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Neurophysiologists have recently become interested in studying neuronal population activity through local field potential (LFP)
recordings during experiments that also record the activity of single neurons. This experimental approach differs from early
LFP studies because it uses high impendence electrodes that can also isolate single neuron activity. A possible complication
for such studies is that the synaptic potentials and action potentials of the small subset of isolated neurons may contribute
disproportionately to the LFP signal, biasing activity in the larger nearby neuronal population to appear synchronous and cotuned
with these neurons. To address this problem, we used linear filtering techniques to remove features correlated with spike events
from LFP recordings. This filtering procedure can be applied for well-isolated single units or multiunit activity. We illustrate
the effects of this correction in simulation and on spike data recorded from primary auditory cortex. We find that local spiking
activity can explain a significant portion of LFP power at most recording sites and demonstrate that removing the spike-correlated
component can affect measurements of auditory tuning of the LFP.

1. Introduction

The local field potential (LFP) is the integrated electrical
activity of a large number of anatomically neighboring
neurons, reflecting a combination of synchronous synaptic
potentials [1] and action potentials [2]. The LFP is the
object of growing interest in the neuroscience community
because it may provide a valuable link between single neuron
recordings and larger-scale neurophysiological signals such
as EEG [3], fMRI [2], and ECoG [4]. These latter signals
also offer a means to measure synchronous neural activity
both within a single brain area [5, 6] and between brain areas
[7, 8].

Historically, methods for studying LFP were developed
with low impedance electrodes that integrated electrical
potentials over a large brain volume (<1 MΩ, [1]). During
the recent resurgence of interest in LFP, most studies have
focused on data acquired with high impedance electrodes (1–
5 MΩ) that can isolate the activity of single neurons. Single-
or multiunit activity is typically extracted from the voltage

trace by high-pass filtering (>∼600 Hz, [6, 9]), and the LFP
is extracted by low-pass filtering the same signal (<∼300 Hz,
[5, 6, 10]). Little is known about how the high impedance
and specialized tip geometry of electrodes used for single unit
recordings affect LFP signals in the lower frequency band.
Thus, it is possible that the nature of the LFP signal from high
impedance electrodes differs from classical low impedance
recordings.

Several recent studies have compared sensory tuning of
spiking activity with different bands of the LFP signal in
auditory [6, 11] and visual cortex [10]. These studies have
suggested that the tuning of high frequency LFP signals is
correlated with the tuning of single units recorded at the
same site. However, little attention has been paid to the
possibility that activity from spiking events might overlap
with the LFP signal, especially at the upper end of the LFP
band. High frequency (spikes) and low frequency (LFP)
bands are technically orthogonal. However, spike events
and the excitatory postsynaptic potentials (EPSPs) that
immediately precede them can contribute power to both
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bands. If the spiking/EPSP events of nearby neurons do
contribute significantly to the LFP signal, then what appears
to be a strong correlation between nearby single unit activity
and broader population activity in the LFP may instead be
an artifact of the single unit activity that survives low pass
filtering.

To address this problem, we have developed a method
for identifying components of the low frequency LFP band
that can be predicted by spiking events. This procedure
uses standard linear systems identification methods [12]
to correlate activity between spiking events in the high
frequency band with activity in the LFP band independent of
any stimulus or behavior events. Components of the LFP that
can be predicted directly from spikes are removed from the
raw signal to produce a “clean” LFP. This simple procedure
can be applied to any simultaneous spike and LFP recording.

In this study we first use simulated electrophysiological
signals to evaluate the feasibility of the procedure for
removing features correlated with spike activity from LFP
signals. We then applied the procedure to recordings from
primary auditory cortex (A1) of passively listening ferrets.
We tested several different definitions of spike events in the
electrophysiological recordings. For conservative (i.e., high
threshold) definitions, the contribution to LFP power was
relatively small but often significant. More liberal definitions
of multiple single unit activity or multiunit activity explained
a larger portion of the LFP signal. Even for the most
conservative definition of spiking, however, we found that
removing the spike-coupled component could change the
sensory tuning of the LFP.

2. Methods

2.1. Experimental Procedure. Extracellular electrophysiologi-
cal activity was recorded from primary auditory cortex (A1)
of three awake, passively listening ferrets. All experimental
procedures conformed to standards specified by the National
Institutes of Health and the University of Maryland Animal
Care and Use Committee. The basic experimental methods
have been reported in detail previously [13].

2.1.1. Surgical Preparation. Animals were implanted with a
steel head post to allow for stable recording. While under
anesthesia (ketamine and isoflurane), the skin and muscles
on the top of the head were retracted from the central
4 cm diameter of skull. Several titanium set screws were
attached to the skull, a custom metal post was glued on the
midline, and the entire site was covered with bone cement.
After surgery, the skin around the implant was allowed to
heal. Analgesics and antibiotics were administered under
veterinary supervision until recovery.

