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Abstract

Training directed neural networks typically re-

quires forward-propagating data through a com-

putation graph, followed by backpropagating er-

ror signal, to produce weight updates. All lay-

ers, or more generally, modules, of the network

are therefore locked, in the sense that they must

wait for the remainder of the network to execute

forwards and propagate error backwards before

they can be updated. In this work we break this

constraint by decoupling modules by introduc-

ing a model of the future computation of the net-

work graph. These models predict what the re-

sult of the modelled subgraph will produce using

only local information. In particular we focus on

modelling error gradients: by using the modelled

synthetic gradient in place of true backpropa-

gated error gradients we decouple subgraphs,

and can update them independently and asyn-

chronously i.e. we realise decoupled neural in-

terfaces. We show results for feed-forward mod-

els, where every layer is trained asynchronously,

recurrent neural networks (RNNs) where predict-

ing one’s future gradient extends the time over

which the RNN can effectively model, and also

a hierarchical RNN system with ticking at differ-

ent timescales. Finally, we demonstrate that in

addition to predicting gradients, the same frame-

work can be used to predict inputs, resulting in

models which are decoupled in both the forward

and backwards pass – amounting to independent

networks which co-learn such that they can be

composed into a single functioning corporation.
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Figure 1. General communication protocol between A and B. Af-

ter receiving the message hA from A, B can use its model of A,

MB , to send back synthetic gradients δ̂A which are trained to ap-

proximate real error gradients δA. Note that A does not need to

wait for any extra computation after itself to get the correct er-

ror gradients, hence decoupling the backward computation. The

feedback model MB can also be conditioned on any privileged in-

formation or context, c, available during training such as a label.

1. Introduction

Each layer (or module) in a directed neural network can be

considered a computation step, that transforms its incom-

ing data. These modules are connected via directed edges,

creating a forward processing graph which defines the flow

of data from the network inputs, through each module, pro-

ducing network outputs. Defining a loss on outputs allows

errors to be generated, and propagated back through the

network graph to provide a signal to update each module.

This process results in several forms of locking, namely:

(i) Forward Locking – no module can process its incom-

ing data before the previous nodes in the directed forward

graph have executed; (ii) Update Locking – no module can

be updated before all dependent modules have executed in

forwards mode; also, in many credit-assignment algorithms

(including backpropagation (Rumelhart et al., 1986)) we

have (iii) Backwards Locking – no module can be updated

before all dependent modules have executed in both for-

wards mode and backwards mode.

Forwards, update, and backwards locking constrain us to

running and updating neural networks in a sequential, syn-

chronous manner. Though seemingly benign when training
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simple feed-forward nets, this poses problems when think-

ing about creating systems of networks acting in multiple

environments at different and possibly irregular or asyn-

chronous timescales. For example, in complex systems

comprised of multiple asynchronous cooperative modules

(or agents), it is undesirable and potentially unfeasible that

all networks are update locked. Another example is a dis-

tributed model, where part of the model is shared and used

by many downstream clients – all clients must be fully ex-

ecuted and pass error gradients back to the shared model

before the model can update, meaning the system trains

as fast as the slowest client. The possibility to parallelise

training of currently sequential systems could hugely speed

up computation time.

The goal of this work is to remove update locking for neural

networks. This is achieved by removing backpropagation.

To update weights θi of module i we drastically approxi-

mate the function implied by backpropagation:

∂L

∂θi
= fBprop((hi, xi, yi, θi), . . .)

∂hi

∂θi

' f̂Bprop(hi)
∂hi

∂θi

where h are activations, x are inputs, y is supervision, and

L is the overall loss to minimise. This leaves dependency

only on hi – the information local to module i.

The premise of this method is based on a simple pro-

tocol for learnt communication, allowing neural network

modules to interact and be trained without update locking.

