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1. Introduction

The notion of the state is used to describe all kinds of technical, physical, chem-
ical, sociological, or mental phenomena. The state can mean a velocity, a temper-
ature, a color, a noise, or just a state of mind. The state can vary with the time,
with the location, or with other parameters.

For states that vary with time and location, one can use partial differential
equations to model the underlying phenomena in mathematical terms [21, 22]. Then
one can analyze the obtained equations, in order to understand or also to control
the phenomena.

In view of employing computers for understanding or controlling, one approxi-
mates the continuous equations by discrete equations. This is called a discretization.

In practice, it is generally recognized that finite-dimensional or discrete formu-
lations are well suited to deliver approximate solutions to continuous or infinite-
dimensional problems. Thus one can use common numerical methods, optimized to
solve the finite-dimensional equations, and to some extent forget about the actual
aim of learning about the infinite-dimensional phenomena.

The design of discretizations that preserve certain properties of the continuous
equations, like positivity of the solution, dissipassivity, symmetry, or energy of the
system, has been proven very successful in providing efficient and reliable approxi-
mations.

It may happen that the discretization introduces properties that the continuous
system does not have.

Consider the example of the Navier-Stokes Equation that model the state of an
incompressible flow via its velocity v and its pressure p in a domain Ω and a time
interval (0, T ). The describing equations are given via the system

v̇ + (v · ∇)v +∇p− ν∆v = f, (1.1a)

div v = 0, in Ω× (0, T ), (1.1b)

and

v|t=0 = α and v|∂Ω = γ, (1.1c)

consisting of the momentum equation with a viscosity parameter ν, the constraint
that the flow is divergence-free, and a condition on the initial state of the velocity
plus values for the velocity at the boundary ∂Ω.

Discretizing the spatial component in (1.1), i.e. approximating v(t) and p(t)
via finite-dimensional vectors vk(t) and pk(t), a discrete approximation to (1.1) is
typically given as

Mv̇k −A(vk)− JT

k pk = fk, (1.2a)

Jkvk = 0, in (0, T ) (1.2b)

and

vk(0) = αk. (1.2c)

Here, k is a parameter describing the order of approximation, and the matrices Jk

and JT

k represent the differential operators div and ∇ in finite dimensions.
For all common discretizations, the so called mass matrix M is invertible, so that

from Equations (1.2a-c) one can infer, that if Jkαk = 0, then a solution vk fulfills
Jkv̇k = 0 for all time. Numerical methods [50, 144], that are state of the art, use
the property that (1.2) implicitly defines the Pressure Poisson Equation

−JkM
−1JT

k pk = JkM
−1f + JkM

−1A(vk)k, (1.3)

to decouple the computations of vk and pk.
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However, the basic assumption that Jkv̇k = 0 will not necessarily transfer to the
continuous case of (1.1), since in the general formulation v̇ has to be assumed of
low regularity and div v̇ is not defined. The proof whether or not there a solution
possesses a higher regularity is a key in the quest for a solution to the millennium
problem addressing the existence and uniqueness of solutions to the Navier-Stokes
Equation [103]. In our considerations, the use of (1.3) is legitimate in finite di-
mensions but it might not be a proper approximation in the limit case, where the
discretization is arbitrarily close to the continuous equation, cf. also the remarks
in [50, p. 642].

Other examples relate to system theoretic properties like controllability and the
question when their presence in the discrete equations is transferred to the limit
case, see [105, 108] and see [77] for an illustrating example where this is not the
case.

The above example of the Pressure Poisson Equation points to the general issue
about the conditions under which a transformation of the discrete approximation
commutes with a discrete approximation of a related transformation of the continu-
ous problem. In this thesis on decoupling and optimization of differential-algebraic
equations, we consider two such transformations, namely

(a) formulation of the optimal control problem as a system of optimality con-
ditions and

(b) decoupling of the differential and algebraic equations

and their interaction with numerical approximations. We will investigate when do
these transformations, whose finite-dimensional counterparts are well understood,
also apply in the continuous setting and whether they commute with discretizations.

As for optimal control, the question of whether to optimize or to discretize first
has been investigated in all fields of application, cf. [79] and see [33, 55, 146, 147] for
examples in optimal flow control. As for infinite-dimensional differential-algebraic
equations, the interaction of decoupling and discretization has attained attention
recently [6, 7, 41].

Understanding the transformations in infinite dimensions may lead to discretiza-
tions that come with properties that are desired and compliant with those of the
continuous equation. As an example consider the skew-symmetrization of the con-
vective term in weak formulations of the Navier-Stokes Equation such that also the
discretized convection is skew-symmetric, [68, Ch. 3]. Also, the direct application
of algorithms for model reduction [63, 138, 123], update formulas in optimization
[52, 72, 78, 95], or decoupling of differential and algebraic parts [6, 7] to infinite
dimensional systems have been proven successful for numerical approximation.

The idea of interchanging transformations like discretization, optimization and
decoupling is also reflected in the second part of the thesis dealing with the opti-
mal control of finite-dimensional of differential-algebraic equations. Instead of first
formulating a decoupling and then stating optimality conditions, we set up formal
optimality conditions for the original system. Thus, a possibly necessary decoupling
can be applied with respect to efficient numerical approximation rather than being
used for theoretical considerations.

We use the particular structure of the equations to show that the solution of the
original system implicitly leads to the solution of an equivalent system for which
differential and algebraic parts are partially decoupled and optimality conditions
are well understood.

Staying with the original differential-algebraic equations and the native variables
is motivated by practical considerations. In computations, the decoupling, for ex-
ample the restriction to the space of divergence-free functions in the Navier-Stokes
setting, is not advisable in general or simply unfeasible, cf. the discussion in [7].
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Also, if the optimality conditions are in the form of the state equations, then one
can resort to the same solvers.

The thesis is structured as follows. We start with an introduction of notions
related to differential-algebraic equations and of the functional analysis framework
needed to treat infinite-dimensional equations. In Section 3, we define a class of
infinite-dimensional differential-algebraic equations and derive a decoupling of dif-
ferential and algebraic parts. We demonstrate how the abstract concepts apply to
the Navier-Stokes Equation. In the following section, Section 4, we formulate the
spatially semi-discretized approximation and state convergence of Galerkin schemes.
In Section 5, we introduce basic concepts of optimization in Banach spaces. Section
6 is on optimal control of the infinite-dimensional equations. In order to extend
known results to differential-algebraic equations, we recall basic and classical results
on optimization in Banach spaces. Then we formulate necessary optimality condi-
tions by introducing a formal adjoint equation. We derive necessary conditions for
existence of solutions and prove convergence of Galerkin approximations. Also, we
discuss how semi-discretization and formulation of optimality conditions are related.
In Section 7 we discuss possible linearization approaches to the nonlinear optimal-
ity conditions. In Section 8, we consider, finite-dimensional approximations and,
in particular, the linear-quadratic optimal control problem. We will give necessary
and sufficient conditions for existence of optimal solutions and provide a solution
representation via a differential-algebraic Riccati decoupling. In the section on nu-
merical routines, we derive algorithms for efficient solution of the linear-quadratic
optimality system.

We conclude the thesis by a summary of the presented work and an outlook.
We discuss which questions have been answered and name remaining and related
questions and problems for future research.
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2. Preliminary Notions and Notations

We introduce some basic concepts concerning differential-algebraic equations and
constrained optimal control problems formulated in finite-dimensional and infinite-
dimensional spaces.

2.1. A class of Semi-explicit Semi-linear DAEs. We start with defining a
prototype of the DAEs that are considered throughout this work. We will define
the tractability index of these equations in finite-dimensional cases and discuss its
equivalence to other indices and extension to infinite-dimensional state spaces.

For T > 0, for a time parameter t ∈ (0, T ), and for variables v(t) and p(t), we
will consider equations of type

[

M(t) 0
0 0

]

d

dt

[

v
p

]

(t)−
[

A(t, v(t)) JT
1 (t)

J2(t) 0

] [

v(t)
p(t)

]

=

[

f(t)
g(t)

]

, (2.1)

where the time derivative is interpreted either in the classical or in a generalized
sense. If the state space is continuous, i.e. v(t) and p(t) are located in infinite-
dimensional spaces, then we will refer to (2.1) as abstract differential-algebraic
equation. Throughout this work, the time parameter t will always be continuous,
i.e. we will only consider semi-discretizations. Nevertheless, we will refer to the
semi-discretized equations as finite-dimensional or discrete equations.

To introduce basic concepts for the analysis differential-algebraic equations, we
state the following finite-dimensional setup:

Problem 2.1. Consider Equation (2.1), with d
dtv(t), v(t), and f(t) ∈ Rnv , with

p(t) and g(t) ∈ Rnp , nv, np ∈ N and nv > np, and with M(t), A(t, v(t)), J2(t), and
JT

1 (t) being matrices of suitable sizes with entries in C(0, T ;R).

We will always assume that M(·) is pointwise invertible and refer to (2.1) as a
semi-explicit, semi-linear DAE. The semis mean that, at least in the time derivative
of the variables, the equation are explicit and linear. Additionally we assume that
J1(t) and J2(t) are linear functions.

To the first equation in (2.1) we will refer as the differential part and to the
second as the algebraic part or algebraic constraint. Note, that there are other,
so-called hidden constraints, which constrain the motion of v and p but which are
not apparent in (2.1), see [90, p. 177] and [102, p. 323, 426] for examples. Also,
there is the notion of the inherent ODE that is obtained by formulating (2.1) as
an ODE on a manifold that is prescribed via all algebraic constraints, cf. [102, p.
323].

2.2. The Index of the DAEs. We will use the tractability index to quantify the
considered DAEs, since, in finite dimensions, it can be directly checked for the
semi-explicit semi-linear DAEs under consideration.

We introduce a general formulation of a linear DAE and some notions to define
the tractability index of a DAE.

Omitting the time dependencies, we consider a general linear DAE of the form

EA
d
dt (EDx)−Ax = q, on (0, T ), (2.2)

for a state x(t) ∈ Rnx and with ET
A , ED ∈ C(0, T ;Rnx,nd), A ∈ C(0, T ;Rnx,nx), and

q ∈ C(0, T ;Rnx).
If EA and ED are invertible, then (2.2) can be rewritten as an ordinary differential

equation. If this is not the case, then (2.2) comprises both differential and algebraic
equations and is, thus, referred to as a DAE.
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Definition 2.2 (Cf. [114], Def. 2.1). The DAE (2.2) has a properly stated leading
term, if

Rnx = im EA(t)⊕ ker ED(t), (2.3)

for all t ∈ (0, T ).

Definition 2.3 (Cf. [114], Eqn. (2.2)). Consider Equation (2.2). Given

E0 := EAED and A0 := A,
for i = 0, 1, 2, · · · , define the sequences of subspaces and matrices via

Ni := ker Ei,

Si :={x ∈ Rnx : Aix ∈ im Ei},
Qi :=P[Ni|·] (projector onto ker Ei),

Pi :=I −Qi,

and

Ei+1 := Ei +AiQi and Ai+1 := AiPi.

The definition of the spaces and matrices hold pointwise for t ∈ (0, T ).

We can now define the tractability index :

Definition 2.4 ([114], Def. 2.2). Consider equation (2.2) and assume that the
matrix coefficients are continuous and that EA and ED fulfill Definition (2.2). Con-
sider the sequences of operators and subspaces defined in Definition 2.3. Then, the
differential-algebraic equation (2.2) has

(a) tractability index iµ = 1, if N0 ∩ S0 has a constant dimension d0 > 0 and
dim(N1 ∩ S1) = 0, for all t ∈ (0, T ).

(b) tractability index iµ = 2, if dim(N0∩S0) = d0 and dim(N1∩S1) = d1, with
d0, d1 > 0, and dim(N2 ∩ S2) = 0, for all t ∈ (0, T ),

or,

(c) tractability index iµ = µ, if dim(Nj ∩ Sj) = dj > 0, for j = 0, 1, · · · , µ, and
dim(Nµ ∩ Sµ) = 0.

Remark 2.5. For nonlinear DAEs, one defines the tractability index as the tractabil-
ity index that, if it exists, is obtained via Definition 2.4, for all linearizations of the
state equations about all states x∗ in a neighborhood of a solution, cf. [115, Def.
2.3].

It will turn out, that in the semi-linear case of the form 2.1 the nonlinearity does
not interfere with definition of the operators and subspaces, so that we can directly
apply the linear theory.

Proposition 2.6. Consider the setup of Problem 2.1. If M is pointwise invertible
and if J2M

−1JT
1 is pointwise invertible, then the DAE (2.1) is of tractability index

iµ = 2.

Proof. Having factorized, the leading matrix

[

M(t) 0
0 0

]

, as EA :=

[

M(t)
0

]

and

ED :=
[

I 0
]

, and using that M is invertible, we find that (2.1) has a properly
stated leading term, cf. Definition 2.4.

