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Decoupled Neural Network Reference Compensation Technique  
for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum 

 
 Seul Jung and Hyun Taek Cho 

 
Abstract: In this paper, the decoupled neural network reference compensation technique 
(DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an 
x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the 
PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at 
the trajectory level is used to control both the angle of a pendulum and the position of a cart si-
multaneously. Implementation of an on-line neural network learning algorithm has been imple-
mented on the DSP board of the dSpace DSP system. Experimental studies have shown success-
ful balancing of a pendulum on an x-y plane and good position control under external distur-
bances as well. 
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1. INTRODUCTION 

Inverted pendulum application using various con-
trol methods has been a typical example for advanced 
control education, as well as interesting research. 
Control of an inverted pendulum has been considered 
as a fascinating, but difficult problem to solve since 
the system has very challenging characteristics such 
as nonlinearity and a single-input multi-output struc-
ture [1, 2]. Many successful results using the ad-
vanced control theories for balancing the inverted 
pendulum using a cart have been reported throughout 
various literatures [1, 3]. Those successful results 
have been mainly focused on balancing the pendulum, 
rather than on controlling the position of the cart. 
Recently, successful control of both the angle and the 
position of the inverted pendulum has been demon-
strated by practical experiments [4-6].  

The nature of controlling both the angle of the 
pendulum and the position of the cart with a single 
input force has remained as an open nonlinear prob-
lem to be overcome. The difficulty of controlling 
both the angle and the position of the inverted pendu-
lum system comes from different dynamic movement 
patterns of the pendulum and the cart. For example, 
let us consider the case that a controller for the cart 

tries to move toward one direction to minimize a po-
sitional error while a controller for the pendulum tries 
to move in the opposite direction to minimize the 
angle error. When this contradiction occurs, it is dif-
ficult to decide the suitable control law. This is one 
reason that the conventional fixed PD controller can-
not control both the angle of the pendulum and the 
position of the cart concurrently. To tackle this prob-
lem, suitable controllers’ gains for various cases 
should be considered.  

Fuzzy algorithm is a good candidate for solving 
this type of problem, but the assessment of fuzzy 
rules for fuzzification does not simply satisfy both 
objectives [7-9]. Several trial and error experiments 
are required to obtain a certain satisfaction. Visual 
feedback control for the inverted pendulum has also 
been proposed [9, 10]. Rather than solely depending 
upon encoder signals, controlling the balance of the 
pendulum relies on visual feedback. The performance 
of visual feedback control is dependent upon the ac-
curacy of the vision system. 

Neural network based control is another good can-
didate for this application. In our previous researches, 
control of both the angle and the position of the in-
verted pendulum system has been successfully per-
formed on a large x-y table robot [4, 6]. However, 
due to the large size of our previous system, position 
control and balancing of the inverted pendulum of 
both axes on the x-y plane failed. One of the reasons 
for the failure was that the actuated motor could not 
generate enough torque for rapid movement of the 
axis due to the heavy weight of one side of the two 
axes. 

In this paper, as an extension of our previous re-
search [4, 6], control of the inverted pendulum on the 
x-y table is revisited. Like the balancing of a stick on 
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a palm, a pendulum can freely move on the x-y plane. 
An x-y table is newly built and its size is relatively 
reduced to generate faster movements. Neural net-
works are also used as auxiliary controllers to help 
the PD controller for the system to minimize the er-
rors of angles and positions of each axis. Differing 
from the previous research, a decoupled neural net-
work structure is used. Decoupled neural networks 
structure means that two separate neural networks are 
used for controlling each axis of the x-y table instead 
of using a single neural network. Since the structure 
of the x-y table is a more likely decoupled system, 
the use of two separate neural networks is suitable for 
eliminating any coupling effects. 

For experiments, the newly designed smaller x-y 
table with the dSpace DSP system is implemented. 
Interface between the robot and the DSP system has 
been implemented to drive the motors of each axis. 
On-line neural computation algorithm is developed 
and implemented on the DSP board of the dSpace 
system to achieve real time control. Successful re-
sults of maintaining balance of the pendulum and 
position control of the cart on the x-y plane have 
been obtained by the proposed control algorithm. 