After recovery from surgery, a small craniotomy (1-2 mm
diameter) was opened through the cement and skull over
auditory cortex. The craniotomy site was cleaned daily to
prevent infection. After recordings were completed in one
hemisphere, the site was closed with a thin layer of bone
cement, and the same procedure was repeated in the other
hemisphere.

2.1.2. Neurophysiology. Single unit activity was recorded
using tungsten microelectrodes (1–5 MΩ, FHC, Bowdoin,
ME) from head-fixed animals in a double-walled sound-
attenuating chamber (Industrial Acoustics Company, Bronx,
NY). During each recording session, one to four electrodes
were positioned by independent microdrives, and activity
was recorded using a commercial data acquisition system
(Alpha-Omega, Alpharetta, GA). For most recordings, a
60 Hz notch filter was used to remove ambient noise. Because
low frequency components of extracellular recordings tend
to contain substantially more power than high frequency
components, the analog signal was filtered into low (1–
1000 Hz) and high frequency (300–6000 Hz) bands before
digitization. The low frequency band was digitized with a
3125 Hz sampling rate, and the high frequency band was
digitized with a 25000 Hz sampling rate. The separation of
spikes and LFP frequency bands is a standard procedure
used by commercial data acquisition systems and outside
of experimental control. The analysis described below could
also be performed on a single signal, appropriately band-pass
filtered to extract spike and LFP bands.

Upon identification of a recording site with single units,
a sequence of random tones (100 ms duration, 500 ms
separation) was used to measure latency, and spectral tuning.
Neurons were verified as being in A1 according to by their
tonotopic organization, latency and simple frequency tuning
[14].

2.2. Stimuli. Stimuli were narrowband noise bursts. Center
frequency was sampled logarithmically from 500 to 16000 Hz
and bandwidth was scaled with center frequency so that each
burst had a fixed width in octaves (0.125–0.25 oct, 20–40
noise bursts total). Each burst was generated by summing 20
pure tones at random phase, logarithmically spaced between
the minimum and maximum frequency. Each noise burst
was presented for 1.5 seconds with 0.8 second interstimulus
intervals, and the entire set was presented for 10 repetitions.
Thus the total length of data recorded from a given site
was 460–920 seconds, depending on the number of distinct
stimuli.

Stimuli were presented from digital recordings using
custom software (Matlab, Natick, MA). The digital signals
were transformed to analog (National Instruments, Austin,
TX), equalized to achieve flat gain (Rane, Mukilteo, WA),
amplified to a calibrated level (Rane, Mukilteo, WA) and
attenuated (Hewlitt Packard, Palo Alto, CA) to the desired
sound level. These signals were presented through an
earphone (Etymotics, Elk Grove Village, IL) contralateral
to the recording site. Before each experiment, the equalizer
was calibrated according to the acoustical properties of
the earphone insertion. All stimuli were presented at the
same sound level during a single experiment (65–75 dB SPL,
varying between recording sites).

2.3. Analysis. Spiking activity was extracted from the high
frequency (300–6000 Hz) component of the recorded elec-
trophysiological signal, rh(t), using two different methods.
For the first, multiple single unit spiking activity (SUA)
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was identified by the time when the recorded potential
underwent a rapid decrease during a single time step
(1/25000 Hz = 0.04 ms)

sSUAn(t) =

⎧⎨
⎩

1, rh(t)− rh(t − 1) < −nσ ,

0, otherwise,
(1)

so that nonzero values of sSUAn(t) indicated the likely
occurrence of a spike at time t if the decrease from the
previous time bin was greater than a threshold, nσ . The value
of σ was the standard deviation of rh(t), and n was a scaling
term that specified a sensitivity threshold. This thresholding
procedure is a common first step in spike sorting algorithms
[15]. After threshold spiking events were identified, the
events were binned at 300 Hz, to match the sampling rate of
the LFP signal (see below).

The specific choice of threshold (or even the definition
of spike events) may vary across experiments, the logical
choice being the threshold used for spike sorting (in previous
studies using the same experimental procedures, n = 4
was used, [15]). Smaller values of n are more permissive
and identify a larger number of spiking events while larger
values are more conservative. We explored several possible
values of n, but in this study data we report data for n = 3
or 4, which capture the essential variability resulting from
different thresholds. In some brain regions, spike events
might be identified by positive, rather than negative, changes
in potential. In the experiments reported here, a negative
potential change always detected spike events more reliably,
but any alternative definition of spiking events can be
substituted at this stage of the procedure without changing
the subsequent steps.