Furthermore, using the invertibility of J2M
−1JT

1 , we can give explicit represen-
tation of the matrix sequences defined in Definition 2.3 in its realization for the
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DAE (2.1):

E0 :=

[

M 0
0 0

]

, A0 :=

[

A(v) JT
1

J2 0

]

,

Q0 :=

[

0 0
0 I

]

(projector onto ker E0),

P0 := I −Q0 =

[

I 0
0 0

]

,

E1 := E0 +A0Q0 =

[

M JT
1

0 0

]

, A1 := A0P0 =

[

A(v) 0
J2 0

]

,

Q1 :=

[

M−1JT
1 (J2M

−1JT
1 )−1J2 0

−(J2M
−1JT

1 )−1J2 0

]

=:

[

Q 0
−Q− 0

]

(projector onto ker E1),

P1 := I −Q1 =:

[

P 0
Q− I

]

,

E2 := E1 +A1Q1 =

[

M +AQ JT
1

J2 0

]

, A2 := A1P1.

To check for iµ = 2, see Definition 2.4(b), we now have to check the dimensions
of the spaces N0 ∩ S0 and N1 ∩ S1, as defined in Definition 2.3. In what follows,

we will arbitrarily switch between a space, e.g. N0, and a matrix, e.g. N0 =

[

0
I

]

,

if the columns of

[

0
I

]

span N0. From the assumption that J2M
−1JT

1 is invertible,

for all t ∈ (0, T ), we have that J2 and J1 have full rank np.

With N0 =

[

0
I

]

and S0 =

[

ker J2

I

]

, we have that N0 ∩ S0 has dimension np for

all t ∈ (0, T ).

With N1 =

[

Q
−Q−

]

, with S1 =

[

ker J2

I

]

, and with the observation that Q ∩

ker J2 = {0}, we find that N1 ∩ S1 =

[

0
−Q−

]

which has a rank of nv − np > 0 for

all t ∈ (0, T ).
Finally, we find that

E−1
2 =

[

PM−1 [I − PM−1A]M−1JT
1 S
−1

Q−M−1 −[I +Q−M−1AM−1JT
1 ]S−1

]

is a inverse to E2 what means that dim(ker E2 ∩ S2) is zero for all t ∈ (0, T ). �

Remark 2.7. The definition of the tractability index is applicable because A is
assumed of the form v 7→ A(v)[v]. For a general nonlinear A, the tractability
index is defined for a linearization about states in the neighborhood of a solution,
cf. Remark 2.5. Thus, provided the coefficients are sufficiently smooth, in the
considered semi-linear setup, linearization will give an equation of type (2.1) but
with A(v) replaced by a term linear in v. Thus, the definition of the index via
Definition also applies in the case that A : v 7→ A(v).

Before commenting on the index for abstract systems, we mention the commonly
used differentiation index and its relation to the tractability index, see [116] for a
general overview.
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Definition 2.8 ([116] Def. 1). Write (2.1) as F (t, x, ẋ) = 0 on (0, T ), assume that
it has a solution x, and, formally, define

Fl(t, x, ẋ, · · · , x(l+1)) =











F (t, x, ẋ)
d
dtF (t, x, ẋ)

...
( d

dt )lF (t, x, ẋ)











.

The smallest integer iν , if it exists, such that the solution x is uniquely defined via
Fl(t, x, ẋ) = 0 for any initial value that fulfills all (hidden) constraints, is called the
differentiation index.

Remark 2.9. The definition of the differentiation index iν for (2.1) requires a certain
smoothness of the coefficients. If, in the case of Problem 2.1, the differentiation
index is defined, then it coincides with the tractability index, cf. [13, Rem. 2.3].

To fit also abstract systems of type (2.1), the tractability index has been gener-
alized in [101, 145], see in particular [115] for a general discussion of index concepts
for abstract DAEs. However, the basic assumption on properness of the leading
term, cf. Definition (2.2), cannot be transferred to the evolution setting, that we
will consider in Section 3 and that is discussed in [115, 145]. The problem here
is that, the state space X is assumed strictly smaller than its dual X ′ where the
equations are posed in. Then, in the generic case, cf. [145, Ch. 4], one has that
d
dt :

(

(0, T ) → X
)

→
(

(0, T ) → X ′
)

and the factorization of the leading term as
EA

d
dtED with EA : X ′ → X ′ as the dual operator of ED : X → X.
Another index concept, the perturbation index, cf. [58], has been generalized to

the evolution setting in [115, Def. 2.4].
We will quantify the equations of Section 3 by means of the index that is ob-

tained after applying stable semi discretizations. In this sense, we will consider
abstract DAEs of tractability index 2, while in [145] and [115] the index-1 case was
investigated.

For completeness, we mention the Kronecker index for abstract DAEs as it was
considered in [131], that can be defined in the linear time invariant case.

2.3. The Index of DAEs with Inputs. The definitions of the tractability index
and the differentiation index apply for uncontrolled systems as (2.1). In this section,
we will remark on index concepts for systems that include inputs, as, e.g.,

[

M(t) 0
0 0

]

d

dt

[

v
p

]

(t)−
[

A(t, v(t)) JT
1 (t)

J2(t) 0

] [

v(t)
p(t)

]

−
[

B1(t)
B2(t)

]

u(t) =

[

f(t)
g(t)

]

, (2.4)

where u is located, e.g., in U := C(0, T ;Rnu), nu ∈ N, and

[

B1(t)
B2(t)

]

is a linear

operator that maps u ∈ U into the space where the equation is posed in.
For such controlled systems (2.4), the relation of inputs u and variables (v, p)

has to be included in the definition of an index. As an illustrating example consider
the system

[

1 0
0 0

] [

ẋ1

ẋ2

]

−
[

1 1
1 0

] [

x1

x2

]

−
[

u1

u2

]

=

[

0
0

]

, x1(0) = 0. (2.5)

and note that the definition of the input can change the system’s differential-
algebraic structure. With the assignment u2 := ẋ2, System (2.5) can be interpreted
as an ODE for x1 and x2. Assigning u2 := x1, the system can be reformulated to
give only algebraic equations for x1 and x2.

A general approach to this issue bases on the behavior formulation, cf. [128],
which considers the controlled DAE (2.4) as an underdetermined system Ez ż −
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Az(z) = 0 in the augmented variable z := [x, u]. For the behavior formulation, one
can define the strangeness index [26, 90] that generalizes the differentiation index
to under- (and overdetermined) systems.

For the behavior system, one can identify free components of z that are then
defined as the new controls, cf. [27, 90, 91]. This approach is natural, since if the
chosen controls are not free variables in the behavior formulation, then the problem
is ill-posed.

If it comes to applications, however, one cannot freely redefine the controls and
variables since they are prescribed by the physical setup. In this case one can
only hope that the problem is well-posed, in the sense that, the system can be
reformulated as a system of strangeness index is = 0 with the current input u
as free components, cf. [27]. In this case, one can apply the general algorithms
provided in [27, 90, 91] to reformulate the considered system as a strangeness-free
system, for which necessary and sufficient optimality conditions are well understood
[27, 91, 92].

The definition of the tractability index has not been generalized to controlled
systems like (2.4). We will not investigate the index for the controlled system. In
view of solving associated optimal control problems numerically, we will, however,
determine the tractability index for some particular formal optimality systems.

2.4. Functional Analysis Framework. In view of abstract formulations we in-
troduce basic definitions and notions of operators on Banach spaces. Then, in
view of modelling states of dynamical systems, we introduce spaces of functions
in spatial variables. To account for time evolution, we introduce the concept and
functional analytical framework of abstract functions, i.e. functions of time that
take on values in function spaces. If not stated otherwise, the basic notation and
propositions of this section are taken from [133, Ch. 1, 7]. A detailed introduction
into the functional analytical preliminaries for evolution equations can be found,
e.g., in [45].

Banach Spaces and Operators
Let V , W be real or complex Banach spaces. A linear map A : V → W is

called a bounded or continuous linear operator if there exists a constant c such that
‖Av‖W ≤ c‖v‖V . We denote the set of bounded linear operators by L(V,W ), which
– equipped with the norm

‖A‖L(V,W ) = sup
v∈V \{0}

‖Av‖W

‖v‖V

– is a Banach space.
Dual Spaces and Dual Operators
For a normed vector space V , its dual space V ′ is defined as V ′ := L(V,R),

which is a Banach space with the dual norm

‖v′‖V ′ = sup
v∈V \{0}

〈v′, v〉V ′×V

‖v‖V
,

where 〈v′, v〉V ′×V := v′(v) stands for the dual form. To emphasise its linearity, we
will refer to the dual form as the dual product. For A ∈ L(V,W ) there exists a
unique dual operator A′ ∈ L(W ′, V ′), satisfying

〈w′, Av〉W ′×W = 〈A′w′, v〉V ′×V and ‖A‖L(V,W ) = ‖A′‖L(W ′,V ′)

for all w′ ∈W ′ and all v′ ∈ V ′. If A is defined on a domain of definition D(A) that
is closed and dense in V , then the dual operator A′ : D(A′) ⊂ W ′ → V ′ is defined
on

D(A′) := {w′ ∈W ′ : there exists v′ ∈ V ′ :
〈

w′, Av
〉

=
〈

v′, v
〉

for all v ∈ D(A)}.
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A normed vector space V is called reflexive, if there exists an isometric isomorphism
between V and (V ′)′ =: V ′′. If this is the case we will identify V ′′ with V to make
use of the induced symmetry of the dual product:

〈

v′, v
〉

V ′,V
= v′(v) = v′′(v′) =

〈

v′′, v′
〉

V ′′,V
=

〈

v, v′
〉

V,V ′ .

Operators on Hilbert Spaces. Let now H be a Hilbert space with scalar
product (·, ·)H and the induced norm ‖·‖H . Then the Riesz Representation Theorem
[45, Thm. 6.1] states, that for any y′ ∈ H ′ there exists a unique y ∈ H such that

〈y′, h〉H′,H = (h, y)H for all h ∈ H and ‖y′‖H′ = ‖y‖H .

From this, one can deduce [57, Cor. 6.3.6] the existence of the Riesz isomorphism
j′H ∈ L(H,H ′) with j′Hy = y′, j′H

−1
y′ = y and ‖j′H‖L(H,H′) = ‖j′H

−1‖L(H′,H) = 1.
This implies that H ′ is also a Hilbert space with the scalar product (h′, y′)H′ :=

(j′H
−1
h, j′H

−1
y)H . Since every Hilbert space is reflexive we can always identify H

with H ′′, which yields j′H = j−1
H , jH′ = j′H . If A ∈ L(H,W ) and W = W ′′ is a

Hilbert space as well, then A′′ = A.
Complements, Annihilators and Projections We summarize some results

of [83, Ch. III.4]. A bounded linear operator P[] : V → V with P2
[] = P[] is

called a projection. A (closed) subspace Vs ⊂ V is called complemented if there
exists a second subspace Vr ⊂ V such that V = Vs ⊕ Vr, i.e., for any v ∈ V ,
there are uniquely defined vs, vr in Vs, Vr, such that v = vs + vr. In this case
one can define the operator P[Vs|Vr] : V → V : v 7→ vs. The operator P[Vs|Vr] is a
projection since it is linear, bounded, and P2

[Vs|Vr] = P[Vs|Vr] as is its complement
P[Vr|Vs] := I − P[Vs|Vr] : v 7→ vr. Conversely, if a projection P[] is in L(V, V ),
then V = kerP[] ⊕ imP[]. This relation is reflected in the notation P[Vs|Vr] =
P[kerP[]| imP[]] which we will use throughout this work.

If the image, say Vk, of a projection is of interest, rather than its kernel, we use
a placeholder · for the kernel and simply write P[Vk|·].

Because of noncomplemented subspaces in Banach spaces [121], given a subspace,
there exists not necessarily a bounded projection onto it. Only if a Banach space
is isomorphic to a Hilbert space, then every subspace is complemented [80].

In a Hilbert space, for any subspace Hs ⊂ H, one has the orthogonal complement
Hs⊥ defined as

Hs⊥ := {v ∈ H : (v, w) = 0, for all w ∈ Hs}.
With H = Hs ⊕Hs⊥, we define the orthogonal projector P[Hs] := P[Hs|Hs⊥]. Re-
gardless of the choice of the complement, the projections onto Hs are equivalent in
the sense, that for any Hr being a complement to Hs, one has

1
‖P[Hs|Hr ]‖‖P[Hs|Hr]‖ ≤ ‖P[Hs]‖ ≤ ‖P[Hs|Hr]‖.

This follows from the norm of a projection being ≥ 1 [46, Thm. 7.13] and equality
holding for orthogonal projections and from P[Hs|Hr] = P[Hs|Hr]P[Hs].

