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Decoupled Multiagent Path Planning via
Incremental Sequential Convex Programming

Yufan Chen, Mark Cutler, and Jonathan P. How

Abstract— This paper presents a multiagent path planning
algorithm based on sequential convex programming (SCP) that
finds locally optimal trajectories. Previous work using SCP
efficiently computes motion plans in convex spaces with no static
obstacles. In many scenarios where the spaces are non-convex,
previous SCP-based algorithms failed to find feasible solutions
because the convex approximation of collision constraints leads
to forming a sequence of infeasible optimization problems. This
paper addresses this problem by tightening collision constraints
incrementally, thus forming a sequence of more relaxed, feasible
intermediate optimization problems. We show that the proposed
algorithm increases the probability of finding feasible trajecto-
ries by 33% for teams of more than three vehicles in non-convex
environments. Further, we show that decoupling the multiagent
optimization problem to a number of single-agent optimization
problems leads to significant improvement in computational
tractability. We develop a decoupled implementation of the
proposed algorithm, abbreviated dec-iSCP. We show that dec-
iSCP runs 14% faster and finds feasible trajectories with
higher probability than a decoupled implementation of previous
SCP-based algorithms. The proposed algorithm is real-time
implementable and is validated through hardware experiments
on a team of quadrotors.

I. INTRODUCTION
Multiagent robotic systems are attracting significant re-

search interest due to their inherent flexibility, robustness
to single-point failures, and potential to provide more di-
verse functionality than single-agent systems. Many applica-
tions of multiagent systems require coordination of mobile
agents navigating in complex environments. For instance,
researchers have investigated using fleets of unmanned aerial
and ground vehicles for forest fire monitoring [1], persistent
surveillance [2], warehouse inventory management [3], and
expressive artistic performance [4]. These scenarios require
computing collision free trajectories connecting initial and
final positions for every agent in the fleet.

For multiagent systems, it is challenging to efficiently
compute optimal collision free trajectories, where trajec-
tory quality is determined by total path length or total
required thrust. For instance, researchers have framed multi-
agent path planning problems as Mixed Integer Linear Pro-
grams (MILPs) [5] and Mixed Integer Quadratic Programs
(MIQPs) [6]. These centralized methods often have good
theoretical properties such as optimality guarantees, but the
computational complexity of MILPs and MIQPs limit their
applications to small teams with few obstacles [6]. Also,
researchers have investigated extending well-established sin-
gle agent path planning algorithms to multiagent systems.
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(a) Layout of ACL lab space (b) Quadrotors navigating in ACL

Fig. 1. A quadrotor fleet navigating in MIT’s Aerospace Controls
Laboratory (ACL). Note how the pole and the corner (marked in red) in the
room make the flight space a non-convex region. The proposed algorithm
quickly finds feasible multiagent trajectories in this non-convex flight space.

For instance, multiagent motion planning algorithms MA-
RRT* [7] and DMA-RRT [8] are based on a combination of
sampling-based RRT [9], RRT* [10], and grid-based forward
search A* [11], [12]. Unfortunately, these algorithms are also
computational intensive and require additional simplifying
assumptions, such as sparsity in the environment. Although
recent advances in grid-based methods [13], [14] have shown
improved computational tractability, applications of these
methods are typically restricted to discrete domains since
they do not account for vehicle dynamics (e.g., control
effort). Alternatively, algorithms such as potential fields [15],
[16] and ClearPath [17] are computationally efficient but
do not have optimality guarantees as they do not explicitly
compute feasible trajectories to the goal.

Sequential convex programming (SCP) [18] has been
shown to achieve a good balance between solution qual-
ity and computational tractability [19]. SCP-based methods
have been applied to multiagent motion planning in convex
domains, such as the coordination of a quadrotor team [20]
and formation control of spacecraft [21]. However, in non-
convex environments, previous SCP algorithms often fail to
find feasible solutions because the convex approximation of
collision constraints used in those approaches leads to form-
ing a sequence of over-constrained optimization problems,
for which it is very difficult to find a feasible solution.