While the communication protocol is general with respect

to the means of generating a training signal, here we fo-

cus on a specific implementation for networks trained with

gradient descent – we replace a standard neural interface (a

connection between two modules in a neural network) with

a Decoupled Neural Interface (DNI). Most simply, when a

module (e.g. a layer) sends a message (activations) to an-

other module, there is an associated model which produces

a predicted error gradient with respect to the message im-

mediately. The predicted gradient is a function of the mes-

sage alone; there is no dependence on downstream events,

states or losses. The sender can then immediately use these

synthetic gradients to get an update, without incurring any

delay. And by removing update- and backwards locking

in this way, we can train networks without a synchronous

backward pass. We also show preliminary results that ex-

tend this idea to also remove forward locking – resulting in

networks whose modules can also be trained without a syn-

chronous forward pass. When applied to RNNs we show

that using synthetic gradients allows RNNs to model much

greater time horizons than the limit imposed by truncat-

ing backpropagation through time (BPTT). We also show

that using synthetic gradients to decouple a system of two

RNNs running at different timescales can greatly increase

training speed of the faster RNN.

Our synthetic gradient model is most analogous to a

value function which is used for gradient ascent (Bax-

ter & Bartlett, 2000) or critics for training neural net-

works (Schmidhuber, 1990). Most other works that aim

to remove backpropagation do so with the goal of per-

forming biologically plausible credit assignment, but this

doesn’t eliminate update locking between layers. E.g. tar-

get propagation (Lee et al., 2015; Bengio, 2014) removes

the reliance on passing gradients between layers, by in-

stead generating target activations which should be fitted

to. However these targets must still be generated sequen-

tially, propagating backwards through the network and lay-

ers are therefore still update- and backwards-locked. Other

algorithms remove the backwards locking by allowing loss

or rewards to be broadcast directly to each layer – e.g. RE-

INFORCE (Williams, 1992) (considering all activations are

actions), Kickback (Balduzzi et al., 2014), and Policy Gra-

dient Coagent Networks (Thomas, 2011) – but still remain

update locked since they require rewards to be generated

by an output (or a global critic). While Real-Time Recur-

rent Learning (Williams & Zipser, 1989) or approximations

such as (Ollivier & Charpiat, 2015; Tallec & Ollivier, 2017)

may seem a promising way to remove update locking, these

methods require maintaining the full (or approximate) gra-

dient of the current state with respect to the parameters.

This is inherently not scalable and also requires the opti-

miser to have global knowledge of the network state. In

contrast, by framing the interaction between layers as a lo-

cal communication problem with DNI, we remove the need

for global knowledge of the learning system. Other works

such as (Taylor et al., 2016; Carreira-Perpinán & Wang,

2014) allow training of layers in parallel without backprop-

agation, but in practice are not scalable to more complex

and generic network architectures.

2. Decoupled Neural Interfaces

We begin by describing the high-level communication pro-

tocol that is used to allow asynchronously learning agents

to communicate.

As shown in Fig. 1, Sender A sends a message hA to Re-

ceiver B. B has a model MB of the utility of the mes-

sage hA. B’s model of utility MB is used to predict the

feedback: an error signal δ̂A = MB(hA, sB , c) based on

the message hA, the current state of B, sB , and potentially

any other information, c, that this module is privy to dur-

ing training such as the label or context. The feedback δ̂A

is sent back to A which allows A to be updated immedi-

ately. In time, B can fully evaluate the true utility δA of the

message received from A, and so B’s utility model can be

updated to fit the true utility, reducing the disparity between

δ̂A and δA.
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Figure 2. (a) An RNN trained with truncated BPTT using DNI to

communicate over time: Every timestep a recurrent core takes

input and produces a hidden state ht and output yt which affects

a loss Lt. The core is unrolled for T steps (in this figure T =

3). Gradients cannot propagate across the boundaries of BPTT,

which limits the time dependency the RNN can learn to model.