The second method of measuring spiking activity used
a common definition of multiunit activity (MUA). Rather
than identifying single spike events, the activity of multiple
neighboring neurons was approximated by squaring and
low-pass filtering rh(t) [9]

sMUA(t) =
√

LP150 ∗ (LP3000 ∗ rh(t))2. (2)

Here, “LP f ∗ ” indicates convolving with a low-pass filter
with cutoff frequency f , and sMUA(t) indicates the relative
multiunit activity at time t. For this study, linear-phase
finite impulse response (FIR) filters of order 500 (duration
500/25000 = 20 ms) were used. The final low-pass filtering
at 150 Hz allowed downsampling the MUA signal to 300 Hz
without aliasing artifacts. We compared this definition of
MUA to another definition [6] and did not observed any
qualitative differences other than a slight improvement in
signal-to-noise in the spike-LFP filter for the definition in
(2).

The raw local field potential (LFP), L0(t), was extracted
from the electrophysiological recording by low-pass filtering
(<150 Hz, linear-phase FIR, duration 100 ms) of the low
frequency component of the recorded electrophysiological
signal [6, 10, 11]. The signals L0(t) and rh(t) existed in
entirely different frequency bands and thus were orthogonal
(i.e., linearly uncorrelated). However, extracting single or

multiunit activity from rh(t) involved nonlinear computa-
tions that could reintroduce linear correlation between them.
This coupled component was identified by measuring their
cross covariance

csl(τ) =
〈

(L0(t)− 〈L0〉t)(s(t − τ)− 〈s〉t)
〉
t . (3)

The spike signal used here, s(t), could be any of the different
spike signals defined above. In this study, csl, css, and h (see
below) were estimated for τ = −500, . . . , 500 ms. Larger
values of τ had no effect on filter estimates (note width of
nonzero filter range <200 ms in Figures 2 and 3).

In order to remove all spike-coupled features from the
LFP signal, we generated a filter that made the best (i.e.,
minimum mean-squared error) prediction of the LFP from
the spike signal. The filter was estimated by standard linear
regression [12] and assumed that the spike-LFP relationship
was stationary throughout the recorded data set. First, the
autocovariance of the spike signal was measured

css(τ) = 〈(s(t)− 〈s〉t)(s(t − τ)− 〈s〉t)〉t . (4)

The filter was then computed by division in the Fourier
domain

ĥ(ω) =
ĉsl(ω)

ĉss(ω)
, (5)

where h(τ) was the final filter and the hat symbol (e.g.,

ĥ(ω)), indicates a Fourier transform of the corresponding
time-domain function. To remove edge artifacts, a Hanning
window of the same length as h was applied to h(τ), and the
mean was subtracted to remove any DC bias introduced by
the Hanning window.

To remove the spike-coupled components from the LFP
signal, the spike-LFP filter was convolved with the spike
signal to predict the LFP

Lpred(t) =
∑
τ

s(t − τ)h(τ), (6)

and the prediction was subtracted from the raw LFP signal
to produce a signal with no correlation with local spiking
activity,

L(t) = L0(t)− Lpred(t). (7)

To distinguish the effects of the different spike identification
algorithms, each cleaned LFP signal that was labeled with a
subscript to identify the definition of the spike signal used
for cleaning (e.g., LSUA4(t) was the LFP signal cleaned of
correlations with sSUA4(t)). Note that this procedure models
the LFP as a linear sum of large-scale and locally coupled
activity, and any nonlinear interactions between them will
persist in the cleaned LFP signal.