This work addresses this problem by tightening constraints
incrementally, thus forming a sequence of feasible inter-
mediate optimization problems. The proposed algorithm is
named incremental sequential convex programming (iSCP)
to highlight the way in which constraints are added when
forming intermediate optimization problems. Further, we de-
velop a decoupled implementation of iSCP, abbreviated dec-
iSCP, that achieves significant improvement in computational
tractability. This decoupled algorithm converges faster and



finds feasible trajectories with higher probability than a de-
coupled implementation of previous SCP-based algorithms.
The main contributions of this work are (1) demonstrating
that single-agent iSCP can navigate around static obstacles in
non-convex domains, (2) presenting dec-iSCP for sequential
path planning for multiagent systems, (3) presenting a final
time scaling method that avoids having to solve the opti-
mization problem multiple times with different discretization
parameter settings, and (4) showing dec-iSCP is real-time
implementable with a hardware demonstration on a team of
quadrotors (Fig. 1(b)).

II. PROBLEM FORMULATION

This section presents the multiagent path planning opti-
mization problem. The objective is to generate collision free
trajectories for a team of robotic agents, subject to inter-
vehicle and static obstacle avoidance constraints. We assume
that there is a low level controller for tracking trajectories
specified by the planner. The problem formulation is similar
to [20].

a) Objective Function: For a system of N vehicles
in D dimensions with K discretization times steps, the
objective is find the minimizer

argmin
ai[k]

N∑
i=1

N∑
j=1

K∑
k=1

wija
T
i [k]aj [k], (1)

where wij are the scalar weights, ai[k] ∈ RD is the
acceleration vector of agent i ∈ {1, . . . , N} at discretized
time step k ∈ {1, . . . ,K}. Since position, velocity, and
jerk can be expressed as linear functions of acceleration
(Eqn. 2), we can choose wij’s to achieve different trade-offs
between minimizing path length (i.e., ||pi[k+ 1]− pi[k]||2)
or minimizing control effort (i.e.,

∑
i,k ||ai[k]||2). In this

paper, to minimize total thrust squared, we set wij = 1 when
i = j and wij = 0 otherwise, which tends to induce smooth
trajectories with low curvatures.

b) Kinematic Constraints: Given acceleration decision
variables ai[k] and discretization step size h, position pi[k],
velocity vi[k], and jerk ji[k], can be derived via kinematic
relations,

pi[k + 1] = pi[k] + hvi[k] +
h2

2
ai[k]

vi[k + 1] = vi[k] + hai[k]

ji[k] =
ai[k + 1]− ai[k]

h
∀i, k . (2)

The tuples (pi,vi,ai)[k] specify a trajectory for each agent.
Further, a feasible trajectory must reach the desired final
waypoint,

pi[K] = pfi, vi[K] = vfi, ai[K] = afi ∀i . (3)

Given physical limits (e.g., actuator limits), each vehicle
must respect position and acceleration constraints,

pi[k] ∈ [pmin,pmax], ai[k] ∈ [amin,amax], ∀i, k . (4)

c) Collision Avoidance Constraints: To prevent inter-
vehicle collision, every pair of vehicles must be separated
by at least distance R at all time steps,

||pi[k]− pj [k]||2 ≥ R ∀i, j i 6= j, ∀k . (5)

Further checking may be needed to ensure that there would
be no inter-vehicle collision in between any two time
steps [20].

d) Static Obstacle Constraints: Eqn. 4 assumes a con-
vex rectangular environment. Static obstacles can be modeled
using various functional forms to impose inequality con-
straints on position vectors, pi[k]’s. For instance, adaption
of Eqn. 5 can be used to model circular static obstacles.
Motivated by the need to navigate in our laboratory, which
has a L-shaped flight space with a square pole in the center
(Fig. 1(b)), we use an exponential loss function to model
polytopic obstacles. For example, keeping trajectories out of
a rectangular corner region Oc = {(x, y)|x < xcor, y <
ycor} requires

exp (c (pxi [k]− xcor)) + (6)
exp (c (pyi [k]− ycor)) ≥ 2 ∀i, k,

where pxi [k], p
y
i [k] are the x, y coordinates of pi[k]. Increas-

ing values of constant c lead to better approximations of the
boundary of Oc.