The orthogonal complement is a special case of the annihilator Vs
0 ⊂ V ′ that

can be defined for every subspace Vs of a Banach space V via

Vs
0 := {v′ ∈ V ′ :

〈

v′, v
〉

V,V
= 0, for all v ∈ Vs}. (2.6)

Convergence and Compactness A sequence {vn}n∈N in a Banach space V is
called strongly or norm convergent, if there exists a v ∈ V such that ‖vn−v‖V → 0
as n→∞. Then we write vn → v. It is called weakly convergent if

〈

f, vn−v
〉

→ 0,
as n → ∞, for all f ∈ V ′. Weak convergence of {vn}n∈N to v ∈ V is denoted by
vn ⇀ v. By a corollary of the Banach-Steinhaus Theorem every weakly convergent
sequence is bounded [133, Cor. 1.4].
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Since the norm is convex, every Banach space is a locally convex space for which
one can define the following notion [133, p. 2]. A subset U of a Banach space V is
called closed, if every Cauchy sequence in U has its limit in U . The closure of U

in the norm of V , that we denote by U
‖·‖V , is the smallest closed subset of V that

contains U . We say that U is dense in V , if U
‖·‖V

= V . We say that V is separable
if there exists a dense subset of V that is at most countable.

A subset U of a Banach space V is called (sequentially) compact, if every sequence
in U contains a norm convergent subsequence. In Banach spaces the definitions of
compactness and sequential compactness coincide, cf. [133, p. 7]. A subset U is
called precompact, if the closure of U with respect to ‖·‖V is compact.

A subset U is called weakly (sequentially) compact if every bounded sequence
has a weakly convergent subsequence. By the Eberlein-Šmulian Theorem [156], in
Banach spaces, weak sequential compactness is equivalent to weak compactness as
it can be defined for more general spaces. As an important conclusion, one has,
that in reflexive Banach spaces, bounded sets are weakly compact, so that every
bounded sequence has a weakly convergent subsequence, cf. [161, Thm. 21.D].

Spaces of Integrable Functions The following definitions use notions as mea-
surability and integrability in the sense of Lebesgue from measure theory. See e.g.
[45, Ch. II] for the basic definitions.

Let Ω ∈ Rd, d ∈ N, be a domain with a regular boundary ∂Ω in the sense of
Calderón [45, Def. II.1.17]. By Lemma I.1.27 in [45], this means that Ω and ∂Ω
fulfill the following assumption:

Assumption 2.10. The subset Ω ⊂ Rd, d ∈ N is a domain, i.e. it is open, simply
connected, and bounded, and there are constants R, L > 0 such that for all x0 ∈ ∂Ω
there exists a neighborhood U(x0), that is the image of

U =
{

y = [y1, · · · , yd] ∈ Rd :
√

y2
1 + · · ·+ y2

d−1 < R, |yd| < 2LR
}

possibly after translation or rotation, under the condition that

(a) x0 = Sx0
(0),

(b) there exists a Lipschitz-continuous function fx0
: Rd−1 → R with Lipschitz-

constant L, such that

∂Ω ∩ Ux0 =
{

[y1, · · · , yd−1, fx0(y1, · · · , yd−1)] :
√

y2
1 + · · ·+ y2

d−1 < R
}

,

(c) and that

Ω ∩ Ux0
=

{

y ∈ Ux0
:
√

y2
1 + · · ·+ y2

d−1 < R, fx0
(y1, · · · , yd−1) < yd < 2LR

}

.

Convex and bounded sets of Rd have regular boundaries [45, Rem. II.1.11].
By Lp(Ω), 1 ≤ p <∞, we denote the space of all measurable functions u ∈

(

Ω→
R

)

with
∫

Ω
|u(ω)|p dω <∞. With the norm

‖u‖Lp(Ω) :=

(
∫

Ω

|u(ω)|p dω

)1/p

,

the space Lp(Ω) is a Banach space. For l ∈ N and with the norm ‖u‖[Lp(Ω)]l =
(

∫

Ω

(

∑l
i=1|ui(ω)|2

)p/2

dω

)1/p

, [Lp(Ω)]l := {(u1, · · · , ul) : ui ∈ Lp(Ω), i = 1, · · · , l}
is a Banach space.

With the scalar product

(

u, v
)

[L2(Ω)]l :=
l

∑

i=1

∫

Ω

uivi dω,
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the space [L2(Ω)]l is a Hilbert space.
By L1

loc(Ω), we denote the space of locally integrable functions, i.e. all u ∈ (Ω→
R) with

∫

K
|u(ω)| dω <∞ for all compact K ⊂ Ω.

For 1 < p < ∞ and l ∈ N, the space [Lp(Ω)]l is separable and reflexive. In the
case p = 1, it is separable [133, Lems. 1.15, 1.16].

Lemma 2.11 (Hölder’s inequality). Consider given conjugated exponents p and
p′, i.e. 1

p + 1
p′ = 1. If 1 < p < ∞, or p = 1 and p′ = ∞, then for u ∈ Lp(Ω) and

v ∈ Lp′

(Ω) one has uv ∈ L1(Ω) and |
∫

Ω
uv dω| ≤ ‖u‖Lp(Ω)‖v‖Lp′ (Ω).

For 1 ≤ p <∞ one can identify the dual space
[

[Lp(Ω)]l
]′

as [Lp′

(Ω)]l, where p′

is the conjugated exponent to p.

Remark 2.12. The elements of the spaces of integrable functions, defined in this
and in the following sections, are the equivalence classes of functions that take on
the same values on Ω except from subsets of zero measure, see e.g. [45, Ch. II.2] for
a definition. In particular, two functions u and w belong to the same equivalence
class, meaning they are considered the same element of the function space, if u = v
almost everywhere (a.e.) on Ω.

Generalized or Weak Derivatives Let C∞0 (Ω) be the set of infinitely often
differentiable functions with compact support in Ω. For any u ∈ L1

loc(Ω) we have
that

〈u, φ〉 :=

∫

Ω

u(ω)φ(ω) dω <∞,

for all φ ∈ C∞0 (Ω). If there exists g ∈ L1
loc(Ω) such that

〈g, φ〉 = (−1)|α|〈u, ∂αφ〉 for all φ ∈ C∞0 (Ω), (2.7)

then g is called the derivative of u in the weak sense, with respect to the multiindex
α = (α1, . . . , αd) ∈ Nd. We will write g = ∂αu. Here ∂α is short for ∂|α|u

∂α1 ω1···∂αd ωd

and |α| := ∑d
i=1 αi, and ωi is the i-th coordinate in Ω ∈ Rd, i = 1, · · · , d.

Since Lp(Ω) ⊂ L1
loc(Ω) for 1 ≤ p < ∞, relation (2.7) defines a derivative of any

u ∈ Lp(Ω) if it exists.
Let ∇u := (∂e1u, · · · , ∂edu) denote the d-tuple of the first order derivatives,

where ei is the i-th canonical unit vector, i = 1, · · · , d.
For a d-tuple u = (u1, . . . , ud) ∈ [L1

loc(Ω)]d, we define div u :=
∑d

i=1 ∂
eiui, if this

sum is in L1
loc(Ω).

Sobolev and Bochner Spaces For 1 ≤ p < ∞ and k ∈ N define the Sobolev
space

W k,p(Ω) := {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), for all α ∈ Nd, |α| ≤ k}
which is a Banach space, if one considers the norm

‖u‖W k,p(Ω) :=

[
∫

Ω

(

∑

α∈Nd:|α|≤k

|∂αu(ω)|2
)p/2

dω

]1/p

.

If p = 2, then the norm is induced by the scalar product
(

u, v
)

W k,2 :=
∑

α∈Nd:|α|≤k

(

∂αu, ∂αv
)

L2(Ω)
.

In particular, the space W k,2(Ω) is a Hilbert space.
By W k,p

0 (Ω), we denote the closure of C∞0 (Ω) in the norm of W k,p(Ω) [45, Def.
II.1.16]. If Ω is bounded, then

‖u‖W k,p

0 (Ω) :=

[
∫

Ω

(

∑

α∈Nd:|α|=k

|∂αu(ω)|2
)p/2

dω

]1/p

.
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defines a norm that is equivalent to ‖·‖W k,p

0 (Ω) on W k,p
0 (Ω). In the case that p = 2,

this norm is induced by
(

u, v
)

W k,2 :=
∑

α∈Nd:|α|=k

(

∂αu, ∂αv
)

L2(Ω)
.

Thus, W k,2
0 (Ω) is a Hilbert space.

The definition of vector valued Sobolev spaces [W k,p(Ω)]l and [W k,p
0 (Ω)]l is done

by analogy with [Lp(Ω)]l.
For l ∈ N and 1 ≤ p < ∞, the space [W k,p(Ω)]l is separable, for 1 < p < ∞, it

is reflexive [133, Ch. 1.2.3].
For functions in [0, T ] → V , where V itself is an infinite-dimensional Banach

space one can define the corresponding function spaces resorting to the notion of
Bochner integrability, see [45, Ch. IV] for a thorough or, e.g., [133, Ch. 1.1.5] for a
brief introduction.

For 1 ≤ p < ∞ the Bochner space Lp(0, T ;V ) is the space of Bochner inte-

grable functions u ∈ ([0, T ] → V ) satisfying
(∫

[0,T ]
‖u(t)‖p

V dt
)1/p

< ∞. The space

L∞(0, T ;V ) is the space of functions v ∈
(

(0, T ) → V
)

with v(t) ≤ C < ∞,
for almost all t ∈ (0, T ). This space is complete with the norm ‖v‖L∞(0,T ;V ) :=
ess supt∈(0,T )‖v(t)‖V , defined as the infimum of the suprema of v(t) taken over all
subsets of (0, T ) that have a nonzero measure.

Theorem 2.13 ([45], Thm. IV.1.14 and Rem. IV.1.10, pp. 131). Let 1 < p < ∞
and T > 0. If W is reflexive or separable, then for any l ∈

(

Lp(0, T ;W )
)′

there
exists a unique representation via

l[w] =

∫ T

0

〈vl(s), w(s)〉W ′,W ds, for all w ∈ Lp(0, T ;W ) (2.8)

with vl ∈ Lp′

(0, T ;W ′), 1
p + 1

p′ = 1. The mapping l 7→ v is linear and it holds that
‖l‖(Lp(0,T ;W ))′ = ‖v‖Lp′ (0,T ;W ′).

Remark 2.14 ([45], Rem. IV.1.11). A direct consequence is that if W is reflexive,
then Lp(0, T ;W ) is reflexive as well.

For locally Bochner integrable functions u, a candidate weak derivative is defined
by analogy with the definition on page 14 for Lebesgue integrable functions, see,
e.g., [40, Def. 8.1.1].

Definition 2.15 (cf. [133], Ch. 7.1). A function v ∈ L1
loc(0, T ;W ) is the weak

time derivative u̇ of u ∈ L1
loc(0, T ;W ), if

∫ T

0

v(t)φ(t) dt = −
∫ T

0

u(t)φ̇(t) dt,

for all φ ∈ C∞0 (0, T ).

We define the Sobolev-Bochner spaces

W1;p,q(0, T ;V ;W ) := {v ∈ Lp(0, T ;V ) : v̇ ∈ Lq(0, T ;W )}.
If p = q = 2, we write

W(0, T ;V ;W ) := {v ∈ L2(0, T ;V ) : v̇ ∈ L2(0, T ;W )}.
For a space V , we define V := L2(0, T ;V ). Similarly we define V ′ = L2(0, T ;V ′),

H := L2(0, T ;H), Hdf := L2(0, T ;Hdf), Q := L2(0, T ;Q) and others.
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We will always assume that the assumptions of Theorem 2.13 hold, so that we
can write the dual product in, e.g., V ′ × V as

〈

f, v
〉

V′,V :=

∫ T

0

〈

f(t), v(t)
〉

V ′,V
dt,

for f ∈ L2(0, T ;V ′) and v ∈ L2(0, T ;V ).
Embeddings and Gelfand Triples If there exists a continuous embedding

operator i : X → Y , then we call X continuously embedded in Y , we write X →֒ Y
and we make use of ‖x‖Y := ‖ix‖Y ≤ ci‖x‖X . If i is compact, then the embedding

is called compact and is denoted by X
c→֒ Y . These definitions are given, e.g., in

[133, p. 9] or [40], from where we have borrowed the notation for the embeddings.
If there exists an isometric isomorphism i : X → Y , i.e. i is invertible and

‖ix‖Y = ‖x‖X , we write X ∼= Y and, tacitly omitting i, sometimes directly identify
X = Y .

Given a reflexive Banach space V and a Hilbert space H, where V is dense in H
and V →֒ H. Then by [45, Rem. I.5.14] one has H ′ →֒ V ′, and, having identified
H = H ′ via the Riesz isomorphism, the triple embedding V →֒ H →֒ V ′ – often
referred to as Evolution or Gelfand triple[40, p. 83].