Matlab code demonstrating this procedure is avail-
able online (http://www.isr.umd.edu/Labs/NSL/Download/
infer spikes LFP.m). Documentation is included in the
code’s comments.
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Figure 1: Removal of spike-coupled LFP signal in simulated data. (a) Average waveform of simulated frequency-tuned spiking activity
introduced to a random (1/ f noise) LFP signal. (b) Spike-LFP filter estimated by (5). (c) (Top panel) High-frequency spike signal, rh(t),
with SUA4 events marked by green circles. (Bottom panel) Raw LFP signal (L0, black) and “clean” LFP signal with SUA4 events removed
using filter in (b) (LSUA4, green). The clean LFP closely matches the underlying LFP signal (Lactual, black dotted line) before spiking activity
was added. (d) Frequency tuning of SUA4 activity. (e) Frequency tuning measured for raw LFP shows tuning similar to spiking activity
(black). After SUA4 activity was removed, frequency tuning disappears (green). When only the mean spike-LFP correlation is subtracted for
each spike event, the tuning is only partially removed from the LFP signal (red).
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Figure 2: Example spike and LFP responses for an electrophysiological recording from primary auditory cortex (A1). (a) Brief segment of a
raw high-pass filtered signal (black curve, top) and spike events identified by sudden changes in the signal (SUAn, circles, and “x”s). Green
and blue dashed lines indicate, respectively, the thresholds for SUA4 and SUA3 events. Subpanels at right show 100 examples of SUA4 spikes
events (a) and the impulse response function that best predicts the LFP (b) from SUA4 (green) or SUA3 events (blue), with standard error
indicated by the shading. The dashed blue line shows the SUA3 filter estimate for spike events on a second electrode 0.4 mm from the LFP
electrode. The simultaneously recorded raw LFP (black curve, middle) was substantially modified when the component predicted by SUA4
or SUA3 events was removed. The difference between the cleaned and raw LFP signals was the greatest during periods of elevated spiking
activity (dashed curves, bottom). (b) The same procedure for removing coupled spike information from the LFP but using multiunit activity
(MUA). The MUA signal for the same data segment as in A, defined by (2), captured the elevated firing at 0.3 second (red curve, top). The
LFP signal with MUA removed (red curve, middle; difference in dashed line, bottom) roughly followed the same pattern as the LFP with
SUA removed. The subpanel at right shows the impulse response that best predicted the LFP from the MUA.

2.4. Validation with Simulated Electrophysiological Recordings.
In order to test the algorithm for removal of spike-correlated
activity from the LFP signal, we simulated the activity of a site
in A1, using the same band-pass noise stimuli as the actual
physiology experiments. Spiking activity was simulated by
applying a linear spectrotemporal filter ([13], best frequency
600 Hz) to the stimulus spectrogram. Spike times were then

generated by passing the rectified output of the linear filter
through a Poisson spike generator for 10 repeated stimulus
presentations. An average spike waveform (Figure 1(a)) was
generated by averaging spike events in a broad-band (5–
12000 Hz) physiological recording from A1. For each spike
event, this waveform was added to a random LFP signal
(1/ f noise). Thus the “raw” LFP signal would appear to have
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Figure 3: Example spike and LFP responses for a second recording site. Data are plotted as in Figure 2. (a) The impulse responses for SUA4
and SUA3 (subpanel at lower right) are smaller than the impulse responses in Figure 2, and using this function to remove LFP components
that could be predicted by SUA events had very little effect. (b) Similarly, removing LFP components that could be predicted by MUA had
very little effect on the LFP for this site.

tuning, due to the addition of the low frequency component
accompanying each action potential, while the “clean” LFP
signal should not.

The SUA4 analysis was applied to the simulated data
to illustrate the effects of removing spike-correlated activity
from the LFP. The estimated filter (Figure 1(b)) showed a
strong resemblance to the spike waveform, except for the
absence of the very rapid depolarization at time 0 that
falls outside the frequency range of the LFP signal. The
effects of removing spike-correlated activity are illustrated
in Figure 1(c). As dictated by the simulation, the raw LFP
(solid black line) deviated from the original (1/ f noise) LFP
(dashed black line) during periods of spiking activity. When
the signal predicted by the spike events was removed (green

line), the LFP closely matched the original. Concordantly,
the raw LFP signal (Figure 1(e), black line) showed similar
frequency tuning to that of the spiking events (Figure 1(d)).
When the spike-correlated events were removed, the tuning
disappeared (Figure 1(e), green line). Note also that the slight
suppression in the spike tuning between 1000 and 2000 Hz
did not appear even in the raw LFP tuning. The lack of
suppressive tuning reflects the fact that the absence of spikes
has no effect on the LFP signal in this model of spike-LFP
interactions.

To compare the current method with a published method
for removing action potential artifacts from the LFP, we
applied an alternative artifact removal algorithm to the same
simulated data [16]. This method computed the average LFP
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Figure 4: Effect of removing coupled spike activity on total LFP power. (a) Histogram of the ratio of power in the LFP after removing
components explained by SUA4 and power in the raw LFP (n = 127 recording sites). For a small number of sites, LFP power increased
slightly, reflecting the introduction of a small amount of noise by the cross-validation procedure used for filter estimation. (b) Histogram
of change in power after removing the SUA3 component. The average power was significantly lower than for SUA4 (jackknifed t-test,
P = .0008). (c) Histogram of change in power after removing the MUA component. The average power was significantly lower than for
SUA3 (jackknifed t-test, P = .0007).

waveform associated with each spiking event (i.e., the cross
correlation in (3)) and subtracted that average from the LFP
at the time of each spike. Subtracting the mean waveform
did not completely remove auditory tuning from the LFP
signal (Figure 1(e), red line). This incomplete cleaning is
likely due to the fact that the mean subtraction method does
not account for the autocorrelation of the spiking activity
(5), which is required to achieve a minimum mean-squared
error estimate of the spike-LFP filter [12].