e) Final Time Scaling: The optimization problem in
Eqn. 1 requires specifying time step size h and end time
T = hK beforehand. However, these values are often
difficult to estimate, particularly for multiagent scenarios.
Small values of T may lead to an infeasible optimization
problem, whereas large values of T may lead to inefficiencies
as vehicles would travel slowly. Previous works [20], [21]
suggest initially solving the optimization problem with small
values of T , gradually increasing T until a feasible solution is
found. This procedure leads to inefficiencies since it requires
solving the optimization problem multiple times. We propose
solving the optimization problem with relaxed T (i.e. 5 times
the expected final time), then computing a scaling factor r,

r = min

{
min
i,k

||vmax||
||vi[k]||

, min
i,k

||amax||
||ai[k]||

, min
i,k

||jmax||
||ji[k]||

}
, (7)

where vmax, amax, and jmax are maximum allowed velocity,
acceleration and jerk, respectively. The solution to Eqn. 1 is
then scaled by the factor r,

hscaled = h/
√
r, ai[k]scaled = ai[k]r, ∀i, k . (8)

Substituting Eqn. 8 into Eqn. 2, we observe that although
acceleration, velocity, and jerk commands are changed, the
position commands pi[k] remain unchanged for every agent
at every time step. Thus, this scaling procedure only changes
the rate at which vehicles travel along the trajectories, not
the shape of the trajectories.

III. INCREMENTAL SEQUENTIAL CONVEX
PROGRAMMING

This section presents various adaptations of SCP for
solving the optimization problem described in Sec. II. SCP



methods form successive convex approximations of an op-
timization problem about a current iterate. In this paper,
each SCP-based algorithm is initialized with a straight line
connecting initial and final positions for each vehicle. The
stopping criterion is to require (1) all constraints to be
satisfied, and (2) the maximum deviation in any vehicle’s
trajectory between successive iterates to be less than a toler-
ance value, ε, such that maxi,k ||pq

i [k]−pq−1
i [k]||2 < ε. The

superscript q denotes the iteration number. More complex
stopping criteria can be found in [20], [21]. 1

A. Categorizing SCP Methods

This work introduces incremental SCP for path planning,
which can be adapted for both coupled and decoupled
formulations. The distinctions between coupled and decou-
pled formulations, and between the two ways of adding
constraints, are explained in following subsections. This
section establishes that (1) decoupled formulations have sig-
nificantly better computational tractability than the coupled
formulations, (2) decoupled formulations of existing SCP
approaches often fail to find feasible solutions in convex and
non-convex environments, and (3) decoupled formulations
of iSCP address the underlying problem leading to (2). To
clarify further discussion, we classify various approaches of
SCP in Table I.

TABLE I
CLASSIFICATION OF SCP-BASED APPROACHES.

Add all constr.
at once

Add constr.
incrementally

Form coupled QP cup-SCP cup-iSCP

Form decoupled QP dec-SCP dec-iSCP

B. Coupled SCP

Coupled SCP (cup-SCP) [20] forms a convex approxi-
mation of the optimization problem described in Sec. II by
linearizing Eqn. 5 (similarly for Eqn. 7) about the previous
iterate q, which can be described as follows

||pq
i [k]− pq

j [k]||+
(
pq
i [k]− pq

j [k]
)T

||pq
i [k]− pq

j [k]||
(pi[k]− pj [k]) ≥ R.

(9)
Since the objective function is quadratic and all constraints
are linear, the convex approximation of the original problem
is a quadratic program (QP). We call this approach “coupled”
SCP because the algorithm forms a QP whose decision
variables are acceleration vectors ai[k]’s of all vehicles.

1In general, SCP methods use a β parameter to control a trust region
around the current iterate [18]. This scheme reduces the circumstances in
which the algorithm oscillates between local minima. We found empirically
that this is not necessary for solving the optimization problem described in
Sec. II.

C. Decoupled SCP

Decoupled SCP (dec-SCP)2, shown in Alg. 1, presents
improved computational tractability and enables decentral-
ized, asynchronous implementation (explained in Sec. IV).
In comparison to cup-SCP, dec-SCP sequentially forms N
smaller optimization problems. In line 1, dec-SCP determines
the number of discretization time steps and initializes an
empty obstacle list. Then, the algorithm computes trajectories
for each vehicle sequentially. In particular, a single-agent
optimization problem is formed in line 3, and subsequently
solved using an SCP-based method outlined in Alg. 2. Each
solution to the single-agent optimization problem defines a
trajectory, which is appended to the obstacle list in line 4.
Hence, inter-vehicle collision avoidance constraints are rein-
forced by casting trajectories of earlier vehicles as constraints
for later vehicles. Lastly, in line 5, the algorithm invokes the
final time scaling procedure as defined in Eqn. 7 and 8.