Within the Gelfand triple, we will always omit the injection i and treat, e.g.,
v ∈ V as an element of H, that is we tacitly identify V with i(V ) to get the
algebraic inclusion V ⊂ H.

Assuming V ⊂ H, the dual product
〈

·, ·
〉

V ′,V
is the continuous extension of

〈

·, ·
〉

H′,H
=

(

j·, ·
)

H,H
onto V ′×V . In particular, if f ∈ H ′ ⊂ V ′, then

〈

f, v
〉

V ′,V
=

(

jf, v
)

H,H
for all v ∈ V ⊂ H, where j : H ′ → H is the Riesz isomorphism [133, Ch.

7.2].
Note that the dual product in the Gelfand triple is different from the dual product

in V . In particular, in the case when V is a Hilbert space, one cannot use, e.g., the
Riesz isomorphism to identify V and V ′, see [25, Ch. 5.2] for a concrete example.
In fact, if V is a Hilbert space itself, if V ⊂ H, and if V ′ is defined with respect
to the scalar product in H, then there exists a homeomorphism from V into V ′

only if V ⊂ H is a closed subset. This can be seen as follows. Let i : V → H be
the embedding operator and thus bounded and injective. Then i′ : H ′ → V ′ is the
embedding operator of H ′ into V ′. Thus, i′j′i : V → V ′ is bounded and injective,
where j is the Riesz isomorphism in H. Assume there exists an homeomorphism
h : V → V ′. Then i′j′i must be surjective, as one can use the injections to identify

V ∼= i′j′i(V ) ⊂ V ′
h−1

= V . Then, i′ : H ′ → V ′ must be surjective, which by the
Closed Range Theorem [83, Thm. IV.5.13] can only be the case, if the range of
i : V → H is closed.

Recall that we consider a domain Ω ∈ Rd with a regular boundary ∂Ω fulfilling
Assumption 2.10.

The Sobolev Embedding Theorems, see, e.g., [45, Thm. II.1.2], state that for
1 ≤ p <∞,

[W p,k(Ω)]d →֒ [W q,l(Ω)]d,

if 0 ≤ k < l and 1
p − k−l

d ≤ 1
q < 1.

If 1 ≤ p < ∞ and k ≥ 1, then W k,p(Ω) →֒ W k−1,p(Ω) is compact, i.e.

W k,p(Ω)
c→֒W k−1,p(Ω) [45, Lem. II.1.28].

Since C∞0 is dense in W k,p
0 (Ω) by definition and dense in Lq(Ω) by [25, Cor.

4.23], we have that W 1,p
0 (Ω) is dense in Lq(Ω), k ≥ 1, 1 ≤ p, q <∞. Thus, we can

define the Gelfand triple

W 1,2
0 (Ω) →֒ L2(Ω) →֒W−1,2(Ω) := (W 1,2

0 (Ω))′,
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where the embeddings are even compact.
For Bochner spaces we have the embedding W1;p,p′

(0, T ;V, V ′) →֒ C([0, T ], H),
for 1 ≤ p, p′ ≤ ∞ such that 1

p + 1
p′ = 1, [133, Lem. 7.3], provided that V →֒ H →֒ V ′

is a Gelfand triple. We will also make use of the Aubin-Lions Lemma:

Lemma 2.16 ([133] Lem. 7.7). If V1, V2, V3 are Banach spaces and V1
c→֒ V2 →֒ V3,

1 < p <∞, and 1 ≤ q ≤ ∞, then

W1;p,q(0, T ;V1, V3)
c→֒ Lp(0, T ;V2).

Operators on Spaces of Abstract Functions To treat abstract formulations,
the following definitions and results, adapted from [133, Ch. 1.3], are needed. Let
A : Ω× V →W . Then A is a Carathéodory mapping if

A(ω, ·) : V →W is continuous for ω, a.e. in Ω and

A(·, v) : Ω→W is measurable for all v.

If, in addition, ‖A(ω, v)‖W ≤ γ(ω) + c‖v‖p/p0

V for some γ ∈ Lp0(Ω;R), then the
Nemyckij map NA ∈ (Ω→W ) of a function u ∈ Lp(Ω;V ), defined as

[NA(u)](x) = A(x, u(x)),

is in Lp0(Ω;W ), where 1 ≤ p <∞ and 1 ≤ p0 ≤ ∞.
The same arguments are valid if one replaces Ω by (0, T ) ⊂ R. In particular, if

A : V → W is linear and bounded, then [NA(v)](·) := A(v(·)) is in Lp(0, T ;W ) for
v ∈ Lp(0, T ;V ). We will not distinguish notationally between NA : Lp(0, T ;V ) →
Lp0(0, T ;W ), as a mapping between abstract functions, and A : V →W .

Nonlinear Operators and Fréchet Derivative
For an operator A : V →W : v 7→ A(v) one defines the following properties [162,

Def. 27.14]: Let {vn}n∈N ⊂ V be arbitrary. Then we say that A is

(a) continuous, if it holds that if vn → v, then A(vn)→ A(v),
(b) strongly continuous, if it holds that if vn ⇀ v, then A(vn)→ A(v),
(c) weakly continuous, if it holds that if vn ⇀ v, then A(vn) ⇀ A(v),
(d) demicontinuous, if it holds that if vn → v, then A(vn) ⇀ A(v),
(e) or, in the case that W = V ′, hemicontinuous, if t 7→,

〈

A(u+ tv), w
〉

V ′,V
is

continuous on [0, T ] for all u, v, w ∈ V ,

as n→∞,
Note that what is defined as strongly continuous here, is often referred to as

completely or totally continuous.
Let V and W be Banach spaces. A mapping A : V → W is called compact, if it

maps bounded sets into precompact sets [133, p. 7].
One has that if A is strongly continuous, then A is compact. The opposite

direction holds if A is also linear, cf. [161, Prop. 26.2]. We call A : V →W bounded
if it maps bounded sets in V into bounded sets in W [133, p. 5].

We now consider a reflexive and separable Banach space V and A : V → V ′. We
call A monotone if for any v, u ∈ V , it holds that

〈

A(u)−A(v), u− v
〉

V ′,V
≥ 0.

In view of semi-linear parabolic problems, cf. [133, Ch. 8.6], we introduce the
notion of pseudomonotonicity:

Definition 2.17. [133, Def. 2.1] The operator A : V → V ′ is called pseudomono-
tone if A is bounded and if for given {uk}k∈N ⊂ V , uk ⇀ u ∈ V ,

lim sup
k→∞

〈

A(uk), uk − u
〉

V ′,V
≥ 0

implies that for any v ∈ V ,
〈

A(u), u− v
〉

V ′,V
≤ lim inf

k→∞

〈

A(uk), uk − v
〉

V ′,V
.
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The prototype example of a pseudomonotone operator is the sum of a monotone
and hemicontinuous operator and a strongly continuous operator [162, p. 581].

For the sections on optimal control we will use the Fréchet derivatives.

Definition 2.18 ([159], Ch. 40.1). An operator A : V → W is called Fréchet
differentiable at v0 ∈ V , if there exists an open subset V0 ⊂ V and a linear bounded
Operator D(A, v0) : V0 →W and if for any direction h ∈ V0 the limit

lim
‖h‖V→0

A(v0 + h)−A(v0)−D(A, v0)h

‖h‖V

exists.

If it exists, we denote the Fréchet derivative of A at v0 ∈ V as A;v(v0) :=
D(A, v0). Similarly we denote partial derivatives for A : V ×U →W as for example
A;u(v0, u0) : U →W .

By definition, the Fréchet derivative of a linear map is the map itself, i.e.
A;v(v)[dv] = Adv.

We will use the chain rule for differentiation, see, e.g. [149, Thm. 2.20]. If
A : V →W is Fréchet differentiable at v and B : W → U is is Fréchet differentiable
at A(v), then

(B ◦A(v));v[dv] = B;w(A(v))
[

A;v(v)[dv]
]

.

As in the above examples, in ambiguous cases like A(v)[dv], we will use the square
brackets in to point out that the action of an operator A(v) onto dv is linear.
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3. Decoupling of Semi-linear Semi-explicit Index-2 ADAEs

If put into an abstract setting, i.e. considering v and p as functions of t ∈ (0, T )
taking on values in a function space, Equation (1.1) is a differential-algebraic equa-
tion (DAE), since v has to fulfill both a differential (1.1a) and an algebraic relation
(1.1b). The interaction of such differential and algebraic equations is quantified
by various index concepts, cf. Section 2.1. Some of these concepts have been gen-
eralized to abstract DAEs (ADAEs), see [115] for an overview. In our setting we
speak of index-2 systems, as stable and conforming spatial discretizations of the
considered ADAEs lead to DAEs of tractability index 2.

In finite dimensions, there are several ways to reduce the index by constructing
equivalent systems of lower index [90]. Apart from being applied for numerical
solution schemes, this – possibly partial – decoupling of the algebraic and the dif-
ferential parts of the equation is used to investigate solvability. From the separated
algebraic part one can read off consistency conditions, e.g. for the initial values.
For the differential part one can use standard theory for abstract ODEs to estab-
lish solvability conditions. Again, some approaches have been generalized to the
abstract setting [6, 101, 131, 145].

In this section we address the question, when an optimal control problem, con-
strained by a class of semi-explicit semi-linear ADAEs, is solvable. The “semis”
mean that, as it is the case in (1.1), the time derivative appears explicitly and
linearly. As the considered optimality system contains the constraints, this calls for
results on solvability of the ADAE.

The considered abstract setting contains weak formulations of the Navier-Stokes
Equation for which existence of solutions has been investigated since long, see [100,
143] for the fundamental notions and results. We will investigate these abstract
DAEs from a DAE perspective that is well understood in finite dimensions [102].
A DAE point of view has been taken in [41] to analyse linearized Navier-Stokes
Equation. Our approach differs from [41] and the classical works in so far as it
does not eliminate the constraints by restricting the analysis to the subspace of
an inherent ordinary differential equation (ODE) for the differential parts of the
solution. The focus on the formulation in the native variables v and p, often referred
to as saddle point formulation, makes our work comparable to [54], where a space-
time variational formulation of the Navier-Stokes Equation has been investigated.

We introduce a decoupling of the ADAE that exploits the saddle point structure
in a similar way as in the finite-dimensional setup, see Section 8.1. The presented
generalization bases on additional regularity, such that the abstract equations are
posed in a Hilbert space, which is densely embedded in the Banach space of the
problem formulation. This additionally assumed regularity enables the splitting of
the equations by projections. We will give reasoning, why this assumption is not
very restrictive for the Navier-Stokes Equation.

3.1. Semi-explicit Semi-linear ADAEs of Index 2. We investigate a class of
abstract differential-algebraic equations, where the differential variable v takes on
values in a Banach space V and the algebraic variable p in a Hilbert space QH .
We assume that V is densely and continuously embedded in a Hilbert space H and
consider the dynamical equation posed on the Gelfand triple V →֒ H →֒ V ′. This
setup, where the dynamical equation is posed on a Gelfand triple, we will refer to as
evolution setting, which is in line with the notion for abstract differential equations
without algebraic constraints [40, 106, 133].

We refer to the equations as index-2 equations, since a stable semi-discretization
leads to a tractability index iµ = 2 of the resulting finite-dimensional DAE, cf.
Section 2.1.
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Problem 3.1. Let V be a separable and reflexive Banach space, densely and con-
tinuously embedded in a Hilbert space H. Consider the Gelfand triple V →֒ H →֒ V ′

and another Hilbert space QH . For given f ∈ L2(0, T ;V ′), g ∈ L2(0, T ;Q′H) and
α ∈ H find v ∈ L2(0, T ;V ) and p ∈ L2(0, T ;QH) that fulfill

v̇(t)−A(t, v(t))− J ′1p(t) = f(t) in V ′, a.e. in (0, T ), (3.1a)

−J2v(t) = g(t) in Q′H , a.e. in (0, T ), (3.1b)

v(0) = α in H, (3.1c)

with an operator A(t, ·) : V → V ′ and bounded linear operators J ′1 : QH → V ′ and
J2 : V → Q′H .