2.5. Significance Testing. A cross-validation procedure was
used to avoid overfitting of spike-LFP filters. The data was
divided into 20 segments of equal size. For each segment, the
applied filter was estimated from the remaining 19 segments.
Thus the data used to fit the filter (5) was independent of the
data to which the filter was applied (6).

Standard errors on spike-LFP filters (Figures 2 and 3)
were estimated by jackknifing [17]. This method allows
unbiased significance tests for differences between random
variables with non-Gaussian distributions, such as those
often encountered in neural data. Significant changes in the
LFP signal across the population of recording sites due to the
removal of spike-correlated activity (Figure 4) were tested by
a jackknifed t-test based on the same method of standard
error estimation [17].

3. Results

Electrophysiological activity was recorded with high
impedance tungsten electrodes (1–5 MΩ) from primary
auditory cortex (A1) of awake ferrets. Neuronal action
potentials and the local field potential (LFP) were measured
from activity in high (300–6000 Hz) and low (1–300 Hz)
frequency bands, respectively, of the raw electrophysiological
trace (see Methods for details). Band-pass noise stimuli
were presented during passive listening to measure auditory
tuning properties of the single unit and LFP signals (460–920
seconds of data per site).

Most studies use a standard definition for LFP [5,
6], but several different methods have been developed
for measuring spiking activity. Some of these different
methods are illustrated for a brief segment of raw data in
Figure 2. The top of Figure 2(a) shows the high-pass filtered
electrophysiological trace. In the first method, SUA4, spike
events from single units near the electrode were defined
as a sudden decrease in potential greater than four times
the standard deviation of the high-pass signal (see (1),
n = 4, green circles, Figure 2(a)). A less conservative
method, SUA3, required a decrease of only three times the
standard deviation, thus identifying a larger number of spike
events, probably from a larger number of neurons (see (1),
n = 3, blue “x”s). Finally, the least conservative method
measured multiunit activity (MUA) by low-pass filtering
the power in the electrophysiological trace (see (2), [9]).
The MUA measurement produced a continuous signal that
approximated the activity of a larger group of neurons near
the electrode tip (red trace, Figure 2(b)).

In order to measure the component of the raw LFP
signal that could be directly predicted by spiking events,
we measured the impulse response between spike activity
(defined using each of the spike models described above) and
the LFP signal. The impulse response was measured as the
cross covariance between spikes and LFP, normalized (i.e.,
deconvolved) by the autocorrelation of the spike activity (see
(5), [12]). When convolved with the spike signal, the impulse
response acted as a filter that produced the minimum mean-
square error estimate of the LFP. The predicted response was
subtracted from the raw LFP (7) to produce a “clean” version
of the LFP with spike-coupled information removed.

Impulse response functions measured for the example
recording site using the SUA4 and SUA3 signals appear
in the bottom right panel in Figure 2(a), and the impulse
response for MUA appears in the inset in Figure 2(b). If
there were no correlation between spiking activity and the
LFP, this function would be flat. Instead, in all three cases,
the impulse response had a highly significant structure (note
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small error bars indicated by shading) (Figure 2(a), top).
The significantly nonzero filter indicates that low frequency
voltage changes (spike-related activity and EPSPs) were in
fact correlated with action potentials and survived the low-
pass filter into the LFP signal. These filters have shapes typical
of filters measured across the entire set of recording sites
studied, featuring a depolarization about 100 ms in duration
around the time of the spike. The impulse response for
the high threshold definition of single unit activity (SUA4)
had slightly larger amplitude than the impulse response for
lower threshold (SUA3) but its shape was nearly identical. A
smaller magnitude filter was estimated when the SUA3 signal
was measured simultaneously from an electrode 0.4 mm
away (dashed blue line), indicating that local neuronal
activity was responsible for the correlation between spike and
LFP signals. The MUA impulse response also had a similar
shape to the SUA impulse responses. Given the difference
in units used for SUA and MUA, a direct comparison of
filter magnitudes is difficult, although the magnitude of their
effect on LFP signals can be compared (see below).

The middle of Figure 2(a) shows the result of subtracting
the component of the LFP that could be predicted by SUA4
(green) or SUA3 (blue) from the raw signal (L0, black). The
change between the raw and cleaned LFP was the greatest
during periods of elevated spiking firing (e.g., at time 0.3
second). The difference between the raw and clean LFP is
plotted in the dashed curves at the bottom of Figure 2(a).
Overall, the more liberal definition of spike events had a
greater effect on the LFP signal. The LFP cleaned by the
SUA4 signal was reduced to 0.947 of the variance in the raw
LFP (P = .003, jackknifed t-test), and the LFP cleaned by
SUA3 was reduced to 0.928 of the raw variance (P = .002,
jackknifed t-test).