Single-agent SCP, shown in Alg. 2, is an adaption of
generic SCP to solve single-agent path planning problems. In
particular, the algorithm linearizes collision constraints about
position p at the current iteration (line 3), and then forms a
convex approximation with a QP (line 4). The minimizer of
this QP, which is acceleration vector a, determines position
p at the next iteration (line 6) using kinematic relations
(Eqn. 2). This process repeats until convergence or until
exceeding the maximum allowed number of iterations.

Decoupled iSCP shows better computational tractability
than coupled SPC. In particular, at each iteration, cup-
SCP forms one QP with KND decision variables and
O(KN2) inequality constraints. In comparison, dec-iSCP
forms N smaller QPs, each with KD decision variables
and O(KN) inequality constraints. Recall that K is the
number of discretization steps, N is the number of agents,
and D is the number of dimensions. Since the computation
time for solving QPs increases quadratically with the number
of inequality constraints [20], the runtime of cup-SCP and
dec-iSCP are O(K2N4) and O(K2N3), respectively. Since
cup-SCP adds all collision constraints at every iteration, it
typically runs at its worst case run time. In contrast, dec-iSCP
only adds collision constraints as necessary (line 9 of Alg. 3),
which is often a small subset of all collision constraints.
Thus, dec-iSCP typically runs faster than its worst case run
time. Fig. 4 (Sec. IV) shows an empirical evaluation of
average run time, which suggests that dec-iSCP converges
faster than cup-SCP.

D. Incremental SCP

The main contribution of this work is introducing in-
cremental SCP (iSCP). Before presenting the mechanics of
iSCP, we first identify key differences between cup-SCP and

2A similar decoupling procedure was developed in [21], which focused
on application of SCP to formation reconfiguration of spacecraft swarms.
The decoupling procedure in [21] is well-suited for application to spacecraft
swarm reconfiguration, where the planning space is sparsely populated. In
contrast, this work considers path planning in more general settings. For
instance, in congested environments, the decoupling procedure in [21] would
lead to convergence problems.
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Fig. 2. Collision avoidance constraints for a pair of vehicles. A1 and A2 represent two different vehicles. Fig. (a) illustrates Eqn. 5, where the two
circular disks of radius R/2, centered around each vehicle, are not allowed to overlap. Fig. (b) illustrates linearization of Eqn. 5 in cup-SCP, where the two
vehicles cannot reside inside the blue band simultaneously. Note the blue band can slide along the blue arrow. Fig. (c) illustrates linearization of Eqn. 5
in dec-SCP, where A2 is not allowed inside the blue region. Fig. (d) illustrates linearization of the corner constraint (hatched pattern), where A2 is not
allowed inside the blue region.

Algorithm 1: dec-SCP
Input: initial waypoint p0i, final waypoint pfi for

agents i ∈ {1, . . . , N}, time step size h, final
time T , static obstacles O, physical bounds B

Output: trajectory specified by series of waypoints
(p, v, a) for each agent

1 K ← T/h+ 1, obs list ← ∅
2 foreach Agent i ∈ 1, . . . , N do
3 (pi, vi, ai) ← singleSCP( p0i, pfi, h,K,B, obs list)
4 obs list ← obs list ∪ {(pi, vi, ai)}
5 (p, v, a) ← timeScale ((p1, v1, a1) , . . . , (pN , vN , aN ))
6 return (p, v, a)

Algorithm 2: single-SCP
Input: initial waypoint p0, final waypoint pf , time step

size h, number of steps K, static obstacles O,
physical bounds B, obstacle list l

Output: trajectory specified by series of waypoints
(p, v, a)

1 (p, v, a) ← initializeStraightLine(p0, pf )
2 while not converged do
3 R ← linearizeAllCollConstr(p,O,B, l)
4 QP ← formQP(R, p0, pf , h,K)
5 a ← solve(QP)
6 v, p ← propagateStates(p0, a)

7 return (p, v, a)

dec-SCP, which provide insights into the circumstances under
which previous SCP-based algorithms might fail to find a
feasible trajectory, and motivate the development of iSCP.