However, the recurrent core includes a synthetic gradient model

which produces synthetic gradients δ̂t which can be used at the

boundaries of BPTT to enable the last set of unrolled cores to

communicate with the future ones. (b) In addition, as an auxiliary

task, the network can also be asked to do future synthetic gradient

prediction: an extra output
ˆ̂
δt+T is computed every timestep, and

is trained to minimise k
ˆ̂
δt+T � δ̂t+T k.

This protocol allows A to send messages to B in a way that

A and B are update decoupled – A does not have to wait

for B to evaluate the true utility before it can be updated –

and A can still learn to send messages of high utility to B.

We can apply this protocol to neural networks communi-

cating, resulting in what we call Decoupled Neural Inter-

faces (DNI). For neural networks, the feedback error signal

δ̂A can take different forms, e.g. gradients can be used as

the error signal to work with backpropagation, target mes-

sages as the error signal to work with target propagation, or

even a value (cumulative discounted future reward) to in-

corporate into a reinforcement learning framework. How-

ever, as a clear and easily analysable set of first steps into

this important and mostly unexplored domain, we concen-

trate our empirical study on differentiable networks trained

with backpropagation and gradient-based updates. There-

fore, we focus on producing error gradients as the feedback

δ̂A which we dub synthetic gradients.

Notation To facilitate our exposition, it’s useful to intro-

duce some notation. Without loss of generality, consider

neural networks as a graph of function operations (a finite

chain graph in the case of a feed-forward models, an infi-

nite chain in the case of recurrent ones, and more generally

a directed acyclic graph). The forward execution of the net-

work graph has a natural ordering due to the input depen-

dencies of each functional node. We denote the function

corresponding to step i in a graph execution as fi and the

composition of functions (i.e. the forward graph) from step

i to step j inclusive as Fj
i . We denote the loss associated

with layer, i, of the chain as Li.

2.1. Synthetic Gradient for Recurrent Networks

We begin by describing how our method of using synthetic

gradients applies in the case of recurrent networks; in some

ways this is simpler to reason about than feed-forward net-

works or more general graphs.

An RNN applied to infinite stream prediction can be

viewed as an infinitely unrolled recurrent core module f

with parameters θ, such that the forward graph is F∞

1 =
(fi)

∞

i=1 where fi = f 8i and the core module propa-

gates an output yi and state hi based on some input xi:

yi, hi = fi(xi, hi−1).

At a particular point in time t we wish to minimiseP
∞

τ=t Lτ . Of course, one cannot compute an update of the

form θ  θ � α
P

∞

τ=t
∂Lτ

∂θ
due to the infinite future time

dependency. Instead, generally one considers a tractable

time horizon T

θ � α

∞X

τ=t

∂Lτ

∂θ
= θ � α(

t+TX

τ=t

∂Lτ

∂θ
+ (

∞X

τ=T+1

∂Lτ

∂hT

)
∂hT

∂θ
)

= θ � α(
t+TX

τ=t

∂Lτ

∂θ
+ δT

∂hT

∂θ
)

and as in truncated BPTT, calculates
Pt+T

τ=t
∂Lτ

∂θ
with back-

propagation and approximates the remaining terms, beyond

t + T , by using δT = 0. This limits the time horizon over

which updates to θ can be learnt, effectively limiting the

amount of temporal dependency an RNN can learn. The

approximation that δT = 0 is clearly naive, and by using

an appropriately learned approximation we can hope to do

better. Treating the connection between recurrent cores at

time t+T as a Decoupled Neural Interface we can approx-

imate δT , with δ̂T = MT (hT ) – a learned approximation

of the future loss gradients – as shown and described in

Fig. 2 (a).

This amounts to taking the infinitely unrolled RNN as the

full neural network F∞

1 , and chunking it into an infinite

number of sub-networks where the recurrent core is un-

rolled for T steps, giving F t+T−1
t . Inserting DNI between

two adjacent sub-networks F t+T−1
t and F t+2T−1

t+T allows

the recurrent network to learn to communicate to its future

self, without being update locked to its future self. From

the view of the synthetic gradient model, the RNN is pre-

dicting its own error gradients.