We will frequently consider the symmetric version, where J1 = J2:

Problem 3.1(Sym). Let the spaces and operators be as in Problem 3.1. For
given f ∈ L2(0, T ;V ′), g ∈ L2(0, T ;Q′H) and α ∈ H find v ∈ L2(0, T ;V ) and
p ∈ L2(0, T ;QH) that fulfill

v̇(t)−A(t, v(t))− J ′2p(t) = f(t) in V ′, a.e. in (0, T ), (3.2a)

−J2v(t) = g(t) in Q′H , a.e. in (0, T ), (3.2b)

v(0) = α in H. (3.2c)

A special case of Problem 3.1(Sym) is given by a weak formulation of the incom-
pressible Navier-Stokes Equation:

Problem 3.1(NSE). Let Ω be a regular domain in Rd, d ∈ {2, 3} and consider
the Gelfand triple

V := [W 1,2
0 (Ω)]d →֒ [L2(Ω)]d →֒ [W−1,2(Ω)]d =: V ′

and the factor space QH := L2(Ω)/R. Let div = −∇′ : [W 1,2
0 (Ω)]d → (L2(Ω)/R)′

be defined via

−
〈

∇′v, q
〉

Q′
H

,QH
=

d
∑

i=1

∫

Ω

(∂eivi)q dω (3.3)

and A : [W 1,2
0 (Ω)]d → [W−1,2(Ω)]d via

〈

A(v), w
〉

V ′,V
=

〈

(v ⊗∇)v, w
〉

V ′,V
+

d
∑

i=1

(

∇vi,∇wi

)

[L2(Ω)]d , (3.4)

where
〈

(u⊗∇)v, w
〉

V ′,V
:=

d
∑

i=1

d
∑

j=1

∫

Ω

ui(∂
eivj)wj dω, (3.5)

cf. [143, Ch. II.1.2]. For f ∈ L2(0, T ; [W−1,2(Ω)]d and α ∈ [L2(Ω)]d, find v ∈
L2(0, T ;W 1,2

0 (Ω)) and p ∈ L2(0, T ;L2(Ω)/R) such that

v̇(t)−A(v(t))−∇p(t) = f(t) in [W−1,2(Ω)]d, a.e. in (0, T ), (3.6a)

div v(t) = 0 in (L2(Ω)R)′, a.e. in (0, T ), (3.6b)

v(0) = α in [L2(Ω)]d. (3.6c)

Most results will be derived for the general case of Problem 3.1. For the symmet-
ric case, some assumptions can be relaxed. We will prove convergence of Galerkin
schemes only for the symmetric problem. Applicability of the results will be demon-
strated by confirming that for the Navier-Stokes Equation as in Problem 3.1(NSE)
the taken assumptions are valid.
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Equating the left and right hand sides in (3.1a,b) a.e. on the time interval
refers to equality in L1

loc(0, T ) pointwise in the corresponding dual product, cf. the
Fundamental Lemma of Variational Calculus as given, e.g., in [40, Thm. 8.1.3].

With the time derivative understood in the weak sense, we say that v and p fulfill
(3.1a) if for all w ∈ V and for all φ ∈ C∞0 (0, T ),

∫ T

0

−φ̇(t)
(

v(t), w
)

H
− φ(t)〈A(t, v(t)), w〉V ′,V (3.7a)

−φ(t)〈J ′1p(t), w〉V ′,V dt =

∫ T

0

φ(t)〈f(t), w〉V ′,V dt

As for algebraic constraints, we say that, e.g., (3.1b) holds if, for all q ∈ Q and for
all φ ∈ C∞0 (0, T ),

∫ T

0

φ(t)
〈

−J2v(t)− g(t), q
〉

Q′
H

,QH
dt = 0. (3.7b)

We will also frequently write, e.g., J2v = g in Q′H or v̇ = f in V ′, what is short
for, e.g., (3.1b) meaning (3.7b).

We will consider solutions v with v̇ ∈ L2(0, T ;V ′) or v̇ ∈ Lq(0, T ;H ′), with q ≥ 1.
Then, the initial value is well-defined in the norm of H, since W1;2,2(0, T ;V ;V ′)
and W1;p,q(0, T ;V ;H ′) are continuously embedded in C([0, T ];H), for p, q ≥ 1, see
[133, Lems. 7.1, 7.3].

Remark 3.2. Because of the continuous embedding V →֒ H →֒ V ′ a given func-
tion v ∈ L2(0, T ;V ) is also in L2(0, T ;V ′). Since (0, T ) is bounded, we have
L2(0, T ;V ′) ⊂ L1(0, T ;V ′). Thus, by [40, Thm. 8.1.5], the function v̇ ∈ L2(0, T ;V ′)
is the weak derivative of v as defined in Definition 2.15 if, and only if, for all w ∈ V ′′,
the function t 7→

〈

v̇(t), w
〉

V ′,V
is the weak derivative of the real valued function

t 7→
〈

v(t), w
〉

V ′,V ′′ . Since V is assumed reflexive, i.e. V ′′ = V , and
〈

·, ·
〉

V ′,V
is the

continuous extension of
(

·, ·
)

H
, in the considered setup, the definition of the weak

derivative in (3.7bb) is equivalent to the formal definition of Definition 2.15.

We will often omit the time dependencies and also make use of a block operator
formulation [41] and write (3.1a-b) as

[

IV ′←V ′ 0
0 0

]

d

dt

[

v
p

]

−
[

A(·) J ′1
J2 0

] [

v
p

]

=

[

f
g

]

in V ′ ×QH′, (3.8a)

v(0) = α in H. (3.8b)

3.2. Decoupling of the Equations. In this section we present a decoupling of the
abstract semi-explicit index-2 DAE (3.1) into the algebraic and the differential part
using the approach of the operator chain, see [102] and [51] for the finite-dimensional
formulations and [101] for abstract DAEs.

Via the decoupling we will establish necessary conditions for existence and unique-
ness of solutions also in view of optimal control formulations.

Unlike in a Hilbert space, in general, a closed subspace of a Banach space does
not induce a decomposition the Banach space, cf. the survey paper [136] or [121]
which addresses this issue for function spaces. Equivalently, given a subspace,
there is no guarantee for the existence of a bounded projection that maps onto
this subspace. Therefore, we will assume that the differential equation is posed
in the Hilbert space H ′, where one always can define bounded projections via the
orthogonal complement.

In a PDE setting, the requirement that the equations are posed in H ′ rather
than in V ′ implies a higher regularity of the solutions. We will comment on this
with respect to the Navier-Stokes Equation in Section 3.5.
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In the evolution setting, the solution space is not isomorphic to or the same as
the space where the equations are posed in. From this argument and from the fact
that the splitting projection for the equations may not be bounded in the Banach
space of the solution, we confer that the solution must be split in a separate way.
To get a well defined separation of the solution space, we will assume that the
kernel of J2 splits the solution space. For the Navier-Stokes Equation with states
typically located in a Hilbert space, this assumption is obsolete.

We will split the solutions in order to investigate their existence. In practise,
however, splitting up a solution space may be infeasible or unstable, cf. [7]. One
should rather split or transform the equations into parts that define the solution
components. This is the motivation of the twofold approach of moving the equa-
tions to a Hilbert space, where the inner product enables the explicit definition of
projections, while sticking to a technical decomposition of the solutions in a Banach
space.

To obtain a decoupling one has to ensure that the split equations enable the
computation of the solution components. In the evolution setting, one has to take
into account that the solution space is only dense and continuously embedded in
the space where the equations are posed in.

Therefore, we will use assumptions on the linear operators J1 and J2 – account-
ing for the differential-algebraic coupling – that formalize a particular property
of differential operators. Namely, differentiation acts decremental with respect to
the degree of smoothness of a function. For example, the divergence operator is
bounded if defined as −∇′ := div : [W 1,2

0 (Ω)]d → L2(Ω) as it is bounded if defined
as −∇′ := div : [L2(Ω)]d → W−1,2(Ω). Then, if defined in this way, we have that
∇′([W 1,2

0 (Ω)]d) →֒ ∇′([L2(Ω)).
For general operators, we need to explicitly assume these properties to state the

following proposition.

Proposition 3.3. Consider Problem 3.1. Assume there is a separable and reflexive
Banach space Q, densely and continuously embedded in QH , such that J1, J2 : V ⊂
H → Q′ are bounded, i.e. there is a constant c such that ‖Jiv‖Q′ ≤ c‖v‖H for
all v ∈ V , i = 1, 2. Then we can define unique extensions J̄2, J̄1 ∈ L(H,Q′), via
J̄2v = J2v ∈ Q′ and J̄1v = J1v ∈ Q′ for all v ∈ V ⊂ H.

Proof. We define J̄1, J̄2 : H → Q′ as the closures of the given J1, J2 ∈ L(V,Q′H), cf.
[83, P. 166]. Let i ∈ {1, 2} and Ji ∈ L(V ⊂ H,Q′H). Since V →֒ H, for any v ∈ H,
there is a sequence {vn}∞n=1 ⊂ V that converges to v in the norm of H. Since
Q′H →֒ Q′ and Ji : H ⊂ V → Q′ is bounded, the sequence {Jivn}∞n=1 converges
to a q′ ∈ Q′. Since q′ does not depend on the particular choice of {vn}∞n=1, the
relation q′ = J̄iv := limn→∞ Jvn well defines the extension of Ji ∈ L(V,Q′H) to
J̄i ∈ L(H,Q′). �

The following lemma links the duals of the extensions to the dual operators.

Lemma 3.4. Let V →֒ H and Q →֒ QH . If J̄1 : H → Q′ is the closure of J1 : V ⊂
H → Q′H ⊂ Q′, then J ′1 : QH → V ′ is the closure of J̄1

′
: Q ⊂ QH → H ′ ⊂ V ′. The

same holds for J̄2.

Proof. Since for any q ∈ QH , there is a sequence {qn}∞n=1 ⊂ Q converging to q

in the norm of QH , we can define the closure of J̄1
′

via its action on v ∈ V :
〈

J̄1
′
q, v

〉

V ′,V
= limn→∞

(

J̄1
′
qn, v

)

H′,H
. Using that J̄1v = J1v, for all v ∈ V , and

that the dual products are the continuous extensions of the scalar products, we
derive that

lim
n→∞

(

J̄1
′
qn, v

)

H′,H
= lim

n→∞

(

qn, J̄1v
)

QH ,Q′
H

=
(

q, J1v
)

QH ,Q′
H

=
〈

J ′1q, v
〉

V ′,V
.
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�

The space Q defines a Gelfand triple Q →֒ QH
∼= Q′H →֒ Q that is in line with

V →֒ H →֒ V ′ with respect to J ′1 and J2, as illustrated in Figure 1.

V →֒ H ∼= H ′ →֒ V ′

Q →֒ QH
∼= Q′H →֒ Q′

J2

J̄2J̄1
′

J ′1

Figure 1. Illustration of the arrangements of the considered func-
tion spaces and the actions of the operators J ′1 and J2.

The scheme of Figure 1 can be interpreted also in a PDE sense. Namely, ad-
ditional regularity of a function is preserved under the action of the (differential)
operators J1 and J2: If q ∈ QH has additional regularity, then J ′1q has more regu-
larity than a general function in V ′. Conversely, for v ∈ H, J2v has to be defined
in a space larger than Q′H .

Note that boundedness of J1, J2 : V ⊂ H → Q′ must be established for the
particular choice of Q.

For the considered Problem 3.1 we assume this boundedness of J1, J2 : V ⊂ H →
Q′ and, in view of decoupling, a complementing property of image and kernel of
J̄1
′

and J̄2:

Assumption 3.5. Consider J1, J2 : V → Q′H from Problem 3.1. Assume that
there is a Banach space Q ⊂ QH densely and continuously embedded, such that J1,
J2 : V ⊂ H → Q′ are bounded, so that we can define the extensions J̄1, J̄2 : H → Q′.
We assume that:

(a) J̄1
′
, J̄2

′ ∈ L(Q,H ′) are homeomorphisms onto their range and
(b) H = ker J̄2 ⊕ j(im J̄1

′
),

where j : H ′ → H is the Riesz isomorphism.

The following definitions and relations will be helpful for the decoupling of the
abstract DAE (3.8).

Lemma 3.6. Let H be a Hilbert space and Q a Banach space. Let J̄1, J̄2 : H → Q′

fulfill Assumption 3.5, i.e. their duals are homeomorphisms onto their range and
H = j(im J̄1

′
)⊕ ker J̄2. Then

S := J̄2jJ̄1
′
: Q→ Q′

is invertible and with
L := J̄1

′
S−1J̄2 : H → H ′, (3.9)

one has

Hdf : = ker J̄2 = im[IH − jL], (3.10a)

Hc : = im jL = im jJ̄1
′
, (3.10b)

H = Hdf ⊕Hc, (3.10c)

H ′c : = imLj = j′(Hc), (3.10d)

H ′df : = im[IH′ − Lj] = j′(Hdf), (3.10e)

H ′ = H ′df ⊕H ′c. (3.10f)



24

Proof. Since J̄2
′

is an homeomorphism onto its range, it has a closed range and
the Closed Range Theorem, see e.g. [83, Thm. IV.5.13] applies. In particular J̄2

is surjective, since it holds that im J̄2 = (ker J̄2
′
)0 = Q′ and since J̄2

′
is injective.