Note that the linearization of Eqn. 5 in dec-SCP (line 3 of
Alg. 2) is not the same as Eqn. 9 in cup-SCP. In cup-SCP,
solving the coupled QP updates the value of both ai[k] and
aj [k], which subsequently updates the value of both pi[k]
and pj [k]. Thus, Eqn. 9 requires pi[k] and pj [k] to satisfy
a relative position constraint, as illustrated in Fig. 2(b). In
contrast, dec-SCP casts the trajectory of an earlier agent j

as a dynamic obstacle for a later agent i. When forming
a QP for agent i, pi[k] must satisfy an absolute position
constraint about the fixed position pj [k], as illustrated in
Fig. 2(c), where pi[k] cannot reside in a significant portion
of the domain determined by pj [k]. Solving each agent
sequentially (as in dec-SCP) is therefore similar to having
static obstacles (i.e. corner constraints as in Fig. 2(d)), where
a significant portion of the domain is marked infeasible by
an absolute position constraint. This important distinction
shows that the dec-SCP approximation is more constrained
than that of cup-SCP, as shown in Fig. 2(b) and Fig. 2(c).
The following discussion shows that this distinction leads
to certain scenarios in which dec-iSCP could find a feasible
trajectory, while dec-SCP fails to find a feasible trajectory.

In previous SCP-based approaches [20], [21], lineariza-
tion of collision avoidance constraints might lead to form-
ing infeasible intermediate QPs, which permit no feasible
solution. For an infeasible problem, QP solvers return a
solution that violates at least one constraint. We call this
solution an infeasible solution. Since dec-SCP forms more
constrained intermediate QPs than cup-SCP, dec-SCP forms
infeasible intermediate QPs more frequently than cup-SCP.
SCP-based approaches can sometimes recover from an inter-
mediate infeasible QP if successive convex approximations
(linearizations) about the infeasible solution form a new
feasible QP, from which a feasible solution can be found.
Otherwise, SCP-based approaches can be trapped in an
infeasible configuration (when the solution to an infeasible
QP forms the same infeasible QP) and fail to find a feasible
solution. We find that SCP-based approaches are more likely
to recover if all constraints are relative position constraints,
such as applying cup-SCP in a convex domain; SCP-based
approaches are also more likely to be trapped in an infeasible
configuration in the presence of absolute position constraints,
such as applying dec-SCP or applying cup-SCP in non-
convex domains (Fig. 2(b) and Fig. 2(c)). In Sec. IV, we
provide examples where existing SCP approaches fail to find
feasible trajectories for this reason.

The key idea of iSCP is to make the intermediate QPs less
constrained by tightening collision constraints incrementally,
thereby trying to ensure that all intermediate QPs are fea-



Algorithm 3: single-iSCP
Input: initial waypoint p0, final waypoint pf , time step

size h, number of steps K, static obstacles O,
physical bounds B, obstacle list l

Output: trajectory specified by series of waypoints
(p, v, a)

1 (p, v, a) ← initializeStraightLine(p0, pf )
2 addedConstr ← ∅
3 while not converged do
4 newConstrCount ← 0, R ← ∅
5 foreach time step k ∈ 1, . . . ,K do
6 if k ∈ addedConstr then
7 r ← linearizeCollConstr(p[k], O,B, l)
8 R ← R ∪ r
9 else if newConstrCount = 0 and Collision

Constraint at time k violated then
10 r ← linearizeCollConstr(p[k − 1], O,B, l)
11 R ← R ∪ r
12 addedConstr ← addedConstr ∪ {k}
13 newConstrCount ++

14 QP ← formQP(R, p0, pf , h,K)
15 a ← solve(QP)
16 v, p ← propagateStates(p0, a)

17 return (p, v, a)

sible. Alg. 3 outlines iSCP adapted to a single-agent path
planning problem, which differs from SCP (Alg. 3) in the
way in which collision constraints are added when forming
intermediate QPs (lines 4-14). In line 2, the algorithm initial-
izes a list to a empty set, which maintains added collision
constraints at time steps k ∈ {1, . . . ,K}. When forming
each intermediate QP, only a single new collision constraint
(that is not already in addedConstr) will be added (line 4,
13). In particular, if the collision constraint at time step k
is violated and no collision constraints at other time steps
have been added (line 9), collision constraint at time step k
will be included in the constraint matrix R when forming the
next QP (line 10-11). Also, if the collision constraint at time
step k was already added in the previous QP, this collision
constraint will again be included in constraint matrix R
when forming the next QP (line 6-8). Dec-iSCP is formed
by replacing line 3 in dec-SCP (Alg. 1) with a procedure
call of single-iSCP (Alg. 3). If addedConstr is initialized
to {1, . . . ,K} in line 2 of Alg. 3, which is to add all
collision constraints at the beginning, Alg. 2 and 3 would
be equivalent.