The synthetic gradient model δ̂T = MT (hT ) is trained

to predict the true gradients by minimising a distance

d(δ̂T , δT ) to the target gradient δT – in practice we find

L2 distance to work well. The target gradient is ideally the

true gradient of future loss,
P

∞

τ=T+1

∂Lτ

∂hT

, but as this is

not a tractable target to obtain, we can use a target gradient

that is itself bootstrapped from a synthetic gradient and then

backpropagated and mixed with a number of steps of true
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Figure 3. (a) A section of a vanilla feed-forward neural network

F
N
1 . (b) Incorporating one synthetic gradient model for the out-

put of layer i. This results in two sub-networks F
i
1 and F

N

i+1

which can be updated independently. (c) Incorporating multiple

synthetic gradient models after every layer results in N indepen-

dently updated layers.

gradient, e.g. δT =
P2T

τ=T+1

∂Lτ

∂hT

+δ̂2T+1
∂h2T

∂hT

. This boot-

strapping is exactly analogous to bootstrapping value func-

tions in reinforcement learning and allows temporal credit

assignment to propagate beyond the boundary of truncated

BPTT.

This training scheme can be implemented very efficiently

by exploiting the recurrent nature of the network, as shown

in Fig. 10 in the Supplementary Material. In Sect. 3.1

we show results on sequence-to-sequence tasks and lan-

guage modelling, where using synthetic gradients extends

the time dependency the RNN can learn.

Auxiliary Tasks We also propose an extension to aid

learning of synthetic gradient models for RNNs, which is to

introduce another auxiliary task from the RNN, described

in Fig. 2 (b). This extra prediction problem is designed to

promote coupling over the maximum time span possible,

requiring the recurrent core to explicitly model short term

and long term synthetic gradients, helping propagate gradi-

ent information backwards in time. This is also shown to

further increase performance in Sect. 3.1.

2.2. Synthetic Gradient for Feed-Forward Networks

As another illustration of DNIs, we now consider

feed-forward networks consisting of N layers fi, i 2
{1, . . . , N}, each taking an input hi−1 and producing an

output hi = fi(hi−1), where h0 = x is the input data. The

forward execution graph of the full network can be denoted

as as FN
1 , a section of which is illustrated in Fig. 3 (a).

Define the loss imposed on the output of the network as

L = LN . Each layer fi has parameters θi that can be

trained jointly to minimise L(hN ) with a gradient-based

update rule

θi  θi � α δi
∂hi

∂θi
; δi =

∂L

∂hi

where α is the learning rate and ∂L
∂hi

is computed with back-

propagation. The reliance on δi means that the update to

layer i can only occur after the remainder of the network,

i.e. FN
i+1 (the sub-network of layers between layer i + 1

and layer N inclusive) has executed a full forward pass,

generated the loss L(hN ), then backpropagated the gradi-

ent through every successor layer in reverse order. Layer i

is therefore update locked to FN
i+1.

To remove the update locking of layer i to FN
i+1 we can use

the communication protocol described previously. Layer

i sends hi to layer i + 1, which has a communication

model Mi+1 that produces a synthetic error gradient δ̂i =
Mi+1(hi), as shown in Fig. 3 (b), which can be used im-

mediately to update layer i and all the other layers in F i
1

θn  θn � α δ̂i
∂hi

∂θn
, n 2 {1, . . . , i}.

To train the parameters of the synthetic gradient model

Mi+1, we simply wait for the true error gradient δi to be

computed (after a full forwards and backwards execution

of FN
i+1), and fit the synthetic gradient to the true gradients

by minimising kδ̂i � δik
2
2.