 
2. SYSTEM STRUCTURE 

2.1. Overall system structure 
The overall system structure is shown in Fig. 1. 

The system consists of three parts: a controller, a 
pendulum on an x-y table, and actuators. The control 
component includes a computer with the dSpace DSP 
board and interface. The DSP board is used to calcu-
late the neural network learning algorithm in an on-
line fashion. The main body includes an inverted 
pendulum and an x-y table. The size of the x-y table 
is 0.8m × 0.9m. As shown in Fig. 1, a 2-DOF in-
verted pendulum is mounted on the x-axis of the ro-
bot. The x-axis moves along the y-axis with an LM 
Guide. Two axes are actuated by two DC motors 
through timing belts. Belt tension is often considered 
as an uncertainty. 

The neural network control algorithm is imple-
mented on the DSP board and the board generates 
PWM signals to the motor drivers. 

 
2.2. Inverted pendulum 

The dynamics of an inverted pendulum can be 
modeled in x and y directions separately. The dy-
namic equation for the x axis is  

sin cos
xx x x xJ v hL bθθ θ θ θ= − + ,         (1) 

where J  is an inertia of a pendulum, xθ  is the 
angle of x axis, L is the length of a pendulum, 

x
bθ  is 

friction constant, and v  and h  are vertical force 
and horizontal force vectors, respectively. Vertical  
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Fig. 1.  The overall system. 
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Fig. 2. Inverted pendulum model. 
 
and horizontal forces are given as follows: 

  2( cos sin )x x x xh m x L Lθ θ θ θ= + − ,   
(2)

 

 2sin cosx x xv mg mLx mLθ θ θ− = − − , 

where m  is the mass of a pendulum and x  is the 
displacement in the x axis. 
For a cart, 

  x xM x u h= − ,            (3) 

where xM  is the mass of a cart in the x axis. 
Solving for xθ  and x  by combining (1), (2) and 
(3) yields the dynamic model of an inverted pendu-
lum shown as follows: 

2( ) cos sinx x x x x x xM m x mL mL b x uθ θ θ θ+ + − + = , 
(4) 

2( ) cos sin 0
xx x x xJ mL mL x mgL bθθ θ θ θ+ + − − = . 

(5) 

We know from equations (4) and (5) that the 
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Fig. 3. PD controlled pendulum system. 

 
system has a single input xu  and two outputs x  
and θ  for an x axis. 

Combining (4) and (5) yields 
2

2 2 2

( ) ( )
xx x x x x x x

x
x

M mgLs b mLc mLs b x u

M J m L c
θθ θ θ θ θ

θ
θ

′ + − − +
=

′ ′ −
(6) 

2

2 2 2

( ) ( )
xx x x x x x x

x

J mLs b x u mLc mLgs b
x

M J m L c
θθ θ θ θ θ

θ

′ − + − +
=

′ ′ −
(7) 

where 
2, , sin , cosxM M m J J mL s cθ θ θ θ′ ′= + = + = = . 

For the y axis, we have a similar dynamic equation as 
2

2 2 2

( ) ( )
yy y y y y y y y

y
y y

M mgLs b mLc mLs b x u

M J m L c

θθ θ θ θ θ
θ

θ

+ − − +
=

′ −

     (8) 
2

2 2 2

( ) ( )
yy y y y y y y

y y

J mLs b x u mLc mLgs b
y

M J m L c

θθ θ θ θ θ

θ

′ − + − +
=

′ −

     (9) 

Note that yM  includes the mass of an x axis be-
cause the y axis carries the x axis at all times. 

 
3. PD CONTROL OF INVERTED PENDU-

LUM 

In this section, the non-model based PD control is 
presented. It is known that a PD control can stabilize 
the second order system. Even though we have de-
rived the dynamic equations in the previous section, 
it is very difficult to obtain the exact dynamic equa-
tions including uncertain nonlinear terms. Therefore, 
ignoring the system dynamics, the most uncompli-
cated method is to use the simple linear PD control-
lers as the main controllers. 

Fig. 3 depicts the PD control structure of controlling 
the inverted pendulum in one axis. In order to control 

a two degrees-of-freedom pendulum, the combined 
two separate control inputs are required. 