iSCP forms more relaxed intermediate QPs than SCP
because iSCP (1) only adds a linearized collision constraint if
the corresponding nonlinear collision constraint was violated
(line 9), (2) adds new collision constraints one at a time
(line 4), and (3) linearizes about position p[k− 1] when the
collision constraint at time step k is first added (line 10). Yet,
iSCP will add collision constraints at all time steps in at most
K iterations. Thus, after K iterations, iSCP will be identical
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Fig. 3. The probability of converging to a feasible solution in a non-convex
domain. Fig. 5 illustrates a scenario where SCP fails to converge and iSCP
converges when planning in a non-convex domain. This figure shows the
probability that similar scenarios occur. The algorithms dec-SCP and dec-
iSCP were run on 30 randomly generated test cases with initial and final
positions uniformly sampled from the convex domain.

to SCP. As shown in Sec. IV, iSCP typically converges in
fewer iterations than the number of discretization steps K.

To provide some intuition for this approach, we note
that collision constraints at discretized time steps respect a
temporal ordering, which is an important property of the
path planning problem (not true for generic optimization
problems). Adding constraints incrementally corresponds to
gradually growing a path from the initial position towards the
final position. As collision constraints of later time steps are
introduced, path segments at previous time steps are modified
accordingly.

IV. EMPIRICAL ANALYSIS

This section presents simulation and hardware results of
applying SCP approaches to solve the path planning problem
described in Sec. II. In particular, we compare and contrast
the performance of various SCP approaches in different path
planning scenarios. Algorithms were implemented in Matlab
and ran on a computer with Intel i7 Q740 Processor and
6GB of RAM. Inter-vehicle collision avoidance constraints
(Eqn. 5) required at least 0.8m of separation between every
pair of vehicles at every time step.

A. Navigating Around Static Obstacles

This work is motivated by the need to develop a multiagent
path planner for ACL’s non-convex flight volume (Fig. 1(a)),
which has a corner constraint and a pole constraint. Fig. 5
illustrates a scenario in which a single quadrotor attempts to
navigate around the upper left corner. In both SCP and iSCP3,
the trajectory is initialized to a straight line connecting the
initial and final positions, shown as a dotted line. Lineariza-
tion of Eqn. 7 leads to the formulation of an infeasible QP,
so SCP finds no feasible trajectory, as shown in Fig. 5(a). As
explained in Sec. III, SCP in this case forms a sequence of
infeasible QPs and gets trapped in an infeasible configuration

3The coupled vs. decoupled distinction is irrelevant for single agent
problems.
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Fig. 4. Average run time of dec-iSCP and cup-SCP in a 8m × 8m convex
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Fig. 6. Comparing the solution quality of dec-iSCP and cup-SCP in a
convex domain. Two pairs of vehicles attempt to swap positions, with initial
positions marked with triangles. Fig. 6(a) and Fig. 6(b) illustrate trajectories
found by dec-iSCP and cup-SCP, respectively. The trajectory found by dec-
iSCP has 15.5% higher objective function value than that of cup-SCP.

(Fig 5(a)). In contrast, iSCP adds collision constraints one at
a time, thereby forming a sequence of feasible QPs, where
each intermediate trajectory shows a small improvement over
the past iterate, shown in Fig. 5(b). In this case, SCP fails to
find a feasible trajectory whereas iSCP has converged to a
feasible solution in 9 iterations. We evaluated the frequency
that similar scenarios occur by generating a number of
random test cases. Fig. 3 shows that dec-iSCP finds feasible
solutions with 33% higher probability than dec-SCP for
teams of more than three agents.

B. cup-SCP and dec-iSCP

The simulation result illustrated in Fig. 4 empirically veri-
fies that dec-iSCP presents significantly lower computational
complexity than cup-SCP as discussed in Sec. III. More
importantly, decoupled iSCP allows for potentially decen-
tralized and asynchronous implementation, whereas cup-SCP
explicitly requires all vehicles to be synchronized by forming
a coupled optimization problem, in which the entire team
must wait for the most constrained vehicle (i.e., the vehicle
traveling the longest trajectory). This can be inefficient in
situations where interactions between vehicles are sparse. In

contrast, dec-iSCP solves for each agent sequentially. This
procedure allows for a decentralized implementation such
that each vehicle can plan its own trajectory using iSCP by
treating other vehicles as dynamic obstacles.