Consider the factor space H/ ker J̄2, which is the space of equivalence classes [h],

defined via: h1, h2 belong to a class [h] if h1−h2 ∈ ker J̄2. Consider ˜̄J2 : H/ ker J̄2 →
Q′, defined as ˜̄J2[h] = J̄2h0, for h0 being a member of [h]. Since for h1, h2 ∈ [h]
we have that J̄2h1 − J̄2h2 = J̄2(h1 − h2) = 0, so that this map is well defined.
By definition, this map is injective, by surjectivity of J̄2 it is also surjective, so
that, by the Open Mapping Theorem [67, Thms. 39.2/4], it has a bounded inverse
˜̄J2
−1 : Q→ H/ ker J̄2, with ˜̄J2

−1 ˜̄J2[h] = [h] for all [h] ∈ H/ ker J̄2.
Consider the linear map i1 : j(im J̄1

′
) → H/ ker J̄2 : h 7→ [h], which is bounded

since ‖i1(h)‖H/ ker J̄2
= minc∈ker J̄2

‖h+ c‖H ≤ ‖h‖H . Since H = ker J̄2 ⊕ j(im J̄1
′
),

we obtain that i1 is injective and surjective: take any [h] ∈ H/ ker J̄2 and any
representative h0 ∈ [h]. Then h0 = h1 + h2 with unique h1 ∈ j(im J̄1

′
) and

h2 ∈ ker J̄2. Thus [h] is the unique image of h1 ∈ j(im J̄1
′
) under i1. Thus, by the

Open Mapping Theorem [67, Thms. 39.2/4], i1 has a bounded inverse.

Since for all h ∈ j(im J̄1
′
), ˜̄J2i1h = J̄2h and ˜̄J2i1 is invertible, we find that

J̄2 : j(im J̄1
′
) → Q′ has a bounded inverse. Then, with j being invertible and J ′1

having a left inverse by assumption, we conclude that S := J̄2jJ̄1
′

is invertible.
Thus, we can define L := J̄1

′
S−1J̄2 : H → H ′ and prove the assertions in (3.10):

(a) If v ∈ ker J̄2, then v = [I− jL]v ∈ im[I− jL]. Conversely, if v ∈ im[I− jL],
then J̄2v = 0.

(b) im jL = im jJ̄1
′
S−1J̄2 = im jJ̄1

′
since, S−1 and J̄2 are surjective.

(c) Follows by assumption and from the definition of the spaces Hdf and Hc.

(d) Since j is bijective, we find that j′(Hc)
b.)
= im(j′jL) = imL = im(Lj).

(e) Follows with the arguments of d.) and j′j = I.
(f) Since (Lj)2 = Lj, Lj : H ′ → H ′ is a projector and H ′ decomposes into

kerLj and imLj.

�

The following corollary of Lemma 3.6 will be used to rephrase Assumption 3.5
in the discrete setting.

Corollary 3.7. Consider the setup of Assumption 3.5. If part (a) holds, then part
(b) holds if, and only if, there exists a constant γ, such that ‖J̄2h‖Q′ ≥ γ‖h‖H , for

all h ∈ j(im J̄1
′
).

Proof. In the proof of Lemma 3.6 we have established that under the conditions of
Assumption 3.5 the operator J2 : j(im J̄1

′
) → Q′ has a bounded inverse, which is

equivalent to ‖J̄2h‖Q′ ≥ γ‖h‖H , for all h ∈ j(im J̄1
′
), cf. [3, Thm. 2.5]. Conversely,

if J̄2 on j(im J̄1
′
) has a bounded right inverse J̄2

−
, then ker J̄2 and j(im J̄1

′
) split

the space H, since J̄2
−
J̄2 is a bounded projector having ker J̄2 as its kernel and

j(im J̄1
′
) as its image. �

We assume additional regularity of the problem:

Assumption 3.8. Consider Problem 3.1, assume that Assumption 3.5 holds, and
assume that g and α are sufficiently smooth. For more regular data f ∈ L2(0, T ;H ′)
(rather than in L2(0, T ;V ′)) any corresponding solution (v, p) of Problem 3.1 fulfills
p(t) ∈ Q and A(t, v(t)) ∈ H ′, for almost all t ∈ (0, T ).
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Remark 3.9. As a consequence of Assumption 3.8 one has J ′1p(t) ∈ H ′ and, thus,
v̇(t) ∈ H′, for almost all t ∈ (0, T ). This means that the solution part v must lie
in W(0, T ;V ;H ′). For the considered abstract setup, we will specify the necessary
and sufficient smoothness of g in space and time in Lemma 3.28. The necessary
smoothness of α in space depends, in particular, on the operator A. We will give
sufficient conditions for α when considering the Navier-Stokes Equation in Section
3.5.

We can now decouple the equations (3.8a) into a system of four equations in H ′,
V ′, Q′H , and Q′, respectively.

Lemma 3.10. Consider the setup of Problem 3.1 and assume that Assumption 3.5
holds, i.e. there is Q →֒ QH such that the extensions J̄1, J̄2 : H → Q′ of J1, J2 are
bounded. Assume that Assumption 3.8 holds, i.e. for f ∈ L2(0, T ;H ′), the equation
(3.1a) is posed in H ′ rather than in V ′.

If J ′1 : QH → V ′ is injective and if f ∈ L2(0, T ;H ′), then system (3.8a) is
equivalent to









P[H′
df
|H′

c
]v̇

0
J̄2jv̇

0









−









P[H′
df
|H′

c
]A(·) 0

J ′1jQH
J2 0

J̄2jA(·) S
J2 0









[

v
p

]

= E−1
2

[

f
g

]

, (3.11)

where jQH
: Q′H → QH and j : H ′ → H are the Riesz isomorphisms, H ′c, H ′df, and

S = J̄2jJ̄1
′

are as defined in Lemma 3.6, P[H′
df
|H′

c
] := IH′ − J̄1S

−1J̄2j : H ′ → H ′ is
the projector that realizes part (3.10f), and

E−1
2 :=









P[H′
df
|H′

c
] 0

0 J ′1jQH

J̄2j 0
0 IQ′

H









: H ′ ×Q′H → H ′ × V ′ ×Q′ ×Q′H . (3.12)

Proof. As a consequence of Assumption 3.8, one has that v̇(t) ∈ H ′, for almost all
t ∈ (0, T ) and, thus, that P[H′

df
|H′

c
]v̇ and jv̇ well-defined. System (3.11) is obtained

from (3.8) by using that for p(t) ∈ Q, J ′1p(t) = J̄1
′
p(t), and by applying E−1

2 from
the left. We show that E−1

2 (v′, q′) = 0 in H ′ × V ′ × Q′ × Q′H if, and only if,
(v′, q′) = 0 in H ′ ×Q′, i.e. both systems have the same solution set. By linearity,
one has E−1

2 (0, 0) = 0. Let now (v′, q′) ∈ H ′ ×Q′ such that E−1
2 (v′, q′) = 0. Using

the decomposition v′ = v′df + v′c with P[H′
df
|H′

c
]v
′ = v′df and J̄2jv

′ = J̄2jv
′
c, we find

that

E−1
2

[

v′df + v′c
q′

]

=









v′df

J ′1jQH
q′

J̄2jvc

q′









= 0. (3.13)

And (v′, q′) = 0 follows from J̄2 being injective on H ′c. �

Remark 3.11. The definition of E−1
2 is motivated by the elaborations of the finite-

dimensional case where the decoupling operator chain can be explicitly derived [59].
Here E−1

2 is defined not resorting to A(v). In the finite-dimensional linear case the
incorporation of A led to a complete decoupling of the solution components. The
analogous approach is not possible here, since the solution space V does not coincide
with H′, where the equations are posed.

Remark 3.12. Requiring injectivity of J ′1 is not an additional restriction, since it is
particularly necessary for the splitting of the solution space, cf. Assumption 3.13
just below.
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3.3. Decomposition of the Solution. In this section, we define a splitting of
the solution state space V that matches the splitting of the equations as given in
Lemma 3.10.

In general, P[Hdf |Hc] : V → V is not bounded. An example is the Leray projector

that is bounded in [L2(Ω)]d but not in [W 1,2
0 (Ω)]d, cf. [54, Rem. 4.1].

As discussed in Section 2.4, even if the kernel of J2 is closed in V , the existence
of a complement in V is not guaranteed, cf. [136]. For this reason, we will assume
that J2 : V → Q′H has a right inverse J−2 so that J−2 J2, IV − J−2 J2 ∈ L(V, V )
decompose V into the kernel of J2 and a remainder.

Assumption 3.13. Consider Problem 3.1. The operator J ′1 ∈ L(QH , V
′) is an

homeomorphism onto its range and J2 ∈ L(V,Q′H) has a bounded right inverse.

Remark 3.14. As long as V is a general Banach space, Assumption 3.13 is stronger
than Assumption 3.5(a). By the Closed Range Theorem, see, e.g., [83, Thm.
IV.5.13], if J2 has a right inverse, then it is surjective and, thus, closed and
J ′2 : QH → V ′ is a homeomorphism onto its range. Conversely, J ′2 being an
homeomorphism onto its range, only makes J2 surjective but not necessarily right-
invertible via a linear bounded operator.

The following arguments rephrase the results given in [67, Ch. 37]: Surjectivity
of J2 gives rise to an isomorphism IJ2

: V/ ker J2 → Q′H , but there is no general
way to identify V/ ker J2 with a subspace of V . However, if there is a subspace Vg

such that V = kerJ2 ⊕ Vg, then V/ ker J2 is isomorphic to Vg and one can define a
right inverse of J2 by means of IJ2

.
In particular, if V itself is a Hilbert space, then every subspace has a complement

and, thus, surjectivity implies existence of a bounded linear right inverse and the
Assumptions 3.5(a) and 3.13 are equivalent.

We summarize some notions related to right inverses.

Remark 3.15. A mapping J : V → Q′H has a right inverse, if there exists a mapping
J− : Q′H → V such that JJ−q = q for all q ∈ Q′H . As can be derived from the
arguments in Remark 3.14, a right inverse is only unique if J is bijective. Also,
even if J is linear and bounded, a right inverse need not be linear or bounded. If J
has a right inverse, then J |J−(Q′

H
) is injective.

Remark 3.16. An operator J ′2 : QH → V ′ is an homeomorphism onto its range, if,
and only if, it has a left inverse J ′2

− and there is a γ > 0 such that ‖J ′2−v‖ ≤ 1
γ ‖v‖

for all v ∈ im J ′2, implying ‖J ′2q‖ ≥ γ‖q‖ for all q ∈ QH , cf. [3, Thm. 2.5]. Thus,
if V is a Hilbert space, cf. Remark 3.14, Assumption 3.13 is equivalent [49, Lem.
I.4.1] to the so-called inf-sup or LBB condition

inf
0 6=q∈QH

sup
0 6=v∈V

〈J ′2q, v〉V ′,V

‖q‖QH
‖v‖V

≥ γ > 0, (3.14)

which is frequently used in literature.

Lemma 3.17. Let Assumption 3.13 hold. Then V = Vdf ⊕ Vc, where Vdf := kerJ2

and Vc is the image of Q′H under J−2 denoting the right inverse of J2.

Proof. Since J2 and J−2 are bounded, J−2 J2 : V → V is a projection having Vdf as
its kernel and Vc as its image. Thus, Vdf and Vc split V , cf. Section 2.4. �

3.4. Decoupling of the System. In this section we will show how the decoupling
of the equations and of the solution gives a decoupled system. We will need several
technical lemmas to characterize the relation of the split solution and equation
spaces. In particular, we need to establish that Vdf , defined in Lemma 3.17, is
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dense in Hdf , defined in Lemma 3.6, so that Vdf →֒ Hdf
∼= j′(Hdf) →֒ (Vdf)

′ gives
a Gelfand triple to define the underlying abstract differential equation. In view of
the algebraic part, we will show that for vc := J−2 g sufficiently smooth, one has

v̇c(t) = j′J̄2
−
ġ(t) ∈ H ′, for almost all t ∈ (0, T ).

Lemma 3.18. Let V ⊂ H and Q′H ⊂ Q′ be densely and continuously embedded, let
J2 : V → Q′H be surjective, let J2 : V ⊂ H → Q′ be bounded, and let J̄2 : H → Q′

be the closure of J2. Then Vdf := kerJ2 is dense in Hdf := ker J̄2.

Proof. We will use that for any Banach space W and subsets W1 ⊂ W2 ⊂ W
it follows that W1 is dense in W2 if, and only if, the annihilators coincide, i.e.
W1

0 = W2
0, cf. [49, Cor. I.2.5]. By the continuity of the closure, we immediately

have Vdf ⊂ Hdf and, thus, Hdf
0 ⊂ Vdf

0. It remains to establish that Vdf
0 ⊂ Hdf

0,
i.e., that any l ∈ H ′ that vanishes on Vdf ⊂ H also vanishes on Hdf .