The control input xu for an x axis is formed by add-
ing two controllers’ outputs from an angle error and a 
displacement error. The errors are defined as follows: 

  deθ θ θ= − , x de x x= − ,          (10) 

where eθ  is the angle error and xe is the positional 
error. 

The PD controller is now formed as  
_ _ _

x x pxu u uθ= + ,               (11) 

_

_

,

,

x p x d x

px ppx x dpx x

u k e k e

u k e k e

θ θ θ θ θ= ⋅ + ⋅

= ⋅ + ⋅
        (12) 

where 
_

xuθ and 
_

pxu are nominal control inputs for 
a pendulum and for a cart of the x axis, respectively.  

The control input 
_

yuθ and 
_

p yu  for y axis can 
be represented in a similar way. The difficulty of con-
trolling the pendulum angle and the cart position si-
multaneously comes from different configurations 
_
u θ and 

_
pu .  

The use of diagonal controller gains can decouple 
two axes, but there still are coupled effects such as  
the coriolis force and other unknown nonlinear terms. 
As a result the linear controller cannot cope with sys-
tem parameter variations well enough, resulting in 
the failure of position control of the cart [6]. Exten-
sive simulation studies have been done. 

In order to improve the control performance, two 
neural networks are used. Since the neural network is 
nonlinear it is a good candidate for nonlinear system 
control. A decoupled neural network structure for 
controlling each axis separately helps the system to 
be more decoupled. Fig. 5 indicates the decoupled 
neural network structure for a single axis.  

 
4. REFERENCE COMPENSATION TECH-

NIQUE FOR NN CONTROL  

In this section, one of the on-line learning algo-
rithms for neural network control is presented. The 
algorithm called the reference compensation tech-
nique has been proposed and it has shown good per-
formances in the robot position control [11, 12].  

This scheme is identical to the feedback error 
learning method in that it performs inverse dynamic 
control, but it is also different in that compensation is 
done without modifying pre-fixed linear controllers. 
This control scheme is depicted in Fig. 4. The basic  
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Fig. 4. Reference compensation technique scheme. 

 
concept of this scheme is that the NN controller acts 
as the inverse of the system under PD control so that 
the system response q  tracks the desired response 

dq  with minimal distortion. Neural networks are 
placed in front of the closed loop controlled system 
as pre-filters as seen in Fig. 4. Neural network out-
puts are added to reference trajectories. Added terms 
are subtracted by output signals to generate error sig-
nals ε . The errors are multiplied by controller gains.                 

Therefore, they eventually shape the reference in-
put trajectory rq  in such a way that the output er-
rorε  is minimized to zero. 

Our proposed control block diagram is shown in 
Fig. 5. The inverted pendulum system is controlled 
by PD control and neural network control. 

From Fig. 5, the PD controller with compensating 
signals from a neural network forms the following 
control inputs: 

.
( ) ( )x p du k e k eθ θ θ θ θ θ θφ φ= + + + ,       (13) 

.
( ) ( )px px x p dx x pu k e k eφ φ= + + + .       (14) 

The derivatives 
.

θφ and 
.

pφ  of neural network 

outputs θφ and pφ  are obtained by the finite differ-
ence method, respectively.  

The total control input for one axis is the sum of 
(13) and (14). 

 
_ _

x pxx xu u uθ= + +Φ .             (15) 

The new control input is actually the addition of a 
neural network compensating signal to nominal con-
trol input xu . These compensating terms compen-
sate for any dynamic uncertainties that are not mod-
eled. 

Define the neural network output as 

 x x pxθΦ = Φ +Φ  ,             (16) 

where 
.

x p d xxk kθ θ θ θθφ φΦ = +    and    
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Fig. 5. Neural network control block diagram for a sin-

gle axis. 
 

.
x px px dx pxk kφ φΦ = +  

Also note that the compensating signal xΦ  

solves the sign problem between xuθ and pxu . 
Since compensation is performed at the trajectory 

level, those compensating signals are amplified 
through controller gains so that the magnitudes of 
those pre-filtered signals are small compared with 
ones in other auxiliary type controllers [5]. In the 
paper [5], the neural network is used to adjust PID 
controller gains. The goal of minimizing error is the 
same with the proposed RCT algorithm, but the dif-
ference comes from the controlling structure. The 
RCT algorithm is known to have the advantage of 
outer loop control without modifying the internal 
control structure [11, 12]. 
 