We acknowledge that dec-iSCP is a sequential greedy
solution approach to the optimization problem described in
Sec. II. Thus, dec-iSCP typically finds inferior solutions
when compared to cup-SCP in terms of objective function
value. Simulations of 30 test cases with random initial and
final positions show that trajectories found by dec-iSCP are
on average 7% higher in objective function value than that
of cup-SCP. An example is illustrated in Fig. 6.

C. dec-iSCP in Convex Domains

Fig. 7 illustrates an application of dec-SCP and dec-
iSCP to solve a multiagent path planning problem in a
convex domain, where two pairs of vehicles attempt to
swap positions. In both algorithms, the blue, green and red
agents are solved before the teal agent. The teal agent views
the other three agents as dynamic obstacles with known
trajectories. This causes dec-SCP to form an infeasible QP
and get trapped in an infeasible configuration, as shown in
Fig. 5(a). In contrast, dec-iSCP finds a feasible solution in
7 iterations. As explained in Sec. III, this example shows
that solving for each agent sequentially is similar to having
static obstacles (Fig. 5). We found the frequency of similar
scenarios occurring and the average computation time by
generating a number test cases with random initial and final
positions. The performance of dec-SCP and dec-iSCP is
illustrated in Fig. 8 by dotted and solid lines, respectively.
The figures show that dec-iSCP finds feasible solutions with
higher probability than dec-SCP. Also, dec-iSCP converges
to feasible solution sooner than dec-SCP. The error bars are
mainly due to variability in randomly generated test cases4. A
case by case comparison shows that dec-iSCP is on average
14% faster than dec-SCP.

D. Hardware Experiment

For hardware demonstration, dec-iSCP is implemented in
C++ and utilizes the MOSEK library for solving QPs at
each iteration. The dec-iSCP algorithm consistently produced
smooth, feasible trajectories for a team of 4 quadrotors
navigating in ACL’s non-convex flight domain (Fig. 1(b)).
A hardware demonstration video can be found at http:
//youtu.be/Zkxc4PRGvC4.

V. CONCLUSION

This paper has developed the incremental sequential con-
vex programming (iSCP) algorithm for multiagent path
planning. We demonstrated that decoupling the multiagent
optimization problem yields better computational tractability.
We also examined why previous SCP-based methods often
fail to find feasible trajectories in non-convex domains,
as well as why decoupled implementations of SCP-based

4For example, test cases in which vehicles do not cross paths are easier
than those where many vehicles cross paths. Easy test cases require many
times fewer iterations to converge than difficult test cases.

http://youtu.be/Zkxc4PRGvC4
http://youtu.be/Zkxc4PRGvC4
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(a) SCP did not find a feasible solution.

(b) iSCP found a feasible solution.

Fig. 5. Convergence pattern around a corner. A vehicle attempts to negotiate a corner in ACL (see Fig. 1(a) for axis label). Fig. 5(a) and Fig. 5(b)
illustrate the vehicle’s trajectory as computed by SCP and iSCP, respectively, at iterations 1, 2, 5, and 9 from left to right. SCP fails to find a feasible
solution while iSCP has found a feasible solution.

(a) dec-SCP did not find a feasible solution.

(b) dec-iSCP found a feasible solution.

Fig. 7. Convergence patterns of multiple vehicles in a 6m × 6m convex
domain. In the decoupled solution approach, agents are solved sequentially
and the trajectory of an earlier agent is used as constraints for later agents.
Two pairs of vehicles attempt swap positions, with initial positions marked
with triangles. The red, blue and green agents are solved for before the teal
agent. Fig. 7(a) and Fig. 7(b) illustrate the teal agent’s trajectory found by
dec-SCP and dec-iSCP, respectively, at iterations 1, 3, 5, and 7 from left
to right. dec-SCP failed to find a feasible solution while dec-iSCP found a
feasible solution.

methods often fail to find feasible trajectories even in convex
domains. The iSCP algorithm was developed to address these
problems, and was shown to successfully find a feasible tra-
jectory in many scenarios where previous algorithms failed.
A decoupled implementation of the proposed algorithm, dec-

iSCP, finds feasible solutions with higher probability and in
less computation time than dec-SCP. The proposed algorithm
is real-time implementable and is validated through hardware
experiments. In future studies, we will investigate ways for
parallel implementation of iSCP to enable decentralized and
asynchronous path planning for multiagent systems.
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