The middle row of Figure 2(b) shows the effects of
removing LFP signals that could be predicted by the MUA
signal. As in the SUA examples, the LFP changed most
dramatically during epochs of elevated spiking activity. The
effect of removing the MUA-coupled signal was slightly, but
not signficantly greater than SUA4 or SUA3 (jackknifed t-
test), and the clean LFP was reduced to 0.899 of the power in
the raw signal (P = .0008, jackknifed t-test).

Figure 3 illustrates the same procedure applied to a
second recording site with weaker coupling between spikes
and LFP. The impulse response for SUA and MUA spiking
had smaller amplitude than for the previous example site
(insets in Figures 3(a) and 3(b)). In this case removing
components of the LFP that could be predicted by either
the SUA or MUA had very little effect on the appearance
of the LFP. Correspondingly, the power in the cleaned LFP
signal was not significantly reduced from that of the raw LFP
(jackknifed t-test, SUA4: 0.982, SUA3: 0.982, MUA: 0.981).

The examples in Figures 2 and 3 suggest that there was
substantial variability in the portion of the LFP that could
be explained by spiking activity, depending on the recording
site. To study this effect across a larger set of recording sites,
we measured the ratio of power (i.e., variance) in the clean
and raw LFP signals for each recording site in the study (n =
127). Figure 4 plots histograms of the ratio for each of the
three spike removal methods. For spike activity defined by

SUA4, LFP power was reduced significantly for 58/127 sites
(P < .05 jackknifed t-test), and the mean ratio of clean to
raw LFP power was 0.956 (Figure 4(a)). The mean ratio for
SUA3 (76/127 significantly reduced sites, P < .05) was 0.934,
significantly lower than SUA4 (Figure 4(b), jackknifed t-test,
P = .0008). The mean ratio for MUA (86/127 significantly
reduced sites, P < .05) was 0.917, significantly lower than still
than SUA3 (Figure 4(c), jackknifed t-test, P = .0007). On a
site-by-site basis, the magnitude of SUA4-SUA3 decrease was
correlated with the SUA3-MUA decrease (r = 0.66). The fact
that SUA and MUA influences on the LFP covary suggests
that the magnitude of spike-LFP correlation is a property of
the site or the recording electrode.

Because analysis of LFP often focuses on a specific
spectral range of the LFP signal such as beta (20–30 Hz [7, 8])
or gamma (30–80 Hz, [10]), we wondered if removing spike
information from the LFP signal affected some ranges of
the spectrum more than others. To investigate this issue we
compared the power spectrum of the LFP before and after
removing spike-coupled components. Figure 5(a) shows the
difference between the raw and clean LFP signals for the site
shown in Figure 2. For this site, the reduction in LFP power
was the greatest for frequencies below 20 Hz. The change in
power also depended on the definition of spiking activity,
with LSUA4 showing the smallest decrease and LMUA showing
the largest, following the pattern observed in the total power
reduction (Figure 4).

Figure 5(b) shows the spectral analysis of changes in
power for the site shown Figure 3. Here the change in power
followed a different pattern. In this case, power was not
reduced as much at lower frequencies. Instead, there was a
reduction in a band around 25 Hz and also one that grew
increasingly larger for frequencies above 75 Hz. As in the
previous example, the reduction for MUA was larger than for
the SUA signals.

The average change in LFP spectrum over the entire
sample of recording sites is shown in Figure 5(c). Removing
spike-coupled components reduced power at all frequencies.
The reduction was the strongest at frequencies below 20 Hz,
but it continued into the high gamma range, where most
analyses of sensory tuning in the LFP have been performed
[6, 10]. We were surprised to find large decreases power
at low frequencies of the LFP. This may reflect large
depolarization associated with periods of elevated spiking
activity, but understanding this effect remains a direction for
future investigation.