 5. LEARNING ALGORITHM 

The neural network structure for a single axis is 
shown in Fig. 6. A two layered feed-forward structure 
is used. Input patterns are the combination of position 
and angle errors. For experiments, 9 hidden units are 
used. Selection of the number of hidden units is 
based on trial and error. Delayed states are used as 
inputs of a neural network to give dynamics into the 
neural network. Two neural network outputs are used, 
one for compensating an angle error and the other for 
a position error are used for a single axis. 

Nonlinear function of hidden unit is tangent hyper-
bolic function. 

1 exp( )( )
1 exp( )

xf x
x

− −
=

+ −
.                (17) 

 From (4), (5), and (15), we have the following 
closed loop error equation: 

_ _

, , , , ,( )x px xx x xu u fθ θ θ θ+ = − Φ .  (18) 

Define the training signal v  with nominal con-
trol inputs as 
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Fig. 6. The structure of neural network for a single 

axis. 
 

 
Fig. 7. Real inverted pendulum system. 

 
_ _

x pxv u uθ= + .                (19) 

Then, at the convergence 0=v , from equation 
(18) an ideal neural network output becomes the in-
verse dynamics of the system. 

),,,,,( xxxf θθθ≅Φ .              (20) 

So, ultimately, the inverse dynamic control can be 
achieved. This is the difference in the control struc-
ture from those of other PID tuning methods [5]. 

The objective function is defined to minimize the 
error v  as 

2

2
1 vE = .                (21) 

In order to use the steepest decent algorithm, the 
gradient should be obtained. Differentiating (21) 

yields the gradient as 

( ),pxx

E E v vv
w v w w

v v
w w w

θ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
∂Φ∂Φ∂Φ

= − = − +
∂ ∂ ∂

     (22) 

where x x
pk

w w
θ θ

θ
φ∂Φ ∂

=
∂ ∂

 and px px
pxk

w w
φ∂Φ ∂

=
∂ ∂

. 

By using the gradient function in (22) the back-
propagation algorithm can be used. The weight 
change is formed as  

 ( ) ( 1)Ew t v w t
w

η α∂
∆ = + ∆ −

∂
.            (23) 

Weights are updated as 

 ( 1) ( ) ( )w t w t w t+ = + ∆ ,            (24) 

where η  is a learning rate and α is a momentum 
coefficient. 

Neural network weights are updated at every sam-
pling time. Since rapid sampling time can be 
achieved with the help of DSP hardware technology, 
real time control of a neural network becomes possi-
ble. Even on-line learning and control of the system 
can be performed. This means that no a priori learn-
ing before control action is required.  

In the next section, experimental studies of neural 
network control are presented. 

 
6. EXPERIMENTAL SETUPS  

The overall system structure is shown in Fig. 7. 
The whole system consists of three parts: an x-y table 
robot, the dSpace DSP system, and a PC. The DSP 
board is used to implement the neural network algo-
rithm in real time, which requires a huge calculation 
time. Numerical values of neural network outputs 
calculated by the DSP board are converted to PWM 
signals for motor drivers.  

The DC motors driven by its own drivers com-
manded from the DSP board mounted actually actu-
ate each axis of the x-y table. Encoders mounted on 
each axis sense rotations and those sensed data are 
sent to the encoder board. An encoder board collects 
data and converts them into digital values that can be 
used as a feedback in the control loop. Table 1 shows 
the specifications of actuators. 

Table 1. Specification of actuators. 

Devices Specifications 

DC motor 24V/70W 

Encoder 2000 counts/turn 
Gear ratio 5:1 
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Fig. 8. Movement of pendulum on x-y plane. 

 

0 10 20 30 40 50 60
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

A
ng

le
 e

rro
r o

f x
 a

xi
s 

(ra
d)

time (sec)

x axis pendulum angle error

 
Fig. 9. X axis angle error. 