Furthermore, for a feed-forward network, we can use syn-

thetic gradients as communication feedback to decouple

every layer in the network, as shown in Fig. 3 (c). The

execution of this process is illustrated in Fig. 9 in the Sup-

plementary Material. In this case, since the target error

gradient δi is produced by backpropagating δ̂i+1 through

layer i+ 1, δi is not the true error gradient, but an estimate

bootstrapped from synthetic gradient models later in the

network. Surprisingly, this does not cause errors to com-

pound and learning remains stable even with many layers,

as shown in Sect. 3.3.

Additionally, if any supervision or context c is available

at the time of synthetic gradient computation, the syn-

thetic gradient model can take this as an extra input, δ̂i =
Mi+1(hi, c).

This process allows a layer to be updated as soon as a for-

ward pass of that layer has been executed. This paves the

way for sub-parts or layers of networks to be trained in an

asynchronous manner, something we show in Sect. 3.3.

2.3. Arbitrary Network Graphs

Although we have explicitly described the application of

DNIs for communication between layers in feed-forward

networks, and between recurrent cores in recurrent net-

works, there is nothing to restrict the use of DNIs for arbi-

trary network graphs. The same procedure can be applied
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to any network or collection of networks, any number of

times. An example is in Sect. 3.2 where we show commu-

nication between two RNNs, which tick at different rates,

where the communication can be learnt by using synthetic

gradients.

2.4. Mixing Real & Synthetic Gradients

In this paper we focus on the use of synthetic gradients to

replace real backpropagated gradients in order to achieve

update unlocking. However, synthetic gradients could also

be used to augment real gradients. Mixing real and syn-

thetic gradients results in BP (λ), an algorithm anolgous to

TD(λ) for reinforcement learning (Sutton & Barto, 1998).

This can be seen as a generalized view of synthetic gradi-

ents, with the algorithms given in this section for update un-

locked RNNs and feed-forward networks being specific in-

stantiations of BP (λ). This generalised view is discussed

further in Sect. A in the Supplementary Material.

3. Experiments

In this section we perform empirical expositions of the use

of DNIs and synthetic gradients, first by applying them to

RNNs in Sect. 3.1 showing that synthetic gradients extend

the temporal correlations an RNN can learn. Secondly, in

Sect. 3.2 we show how a hierarchical, two-timescale sys-

tem of networks can be jointly trained using synthetic gra-

dients to propagate error signals between networks. Fi-

nally, we demonstrate the ability of DNIs to allow asyn-

chronous updating of layers a feed-forward network in

Sect. 3.3. More experiments can be found in Sect. C in

the Supplementary Material.

3.1. Recurrent Neural Networks

Here we show the application of DNIs to recurrent neural

networks as discussed in Sect. 2.1. We test our models on

the Copy task, Repeat Copy task, as well as character-level

language modelling.

For all experiments we use an LSTM (Hochreiter &

Schmidhuber, 1997) of the form in (Graves, 2013), whose

output is used for the task at hand, and additionally as in-

put to the synthetic gradient model (which is shared over

all timesteps). The LSTM is unrolled for T timesteps after

which backpropagation through time (BPTT) is performed.

We also look at incorporating an auxiliary task which pre-

dicts the output of the synthetic gradient model T steps in

the future as explained in Sect. 2.1. The implementation

details of the RNN models are given in Sect. D.2 in the

Supplementary Material.

Copy and Repeat Copy We first look at two synthetic

tasks – Copy and Repeat Copy tasks from (Graves et al.,

2014). Copy involves reading in a sequence of N charac-

ters and after a stop character is encountered, must repeat

the sequence of N characters in order and produce a final

stop character. Repeat Copy must also read a sequence of

N characters, but after the stop character, reads the num-

ber, R, which indicates the number of times it is required

to copy the sequence, before outputting a final stop charac-

ter. Each sequence of reading and copying is an episode,

of length Ttask = N + 3 for Copy and Ttask = NR + 3 for

Repeat Copy.