Let l ∈ Vdf
0 = {v′ ∈ H ′ :

〈

v′, h
〉

H′,H
= 0 for all h ∈ Vdf ⊂ H}. Since the dual

product in V is the extension of the product in H, we have

V df
0 ⊂ (Vdf)

0 := {v′ ∈ V ′ :
〈

v′, vdf

〉

V ′,V
= 0, for all vdf ∈ Vdf ⊂ V },

and, thus, l ∈ (Vdf)
0. Since J2 : V ⊂ H → Q′H has a closed range, it is closed,

and, by the Closed Range Theorem, see e.g. [83, Thm. IV.5.13], one has (Vdf)
0 =

(ker J2)0 = im J ′2. Thus, there exists a q ∈ QH , such that l = J ′2q. Take any
h ∈ Hdf and a sequence {vn}n∈N ⊂ V converging to h in H. Then

〈

l, h
〉

H′,H
= lim

n→∞

〈

l, vn

〉

V ′,V
= lim

n→∞

〈

J ′2q, vn

〉

V ′,V

= lim
n→∞

〈

q, J2vn

〉

QH ,Q′
H

=
〈

q, J̄2h
〉

Q,Q′ = 0,

since h ∈ ker J̄2. Thus l ∈ Hdf
0. �

Since with Assumption 3.5, the considered spaces and operators fulfill the as-

sumptions of Lemma 3.18, for Vdf
‖·‖H denoting the closure of Vdf in H, we can

conclude that
Vdf
‖·‖H

= Hdf , i.e. Vdf is dense in Hdf . (3.15)

Now, we show that (Hdf)
′ ∼= H ′df := j′(Hdf), where (Hdf)

′ is the dual space of
the subspace Hdf ⊂ H. For later reference, we formulate the next result for general
Banach spaces and state the needed and well-known Hilbert space result, see the
proof of [49, Cor. I.2.4], as a corollary.

Lemma 3.19. For a Banach space V , assume that V = V1 ⊕ V2. Then the dual
space of V1 is isometrically isomorphic to the annihilator of V2, i.e. (V1)′ ∼= V2

0.

Proof. For any f ∈ (V1)′, we can define a f̃ ∈ V ′ via
〈

f̃ , v
〉

:=
〈

f,P[V1|V2]v
〉

, for all v ∈ V. (3.16)

As for w ∈ V2, we have P[V1|V2]w = 0, we find that f̃ ∈ V2
0. Since

‖f̃‖V ′ = sup
V ∋v 6=0

〈

f̃ , v
〉

‖v‖ = sup
V1∋vdf 6=0

〈

f, vdf

〉

‖vdf‖V
= ‖f‖(V1)′ ,

relation (3.16) defines an isometric linear mapping i1 : (V1)′ → V2
0. Conversely, as

any f̃ ∈ (V2)0 vanishes on V2, it can be associated with f ∈ (V1)′ and we have the
injection i2 : f̃ 7→ f := f̃

∣

∣

V1
. Since i1 is the inverse of i2 and vice versa, we have

that i1 : (V1)′ → V2
0 is an isometric isomorphism and, thus, (V1)′ ∼= V2

0. �

In a Hilbert space, one can use the orthogonal complement and Riesz isomor-
phism to characterize the annihilator:
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Lemma 3.20. Let Hdf be a subspace of a Hilbert space H and Hdf⊥ be its orthogonal
complement. Then,

j′(Hdf) = (Hdf⊥)0.

Proof. Since Hdf := ker J̄2 is closed and H is a Hilbert space and therefore reflexive,
we can use the identity (Hdf⊥)⊥ = Hdf , cf. [83, p. 252]. For v′ ∈ (Hdf⊥)0, one has
that 〈v′, w〉H′,H = 0, for all w ∈ Hdf⊥ if, and only if, (jv′, w)H = 0, for all w ∈
Hdf⊥. This is the definition of jv′ being in (Hdf⊥)⊥ = Hdf . Application of j then
gives v′ ∈ (Hdf⊥)0 if, and only if, v′ ∈ j′(Hdf) . �

Combining Lemmata 3.19 and 3.20 we can state the following:

Corollary 3.21. If Hdf is a closed subspace of the Hilbert space H, then the spaces
(Hdf)

′ and j′(Hdf) =: H ′df are isometrically isomorphic.

Remark 3.22. We now can show that if J̄1 = J̄2, then part (a) of Assumption 3.5
implies (b). By the Closed Range Theorem, see e.g. [83, Thm. IV.5.13], we have
that im J̄1

′
= (ker J̄2)0 and by Lemma 3.20 that

(ker J̄2)0 = (Hdf)
0 = j′(Hdf⊥)

and thus H = Hdf⊕Hdf⊥ = ker J̄2⊕j(im J̄2
′
). Note, that Hdf := ker J̄2 and Lemma

3.20 are established not recurring to the invertibility of S := J2jJ
′
1 as defined in

Lemma 3.6, and, hence, not presupposing Assumption 3.5 (b).

For further reference and to recall the overall setting, we collect the preceding
assumptions and their implications relevant for the splitting of the spaces in one
assumption:

Assumption 3.23. Consider Problem 3.1, posed on the Gelfand triple V →֒ H =
H ′ →֒ V ′ and Hilbert space QH .

(a) (Assumption 3.5): There is a Banach space Q →֒ QH , such that the ex-
tensions J̄1, J̄2 : H → Q′ of J1, J2 : V → Q′H are bounded and such that

H = Hdf ⊕Hc, where Hdf = ker J̄2 and Hc = j(im J̄1
′
).

(b) (Assumption 3.13, Lemma 3.17, Lemma 3.18): The operator J2 : V → Q′H
has a bounded right inverse, so that the solution space V decomposes into
V = Vdf ⊕ Vc, with Vdf = kerJ2 and Vdf is dense in Hdf. The operator
J1 : QH → V ′ is an isomorphism onto its range.

Next we will show, that if v(t) ∈ Vdf , i.e. v(t) is in the kernel of J2, then v̇(t)
can be found in the Riesz representation of the kernel of J̄2.

Lemma 3.24. Consider Problem 3.1 and let Assumption 3.23 hold. Let v ∈
W(0, T ;V ;H ′). Then v ∈ L2(0, T ;Vdf) if, and only if, v̇ ∈ L2(0, T ;H ′df).

To prove this, we use the following lemma:

Lemma 3.25. Let Assumption 3.23 hold and let Vc
‖·‖H be the closure of Vc in H.

Then, Hdf ∩ Vc
‖·‖H

= {0}.

Proof. We will show that if vc ∈ Vc
‖·‖H and vc 6= 0, then ‖J̄2vc‖Q′ > 0. We will

use a generic constant c̃ > 0 that may change in every step. Given vg ∈ Vc, there
is a sequence {vg,n}n∈N ⊂ Vc with vg,n → vc in H, as n→∞. Since on Vc, J2 has
a bounded inverse, we obtain ‖J2vg,n‖Q′

H
≥ c̃‖vg,n‖V ≥ c̃‖vg,n‖H , for all n ∈ N,

making use of the embedding V →֒ H. With vg,n → vg and ‖vc‖H = c̃, there is an
N ∈ N such that ‖J2vg,n‖Q′

H
≥ c̃, for all n > N , meaning that

sup
0 6=q∈QH

〈

q, J2vg,n

〉

QH ,Q′
H

‖q‖QH

≥ c̃.
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Since Q is dense in QH , one also has

sup
0 6=q∈Q

〈

q, J2vg,n

〉

QH ,Q′
H

‖q‖QH

≥ c̃, (3.17)

for all n > N . Thus,

sup
0 6=q∈Q

〈

q, J̄2vg

〉

Q,Q′

‖q‖QH

= lim
n→∞

sup
0 6=q∈Q

〈

q, J2vg,n

〉

QH ,Q′
H

‖q‖QH

≥ c̃ > 0.

Since there exists a qε ∈ Q, such that
〈

qε, J̄2vg

〉

Q,Q′ = (c̃−ε)‖qε‖QH
> 0 and, thus,

〈

qε, J̄2vg

〉

Q,Q′

‖qε‖Q
= (c̃− ε)‖qε‖QH

‖qε‖Q
> 0,

we have

‖J̄2vg‖Q′ = sup
0 6=q∈Q

〈

q, J̄2vg

〉

Q,Q′

‖q‖Q
≥ (c̃− ε) > 0. �

Proof of Lemma 3.24. For a v ∈ W(0, T ;V ;H ′)∩L2(0, T ;Hdf), by definition of the
orthogonal complement, we have

(

v(t), w
)

H
= 0, for all w ∈ (Hdf)⊥ and for almost

all t ∈ (0, T ). The latter is equivalent to
∫ T

0

(v(t), w)φ̇(t) dt = −
∫ T

0

〈v̇(t), w〉φ(t) dt = 0

for all w ∈ (Hdf)⊥ and for all φ ∈ C∞0 , or equivalent to 〈v̇(t), w〉H′,H = 0 or
v̇(t) ∈ (Hdf)

0, which, by Lemma 3.20 is the case, if, and only if, v̇(t) ∈ H ′df . Thus,
since v̇ ∈ L2(0, T ;H ′) by assumption, we conclude that v̇ ∈ L2(0, T ;H ′df).

Conversely, we can take a v ∈ W(0, T ;V,H ′), with v̇ ∈ L2(0, T ;Hk′), and go
backwards through the arguments above to find that v ∈ L2(0, T ;Hdf).

By assumption, v(t) is also in V and, in line with Lemma 3.17, it can be split

into v(t) = vdf(t)+vc(t). Because of Vdf
‖·‖H

= Hdf , one has vdf(t) ∈ Hdf and, thus,
also vc(t) ∈ Hdf . Since Vg ∩Hdf = {0}, cf. Lemma 3.25, and since the embedding
V →֒ H is injective, we have vc(t) = 0 ∈ V and thus v(t) = vdf(t) ∈ Vdf . �

Since the subspace Vdf can be replaced by any complementable subspace of V ,
we conclude that for v ∈ W(0, T ;V ;H ′) it holds that

v(t) ∈ Vc, if, and only if, v̇(t) ∈ j′(Vc
‖·‖H

) (3.18)

for almost all t ∈ (0, T ). However, because Hg is a particular choice while Vg is

defined via a right inverse J−2 , that is not uniquely defined, in general, Vc
‖·‖H 6= Hg.

We will define vc via the right inverse of J2 applied to the inhomogeneity g in
the algebraic constraint of the state equations (3.1). The following lemmas will be
used to link the derivative of the inhomogeneity ġ(t) ∈ Q′ with v̇c(t) ∈ H ′.
Lemma 3.26. Consider Problem 3.1 and assume that Assumptions 3.23 hold and
consider the right inverse J−2 of J2 : V → Q′H inverse with J−2 (Q′H) = Vc. Then

J̄2 : Vc
‖·‖H → Q′ has a right inverse J̄2

−
: J̄2(Vc

‖·‖H
) → Vc

‖·‖H and the restriction

J̄2
−∣

∣

Q′
H
⊂Q′ : Q′H ⊂ Q′ → Vc ⊂ H coincides with J−2 .

Proof. By Assumption 3.23(b) and by Lemma 3.17, the considered right inverse J−2
exists. By Lemma 3.25, we have that the map J̄2

∣

∣

Vc

‖·‖H into Q′ is injective and thus

invertible on its range. Since for v ∈ V ⊂ H, it holds that J̄2v = J2v ∈ Q′H ⊂ Q′,

on J̄2(Vg) = Q′H ⊂ Q′, the right inverse J̄2
−

of J̄2, coincides with J−2 considered as
a map from Q′H ⊂ Q′ into Vc ⊂ H. �
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Remark 3.27. Since J̄2
−

as defined in the proof of Lemma 3.26 is closed but not
necessarily bounded, cf. Remark 3.15, it does not simply extend to a map from Q′

onto Vc
‖·‖H . That is why we will require ġ(t) to be in J̄2(Vc

‖·‖H
) which is dense in

Q′.