 
The weight of the pendulum is 0.35kg without a 

weight and 0.5Kg with a weight at the top. 
There are two encoders mounted on the cart to 

measure the rotational angles of both axes. The in-
verted pendulum can fall in any direction while a cart 
can move on the x-y plane. The movement of the cart 
is measured by encoders attached to the motor joint. 
The x-y table is actuated by DC motors through tim-
ing belts. Since the x axis cart moves on the top of y 
axis, there are coupling effects, and this leads to the 
reason that control of the y axis is more difficult. 
For the controller gains, 

xdk θ = 0.8, 
xpk θ = 6, 

dpxk = -0.6, ppxk = -0.5 for x axis and 
ydk θ = 1.4, 

ypk θ = 8.5, dpyk = -0.95, ppyk = -0.8 for y axis are 

used. The PD gains are optimized by trial errors basis. 
However, gain values are small enough to maintain 
stability so that neural networks are allowed to per-
form the most of control. We found from experiments 
that if the PD gains are set too large, performance is 
even worse. As such, it is better to leave the 
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Fig. 10. Y axis angle error. 
 
control to neural networks after stabilizing the system 
by PD controllers. 

For the neural network structure, 9 hidden units for 
each neural network are used. Learning rate xη = 
0.0011, yη = 0.001 and momentum xα = 0.15, yα = 
0.05 are optimized. These constant values are opti-
mized by trial and error basis. We found that the 
learning rate is the most sensitive variable to per-
formance. Selecting a larger learning rate gives faster 
convergence of errors as well as occasional instabili-
ties. The overall sampling time is 1 KHz. 

 
7. EXPERIMENTAL RESULTS 

Initially the pendulum is located at (0, 0) on the x-
y plane. The pendulum is well maintained at the ini-
tial position until there is an external hit. Then the 
movement of the pendulum is affected by an external 
disturbance by the hand. The pendulum is required to 
move back to the initial position.  

Fig. 8 shows the movement of the pendulum on the 
x-y plane after following hits.  

We can see that there have been two disturbances 
by hitting the pendulum in diagonal directions. The 
pendulum has kept returning to the initial position 
while maintaining the balance of the angle of the 
pendulum shown in Fig. 9. Traveling distances are 
from - 10.5 cm to 6 cm in the x axis and from -1.5 cm 
to 4 cm in the y axis. The pendulum angle errors for 
both axes are shown in Figs. 9 and 10 for each direc-
tion. Large overshoots by disturbances are observed 
at approximately both 13 seconds and 29 seconds and 
they settled down quickly.  

The positional errors are shown in Figs. 11 and 12. 
Comparing performances of two axes' movements, 
the x axis position error is less than 2 mm at steady 
state, but that of the y axis is about 2 cm. The y axis 
keeps oscillating with a small bound. 
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Fig. 12. Y axis position error. 
 

The error eventually converges to zero, but it takes 
time. One reason for this is that the y axis control is 
more difficult than the x axis control; because the y 
axis continually carries the x axis and coupling ef-
fects are well aware of this factor, requiring addi-
tional torques to generate faster movements. 

A further matter is one side actuation through tim-
ing belts. This causes minimal jerk by unbalanced 
movements to each axis even though an LM guide is 
used. However, position tracking of the cart as well 
as upright position of the pendulum is satisfactory. 

 
8. CONCLUSIONS 

The reference compensation technique of the neu-
ral network for balancing a two degrees-of-freedom 
PD controlled inverted pendulum has been presented. 
The DRCT was very effective in balancing the 
nonlinear inverted pendulum on the x-y plane by de-
coupling the x and y axis. The neural compensator 
helps conventional PD controllers to control the angle 
of the pendulum and the position of the cart simulta-
neously.  

Even though balancing of the pendulum was quite 
successful, controlling the cart position shows small 
oscillatory errors in the y axis. One of the reasons 
might be the location of optical encoders. Shown in 
Fig. 7, encoders are mounted at the axis of rotating 
rod, not directly at the motor axis. 

Another possibility is the velocity estimation. Sim-
ple velocity estimation using the finite difference 
might not provide good estimation for slow move-
ment of the pendulum. Finally, the y axis is actuated 
by one side and not the other, which leads to the mis-
alignment that causes oscillation. This yields further 
nonlinear characteristics such as backlash. These are 
left as future works to be performed. 
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