While normally the RNN would be unrolled for the length

of the episode before BPTT is performed, T = Ttask, we

wish to test the length of time the RNN is able to model

with and without DNI bridging the BPTT limit. We there-

fore train the RNN with truncated BPTT: T 2 {2, 3, 4, 5}
with and without DNI, where the RNN is applied contin-

uously and across episode boundaries. For each problem,

once the RNN has solved a task with a particular episode

length (averaging below 0.15 bits error), the task is made

harder by extending N for Copy and Repeat Copy, and also

R for Repeat Copy.

Table 1 gives the results by reporting the largest Ttask that

is successfully solved by the model. The RNNs without

DNI generally perform as expected, with longer BPTT re-

sulting in being able to model longer time dependencies.

However, by introducing DNI we can extend the time de-

pendency that is able to be modelled by an RNN. The ad-

ditional computational complexity is negligible but we re-

quire an additional recurrent core to be stored in memory

(this is illustrated in Fig. 10 in the Supplementary Mate-

rial). Because we can model larger time dependencies with

a smaller T , our models become more data-efficient, learn-

ing faster and having to see less data samples to solve a

task. Furthermore, when we include the extra task of pre-

dicting the synthetic gradient that will be produced T steps

in the future (DNI + Aux), the RNNs with DNI are able

to model even larger time dependencies. For example with

T = 3 (i.e. performing BPTT across only three timesteps)

on the Repeat Copy task, the DNI enabled RNN goes from

being able to model 33 timesteps to 59 timesteps when us-

ing future synthetic gradient prediction as well. This is in

contrast to without using DNI at all, where the RNN can

only model 5 timesteps.

Language Modelling We also applied our DNI-enabled

RNNs to the task of character-level language modelling,

using the Penn Treebank dataset (Marcus et al., 1993). We

use an LSTM with 1024 units, which at every timestep

reads a character and must predict the next character in

the sequence. We train with BPTT with and without DNI,

as well as when using future synthetic gradient prediction

(DNI + Aux), with T 2 {2, 3, 4, 5, 8} as well as strong

baselines with T = 20, 40. We measure error in bits per



Decoupled Neural Interfaces using Synthetic Gradients

BPTT DNI DNI + Aux
T = 2 3 4 5 8 20 40 2 3 4 5 8 2 3 4 5 8

Copy 7 8 10 8 - - - 16 14 18 18 - 16 17 19 18 -
Repeat Copy 7 5 19 23 - - - 39 33 39 59 - 39 59 67 59 -

Penn Treebank 1.39 1.38 1.37 1.37 1.35 1.35 1.34 1.37 1.36 1.35 1.35 1.34 1.37 1.36 1.35 1.35 1.33

Table 1. Results for applying DNI to RNNs. Copy and Repeat Copy task performance is reported as the maximum sequence length that

was successfully modelled (higher is better), and Penn Treebank results are reported in terms of test set bits per character (lower is better)

at the point of lowest validation error. No learning rate decreases were performed during training.

Figure 4. Left: The task progression during training for the Repeat Copy task. All models were trained for 2.5M iterations, but the

varying unroll length T results in different quantities of data consumed. The x-axis shows the number of samples consumed by the

model, and the y-axis the time dependency level solved by the model – step changes in the time dependency indicate that a particular

time dependency is deemed solved. DNI+Aux refers to DNI with the additional future synthetic gradient prediction auxiliary task. Right:

Test error in bits per character (BPC) for Penn Treebank character modelling. We train the RNNs with different BPTT unroll lengths

with DNI (solid lines) and without DNI (dashed lines). Early stopping is performed based on the validation set. Bracketed numbers give

final test set BPC.

character (BPC) as in (Graves, 2013), perform early stop-

ping based on validation set error, and for simplicity do

not perform any learning rate decay. For full experimen-

tal details please refer to Sect. D.2 in the Supplementary

Material.