Of particular interest to studies that draw connections
between single unit activity and large-scale measurements of
neural activity is whether single units and LFP recorded at the
same site are modulated in the same way by sensory stimuli.
In A1, neurons are organized tonotopically [14, 18], meaning
that nearby neurons tend to respond maximally to sounds
(tones and narrowband noise) at the same best frequency
(BF), and BF tends to change monotonically as the recording
site is moved across A1. Because LFP is thought to represent
the synaptic activity of neurons in the local anatomical area,
the LFP is sometimes used to test if neighboring neurons
do in fact encode the same sensory information. Previous
reports have supported this idea, finding that the frequency
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Figure 5: Frequency specificity of the spike-coupled LFP signal. (a) Relative power spectrum of the LFP signal from Figure 2 after removing
SUA4, SUA3, and MUA components (colors as in previous figures). This site showed a large decrease at low frequencies (1–25 Hz). (b)
Relative power spectrum of the LFP signal from the site in Figure 3 after the removal of spiking components (plotted as in A). This site
showed a decrease near 25 Hz and at frequencies above 75 Hz. (c) Average relative power spectrum of LFP signal averaged across n = 127
recording sites. Removing coupled spike activity from the LFP signal reduced power at all frequencies. The effect was the strongest at low
frequencies (1–10 Hz) but also showed a tendency to grow larger at high frequencies. Consistent with the overall changes in power reported
in Figure 4, the LFP spectrum was reduced more for the more permissive definitions of spiking (MUA < SUA3 < SUA4). The small features
around 60 Hz (most prominent for the signal with MUA components removed) reflect artifacts of line noise.

tuning of single units and LFP is about the same [6, 11].
However, it is not clear how much LFP activity coupled
with spiking by the small number of neurons closest to the
recording site might bias LFP tuning measurements.

We compared the auditory tuning of spiking activity, raw
LFP and clean LFP in order to see if coupled spiking activity
significantly influences tuning of the LFP signal. Responses
were measured to band-pass noise stimuli centered at
logarithmically spaced frequencies (see Methods for details).
Figure 6(a) compares the tuning of the onset response of each
of these signals for the site shown in Figure 2. The response
of the SUA4 signal was measured from the average firing
rate during 150 ms after stimulus onset, and the response of
the LFP signals was measured by their standard deviation
during the same 150 ms period. Baseline activity (absent
any stimulus) was subtracted from each tuning curve. The
SUA4 tuning curve was normalized to a maximum value
of 1, and all the LFP signals were normalized by the same
value so that the peak of the raw L0 signal also had a
maximum of 1. Each tuning curve (solid line) was overlaid
with a minimum mean-square error Gaussian fit (dashed
line), whose parameters indicate basic tuning properties such
as BF (mean of the Gaussian) and bandwidth (width of the
Gaussian). Tuning curves were centered on the BF of the
SUA4 signal.

For this recording site, the SUA4 signal showed frequency
tuning typical of a recording site in A1, responding only to
stimuli within about half an octave of BF. The tuning of
the raw LFP signal (black curve) was shifted toward higher
frequencies, centered about one octave above the SUA4
tuning (P = .007, jackknifed t-test). When spiking activity
was removed from the LFP, response amplitude decreased

slightly, and the tuning curve shifted toward even higher
frequencies. Tuning curves for LFP cleaned with all three
methods were shifted about 0.5 octave above the SUA4 BF,
significantly higher than the BF measured from the raw LFP
(P = .01, jackknifed t-test). Because the tuning curve analysis
is linear, the tuning of the removed LFP component is the
difference between tuning of the raw and clean LFP signals.

Not all recording sites showed such dramatic differences
in tuning. Figure 6(b) shows frequency tuning curves for the
site shown in Figure 3. In this case, the tuning curves were
similar for the spiking data and both the raw and cleaned
LFP signals. All were centered at the BF of SUA4 activity and
had a bandwidth of about one octave. Thus even when the
components of the LFP directly coupled to spiking activity
on a trial-by-trial basis were removed, the LFP at this site
continued to have the same auditory tuning as the spiking
activity.

4. Discussion

This study investigated the linear coupling of single unit spik-
ing activity and local field potentials (LFPs) recorded from
the same high-impedance electrodes in primary auditory
cortex (A1). We observed that the spiking activity of just a
few neurons near the recording site can sometimes explain
a significant portion of variance in the LFP signal. We also
demonstrated that our method of removing spike-correlated
information can reveal different auditory tuning than tuning
measured in the raw LFP signal. Analysis of larger neuronal
populations using this method can explore the hypothesis
that spiking activity sometimes biases measurements of the
LFP recorded at the same location.
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Figure 6: Effect of removing spike-correlated activity on the frequency tuning of LFP in A1. (a) Frequency tuning curves for site shown
in Figure 2. Gaussian fits are plotted with dashed lines and best frequency (peak of the Gaussian fits) is indicated by arrows. The raw LFP
tuning curve was centered at a higher best frequency than the SUA4 curve (0.92 octaves above SUA4, P = .007, jackknifed t-test). After the
SUA4-coupled component was removed, the LFP tuning curve was shifted to even higher frequencies (1.63 octaves above SUA4, P = .01,
jackknifed t-test). Similar curves to this last case are observed for the LFP signals with SUA3 and MUA components removed. (b) Tuning
curves for site shown in Figure 3 (plotted as in A). For this site, there was no significant difference between the SUA and LFP tuning curves
(<0.1 octave difference), even after the spike-coupled component was removed from the LFP.