The results are given in Table 1. Interestingly, with BPTT

over only two timesteps (T = 2) an LSTM can get surpris-

ingly good accuracy at next character prediction. As ex-

pected, increasing T results in increased accuracy of pre-

diction. When adding DNI, we see an increase in speed

of learning (learning curves can be found in Fig. 4 (Right)

and Fig. 16 in the Supplementary Material), and models

reaching greater accuracy (lower BPC) than their counter-

parts without DNI. As seen with the Copy and Repeat Copy

task, future synthetic gradient prediction further increases

the ability of the LSTM to model long range temporal de-

pendencies – an LSTM unrolled 5 timesteps with DNI and

future synthetic gradient prediction gives the same BPC as

a vanilla LSTM unrolled 20 steps, only needs 58% of the

data and is 2⇥ faster in wall clock time to reach 1.35BPC.

Although we report results only with LSTMs, we have

found DNI to work similarly for vanilla RNNs and Leaky

RNNs (Ollivier & Charpiat, 2015).

3.2. Multi-Network System

In this section, we explore the use of DNI for communi-

cation between arbitrary graphs of networks. As a simple

proof-of-concept, we look at a system of two RNNs, Net-

work A and Network B, where Network B is executed at a

slower rate than Network A, and must use communication

from Network A to complete its task. The experimental

setup is illustrated and described in Fig. 5 (a). Full experi-

mental details can be found in Sect. D.3 in the Supplemen-

tary Material.

First, we test this system trained end-to-end, with full back-

propagation through all connections, which requires the

joint Network A-Network B system to be unrolled for T 2

timesteps before a single weight update to both Network A

and Network B, as the communication between Network

A to Network B causes Network A to be update locked to

Network B. We the train the same system but using syn-

thetic gradients to create a learnable bridge between Net-
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Figure 5. (a) System of two RNNs communicating with DNI. Network A sees a datastream of MNIST digits and every T steps must

output the number of odd digits seen. Network B runs every T steps, takes a message from Network A as input and must output the

number of 3s seen over the last T 2 timesteps. Here is a depiction where T = 2. (b) The test error over the course of training Network

A and Network B with T = 4. Grey shows when the two-network system is treated as a single graph and trained with backpropagation

end-to-end, with an update every T 2 timesteps. The blue curves are trained where Network A and Network B are decoupled, with

DNI (blue) and without DNI (red). When not decoupled (grey), Network A can only be updated every T 2 steps as it is update locked

to Network B, so trains slower than if the networks are decoupled (blue and red). Without using DNI (red), Network A receives no

feedback from Network B as to how to process the data stream and send a message, so Network B performs poorly. Using synthetic

gradient feedback allows Network A to learn to communicate with Network B, resulting in similar final performance to the end-to-end

learnt system (results remain stable after 100k steps).

work A and Network B, thus decoupling Network A from

Network B. This allows Network A to be updated T times

more frequently, by using synthetic gradients in place of

true gradients from Network B.

Fig. 5 (b) shows the results for T = 4. Looking at the test

error during learning of Network A (Fig. 5 (b) Top), it is

clear that being decoupled and therefore updated more fre-

quently allows Network A to learn much quicker than when

being locked to Network B, reaching final performance in

under half the number of steps. Network B also trains faster

with DNI (most likely due to the increased speed in learn-

ing of Network A), and reaches a similar final accuracy as

with full backpropagation (Fig. 5 (b) Bottom). When the

networks are decoupled but DNI is not used (i.e. no gradi-

ent is received by Network A from Network B), Network

A receives no feedback from Network B, so cannot shape

its representations and send a suitable message, meaning

Network B cannot solve the problem.

3.3. Feed-Forward Networks

In this section we apply DNIs to feed-forward networks in

order to allow asynchronous or sporadic training of layers,

as might be required in a distributed training setup. As ex-

plained in Sect. 2.2, making layers decoupled by introduc-

ing synthetic gradients allows the layers to communicate

with each other without being update locked.

Asynchronous Updates To demonstrate the gains by de-

coupling layers given by DNI, we perform an experiment

on a four layer FCN model on MNIST, where the back-

wards pass and update for every layer occurs in random

order and only with some probability pupdate (i.e. a layer is

only updated after its forward pass pupdate of the time). This

completely breaks backpropagation, as for example the first

layer would only receive error gradients with probability

p3update and even then, the system would be constrained to be

synchronous. However, with DNI bridging the communi-

cation gap between each layer, the stochasticity of a layer’s

update does not mean the layer below cannot update, as

it uses synthetic gradients rather than backpropagated gra-

dients. We ran 100 experiments with different values of

pupdate uniformly sampled between 0 and 1. The results are

shown in Fig. 7 (Left) for DNI with and without condition-

ing on the labels. With pupdate = 0.2 the network can still

train to 2% accuracy. Incredibly, when the DNI is condi-

tioned on the labels of the data (a reasonable assumption

if training in a distributed fashion), the network trains per-

fectly with only 5% chance of an update, albeit just slower.

Complete Unlock As a drastic extension, we look at

making feed-forward networks completely asynchronous,

by removing forward locking as well. In this scenario, ev-

ery layer has a synthetic gradient model, but also a syn-

thetic input model – given the data, the synthetic input
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Figure 6. Completely unlocked feed-forward network training allowing forward and update decoupling of layers.

Update Decoupled Forwards and Update Decoupled

DNI cDNI cDNIDNI

Figure 7. Left: Four layer FCNs trained on MNIST using DNI between every layer, however each layer is trained stochastically –

after every forward pass, a layer only does a backwards pass with probability pupdate. Population test errors are shown after different

numbers of iterations (turquoise is at the end of training after 500k iterations). The purple diamond shows the result when performing

regular backpropagation, requiring a synchronous backwards pass and therefore pupdate = 1. When using cDNIs however, with only 5%

probability of a layer being updated the network can train effectively. Right: The same setup as previously described however we also

use a synthetic input model before every layer, which allows the network to also be forwards decoupled. Now every layer is trained

completely asynchronously, where with probability 1 � pupdate a layer does not do a forward pass or backwards pass – effectively the

layer is “busy” and cannot be touched at all.

model produces an approximation of what the input to the

layer will be. This is illustrated in Fig. 6. Every layer

can now be trained independently, with the synthetic gra-

dient and input models trained to regress targets produced

by neighbouring layers. The results on MNIST are shown

in Fig. 7 (Right), and at least in this simple scenario, the

completely asynchronous collection of layers train inde-

pendently, but co-learn to reach 2% accuracy, only slightly

slower. More details are given in the Supplementary Mate-

rial.

4. Discussion & Conclusion

In this work we introduced a method, DNI using syn-

thetic gradients, which allows decoupled communication

between components, such that they can be independently

updated. We demonstrated significant gains from the in-

creased time horizon that DNI-enabled RNNs are able to

model, as well as faster convergence. We also demon-

strated the application to a multi-network system: a com-

municating pair of fast- and slow-ticking RNNs can be de-

coupled, greatly accelarating learning. Finally, we showed

that the method can be used facilitate distributed training

by enabling us to completely decouple all the layers of a

feed-forward net – thus allowing them to be trained asyn-

chronously, non-sequentially, and sporadically.

It should be noted that while this paper introduces and

shows empirical justification for the efficacy of DNIs and

synthetic gradients, the work of Czarnecki et al. (2017)

delves deeper into the analysis and theoretical understand-

ing of DNIs and synthetic gradients, confirming the conver-

gence properties of these methods and modelling impacts

of using synthetic gradients.

To our knowledge this is the first time that neural net mod-

ules have been decoupled, and the update locking has been

broken. This important result opens up exciting avenues

of exploration – including improving the foundations laid

out here, and application to modular, decoupled, and asyn-

chronous model architectures.
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