The linear filter used to remove spike activity was
intended specifically to remove only the components of
the low-pass LFP signal that were directly correlated with
spike events recorded from the same electrode, independent
of the concurrently presented auditory stimulus. These
low frequency components were likely composed of slow
currents associated with each action potential and the EPSPs
that immediately preceded it. Thus what was effectively
removed for each SUA/MUA event was a stereotyped, low-
frequency modulation of the recorded electrical potential
associated with each neuronal discharge. Synaptic potentials
and spiking events of the larger neural population that were
not tightly correlated with these nearby spikes were preserved
in the LFP. In addition, synaptic potentials that arrived at
nearby neurons but did not elicit spikes also remained in the
LFP signal, and thus some bias may have persisted. Because
of this partial removal, this filtering procedure would not be
appropriate for any analysis that aims to entirely preserve or
remove local EPSP activity in the LFP signal.

The SUA3/4 definition of spiking events was relatively
permissive. While this threshold is used as a starting point for
some spike sorting algorithms, a more conservative measure
of single unit events (e.g., SUA5 or isolated spike events after
sorting) may be substituted for the spike signal used in the
analysis proposed here. The result will be to remove less
power from the LFP, but it will remove only power that is
correlated with the specified spiking events.

Previous studies have used similar spike versus LFP
mapping procedures to characterize the functional relation-
ship between these two signals [19], although they sought
specifically to find common information in the two signals
recorded from different electrodes and did not consider the
possibility of spike bleed-through. A similar method has
previously been used to remove spike-related activity from
LFP signals [16], but the magnitude of the effect removing
spike activity was not described. Additionally, this method
does not account for autocorrelation in spike events in the
filter estimate, which can lead to incomplete filtering (see
Figure 1).

The method presented here assumed a stationary rela-
tionship between spiking activity and the LFP. Although
substantial drift was not observed in the recordings ana-
lyzed for this study, this procedure could be adapted to
use a dynamic, nonstationary filter, such as has been
used in studies of stimulus encoding by sensory systems
[20].

4.1. Implication for Neurophysiological Studies. Previous
studies have suggested that the LFP is a valuable neurophys-
iological signal that can be used as a proxy measurement for
large scale synchronous spiking activity [1, 5] and as a means
for linking single neuron recordings to fMRI BOLD signals
[2]. However, the biophysical processes that produce the LFP
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are not completely understood. To learn more about the LFP,
it is useful to discriminate what components can be explained

directly by other known signals such as single unit activity. If

the activity of a single neuron or a small number of neurons

contributes significantly to the LFP, then what appears to be

synchronous activity may in fact be dominated by the activity

of just those nearby neurons. The results of this study suggest

that the LFP recorded from the same electrode as single-

unit activity is sometimes strongly influenced by the activity

of a small number of neurons. Possible bias from spiking

activity should be considered in the analysis of LFP data in

order to ascertain whether the properties of the LFP signal

actually reflect the activity of a large group of anatomically

neighboring neurons.

The spectral analysis of changes in LFP power (Figure 5)
shows that removing coupled spike activity can affect the LFP
across a wide range of frequencies. The total power in the
LFP remains relatively high after removing the spike-coupled
component (particularly at gamma frequencies, which have
received the most attention in studies of sensory tuning [6,
10]). However, it is important to remember that the spiking
activity often has robust sensory tuning, and removing that
component can still have a significant effect on sensory
tuning of the LFP signal. The potential for such an effect
is illustrated in the tuning curves in Figure 6, which shows
that removing LFP components correlated with spikes on
a trial-by-trial basis can in fact change auditory tuning of
the LFP. This result suggests that neurons in a region of
A1 may not be as homogeneous in their tuning properties
as would be concluded without accounting for the spike
bias.

This study only investigated the tuning of transient,
phase-locked responses to auditory stimuli. LFP signals
also contain oscillations in the gamma range that are not
phase-locked to stimulus onsets, but whose power may be
modulated by the presence of a stimulus [10, 21]. It remains
to be explored if the tuning of oscillatory components of
the LFP can also be influenced by coupled spike activity.
However, the broad-band decrease in LFP power suggests
that tuning in the gamma frequency range can be influenced
by coupled spike activity.

The same basic procedure can be used to remove other
correlated activity from LFP signals, much in the same way
that muscle artifacts are sometimes removed from EEG [22].
For example, if LFP is recorded during a behavior that
introduces muscle artifacts to the LFP signal, a motor event
signal can be substituted for the spike signal. The same
procedure can then be used to measure a motor event-LFP
filter and remove motor artifacts from the LFP before further
analysis.
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