Lemma 3.28. Let g ∈ L2(0, T ;Q′H) and vg := J−2 g. Then v̇c ∈ L2(0, T ;H ′), if,
and only if, ġ ∈ Q′−, where

Q′− := {f ∈ Q′ : there exists a w ∈ L2(0, T ;Vc
‖·‖H

), such that J̄2w = f}.
Proof. Assume that v̇c ∈ L2(0, T ;H ′). Then vc is inW(0, T ;V : H ′) and by Lemma

3.25 and (3.18) we have that jv̇c ∈ L2(0, T ;Vc
‖·‖H

). Since J̄2 is bounded, we have

J̄2jv̇c ∈ Q′− ⊂ L2(0, T ; J̄2(Vc
‖·‖H

)) ⊂ Q′. We show that J̄2j
d
dt (J−2 g) = ġ in Q′. For

all φ ∈ C∞0 (0, T ) and for all q ∈ Q, we have that
〈

J̄2j
d
dt (J−2 g), φq

〉

Q′,Q =
〈

j d
dt (J−2 g), φJ̄2

′
q
〉

H,H′ =
〈

d
dt (J−2 g), φjJ̄2

′
q
〉

H′,H

= −
(

J−2 g, φ̇J̄2
′
q
)

H,H = −
〈

J−2 g, φ̇J̄2
′
q
〉

H,H′

= −
〈

J̄2J
−
2 g, φ̇q

〉

Q′,Q = −
(

g, φ̇q
)

QH,QH

=
〈

ġ, φq
〉

Q′,Q.

To prove the converse direction we show that if ġ ∈ Q′−, then the unique w ∈
L2(0, T ;Vc

‖·‖H
) that fulfills J̄2w = ġ is the Riesz representation of the derivative of

vc in L2(0, T ;H). That is we need to establish that given φ ∈ C∞0 (0, T ), we have
〈

j′w, φv
〉

H′,H =
(

vc, φ̇v
)

H,H

for all v ∈ jJ̄2
′
(Q). Taking v from the range of jJ̄2

′
is enough because it can

be identified with a dense subset in Vc
‖·‖H , and because the inner product with

vectors from the complement is zero by definition. Denseness follows by injectivity

of J̄2 : Vc
‖·‖H → Q′ that makes the range of its adjoint dense in (Vc

‖·‖H
)′ and

by Lemma 3.20 stating that (Vc
‖·‖H

)′ can be identified with j′(Vc
‖·‖H

). Given
v ∈ jJ̄2

′
(Q) and the corresponding q ∈ Q that fulfills jJ̄2

′
q = v, we compute that

〈

j′w, φv
〉

H′,H =
〈

w, φJ̄2
′
q
〉

H,H′ =
〈

J̄2w, φq
〉

Q,Q

=
〈

ġ, φq
〉

Q′,Q = −
(

g, φ̇q
)

Q,Q

= −
(

J2J
−
2 g, φ̇q

)

Q,Q = −
〈

J−2 g, φ̇J
′
2q

〉

V,V′

= −
〈

vc, φ̇J̄2
′
q
〉

H,H′ = −
(

vc, φ̇v
)

H,H′ ,

where we have used that for q ∈ Q, J2q ∈ V ′ equals J̄2q ∈ H ′ ⊂ V ′, cf. Lemma
3.4. �

Remark 3.29. We have that Q′− ⊂ L2(0, T ; J̄2(Vc
‖·‖H

)) ⊂ Q′ and that all spaces

collapse into Q′ if, and only if, J̄2
−

is bounded.

Having established the necessary properties and relations of the splittings of
solution and equation spaces, we now can separate the differential and algebraic
components of the abstract differential algebraic equation (3.1). First, we state
the equations that, under certain conditions, the algebraic and differential parts of
any solution to (3.1) need to fulfill. Secondly, from the separated components, we
can read off necessary and sufficient smoothness and consistency conditions of the
problem. Finally, we will use the underlying abstract differential equation to state
existence and uniqueness of solutions to (3.1).
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Lemma 3.30. Consider the setup of Problem 3.1 and let Assumption 3.23 hold.
Let f ∈ L2(0, T ;H ′) and Assumptions 3.8 hold, i.e. a solution (v, p) to System
(3.1a,b) is in W(0, T ;V ;H ′) × L2(0, T ;Q). Then any solution (v, p) of System
(3.1a,b) has the representation (vdf + vc, p), where vc ∈ L2(0, T ;Vc) satisfies

vc(t) = −J−2 g(t), (3.19a)

where J−2 is the right inverse for J2 as defined in Lemma 3.17, where vdf is a
solution to

P[H′
df
|H′

c
]v̇df(t)− P[H′

df
|H′

c
]A(vdf(t)− J−2 g(t)) = P[H′

df
|H′

c
][f(t)− d

dt (J−2 g)(t)],

(3.19b)

and where p ∈ Q satisfies

p(t) = S−1
[

J̄2jA(vdf(t)− J−2 g(t)) + J̄2jf(t) + ġ(t)
]

, (3.19c)

with S = J2jJ
′
1 and P[H′

df
|H′

c
] defined in Lemma 3.6. The equalities hold for a.a.

t ∈ (0, T ).

Proof. By Assumption 3.23, J ′1 is injective and by Lemma 3.10, System (3.8a) is
equivalent to (3.11). By Lemma 3.17 we can write v = vdf +vc with unique vdf ∈ Vdf

and vc ∈ Vc. Then the equations from the decoupling given in (3.11), with parts in
H ′, V ′, Q′H , and Q′, cf. (3.12), read as follows. With J2vdf = 0 the part in Q′H is
given via

−J2v = −J2vc = g ∈ Q′H .
By means of the right inverse J−2 one obtains (3.19a). Since J ′1 is injective, the
equation −J ′1jQH

J2vc = J ′1jQH
g in V ′ is redundant.

The equation part in H′df is given via

P[H′
df
|H′

c
]v̇ − P[H′

df
|H′

c
]A(v) = P[H′

df
|H′

c
][f + d

dt (J−2 fp)],

which is (3.19b), since v = vdf − J−2 g.
Finally, the part in Q′ is given via

J̄2jv̇ − J̄2jA(v)− Sp = J̄2jf. (3.20)

By Lemma 3.24, it holds that J̄2jv̇df = 0, by Lemma 3.28 that J̄2jJ
−
2 ġ = ġ. Thus,

the invertibility of S, as defined in Lemma 3.6, gives the necessary condition (3.19c)
for the algebraic variable p. �

Corollary 3.31. Under the assumptions of Lemma 3.30, and with f ∈ L2(0, T ;H ′),
for the existence of a solution (v, p) ∈ W(0, T ;V ;H ′)× L2(0, T ;Q) to Problem 3.1

it is necessary, that g ∈W 1,2(0, T ;Q′H ;Q′−) and α = αdf−J̄2
−
g(0), with αdf ∈ Hdf,

i.e. −J̄2α = g(0).

Proof. By Lemmas 3.10 and 3.30, solutions (v, p) ∈ W(0, T ;V ;H ′) × Q of (3.1)
fulfill Equations (3.19). According to (3.19c) ġ ∈ Q′ is necessary for the existence
of p ∈ Q. With g ∈ W(0, T ;Q′H ;Q′−) →֒ C(0, T ;Q′) also g(0) ∈ Q′ is well defined.
We have W(0, T ;Vdf , H

′
df) →֒ C([0, T ], Hdf), so that, for vdf ∈ Vdf to solve (3.19b),

vdf(0) must be in Hdf .

Furthermore, since vc ∈ W(0, T ;Vc, j
′(Vc

‖·‖H
)) →֒ C(0, T ;Vc

‖·‖H
), a value for

vc(0) ∈ H must be well defined. Since J2vc = −g ∈ C([0, T ];Q′), we have that
J2vc(t) → −g(0) in Q′, as t → 0. Then for tn := 1

n , the sequence (J̄2vc)n :=

J̄2vc(tn) → g(0), as n → ∞. Also, because of the continuity of vc, the sequence

J̄2
−

(J̄2vc(tn)) = vc(tn) converges to a function h in H. Since J̄2
−

, as the inverse of
a bounded injective operator, is closed, this limit is in the range of J−2 and equals

h = vc(0) = −J̄2
−
g(0).
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Note, that this gives −J̄2α = −J2[vdf(0)+vc(0)] = g(0), i.e., the initial condition
must fulfill the algebraic constraints. �

Remark 3.32. Unlike v, that can be shown to be a continuous function in time,
the variable p is only in L2(0, T ;Q) and the point value p(0) has no meaning.
Thus, in the current setting, there is no consistency restriction imposed by (3.19c).
However, if one requires continuity in time of p or, equivalently, of J̄2jA(v), then
(3.19c) demands that f(0), ġ(0), and α are consistent such that

p(0) = −S−1[J̄2jA(α) + J̄2jf(0) + ġ(0)],

which is in line with the conditions that were established for the Navier-Stokes case
[68, Sec. 2].

Remark 3.33. If the case of the Navier-Stokes Equations as defined Problem 3.1(NSE),
Equation 3.20 gives the Pressure Poisson Equation. Thus, the assumptions of
Lemma 3.30 give sufficient conditions for the existence of the Pressure Poisson
Equation in infinite dimensions, cf. the discussion in the introduction of this thesis.

Remark 3.34. Since the consistency of the initial value as specified in Corollary
3.31 is necessary for any solution to (3.1), it cannot depend on a particular choice
of J−2 in Lemma 3.17. Thus, an initial condition α is genuine consistent or not, but

the parts αdf and −J̄2
−
g(0) may depend on the choice of J−2 .

The preceding remark gives rise to the following definition:

Definition 3.35. Consider Problem 3.1, assume that Assumptions 3.5 and 3.13
hold, and that g ∈ W(0, T ;Q′H , Q

′). An initial condition α ∈ H is called consistent,

if there is a right inverse J̄2
−

to J̄2 such that α = αdf − J̄2
−
g(0), with αdf ∈ ker J̄2.

Corollary 3.36. An initial condition is consistent in the sense of Definition 3.35
if, and only if, −J̄2α = g(0).

Proof. If α is consistent, then −J̄2α = g(0). If −J̄2α = g(0), then for any right

inverse J̄2
−

one has that α = (α+J̄2
−
g(0))−J̄2

−
g(0) with α+J̄2

−
g(0) ∈ ker J̄2. �

Theorem 3.37. Consider Problem 3.1 and let Assumption 3.23 hold. Let f ∈
L2(0, T ;H ′) and let Assumption 3.8 hold. Let g ∈ L2(0, T ;Q′H) and let α ∈ H.
Then the ADAE (3.1) has a (unique) solution (v, p) ∈ W(0, T ;V ;H ′) × Q if, and

only if, ġ ∈ L2(0, T ;Q′) ∩Q′−, α = αdf − J̄2
−
g(0), with αdf ∈ Hdf, and

ẇ(t)− P[H′
df
|H′

c
][A(w(t)− J−2 g(t))] = P[H′

df
|H′

c
][f(t) + d

dt (J−2 g)(t)] in V ′,
(3.21a)

w(0) = αdf in H, (3.21b)

for almost all t ∈ (0, T ), has a (unique) solution w ∈ W(0, T ;Vdf;H
′
df).

Proof. Assume that the ADAE (3.1) has a solution (v, p). Then by Corollary 3.31
the conditions on g and α are necessarily fulfilled and by Lemma 3.30 P[H′

df
|H′

c
]v

solves (3.21). While the solution components vc and p are fixed via (3.19a,c), all
solutions of (3.21) also solve (3.19b). Thus (v, p) can only be unique, if (3.21) has
a unique solution.

Conversely, with consistent g and α and vdf solving (3.21), by Lemma 3.30
(vdf + vc, p) solves (3.1). Since, under the assumptions made, any solution in
W(0, T ;V ;H ′) × Q to the ADAE (3.1) has a representation as given in Lemma
3.30, uniqueness is given if

P[H′
df
|H′

c
]ẇ − P[H′

df
|H′

c
]A(w − J−2 g) = P[H′

df
|H′

c
][f + d

dt (J−2 g)],

w(0) = αdf , (3.22)
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determines a unique w ∈ W(0, T ;Vdf , V
′). We consider solutions inW(0, T ;V ;H ′),

for which Equations (3.22) and (3.21) are the same, cf. Lemma 3.24, and, thus,
unique solvability of (3.21) implies unique solvability of the ADAE (3.1). �

Equation (3.21) is formulated on V →֒ H →֒ V ′ but – under Assumption 3.8 –
defines solutions in Vdf with derivatives in H′df

∼= j′(Hdf). Thus, we can consider
(3.21) on the Gelfand triple Vdf →֒ Hdf →֒ (Vdf)

′, cf. Lemma 3.18 stating the dense-
ness of the embeddings, and use standard results to establish sufficient conditions
for the existence of solutions in terms of properties of the operator

A0(·) := A(· − J−2 g) : Vdf → (Vdf)
′. (3.23)

For later reference for spatial semi-discretization via Galerkin schemes, we state
an existence result that bases on possible semi-coerciveness of A0. This fits the weak
formulation of the Navier-Stokes Equation. Other results that prove existence of
solution under different conditions are discussed at the end of this section in Remark
3.39.

Theorem 3.38 ([133], Thm. 8.27). Let Vdf →֒ Hdf →֒ (Vdf)
′ be a Gelfand triple

and let −A0 : [0, T ] × Vdf → (Vdf)
′ be a Carathéodory mapping, be semi-coercive,

i.e. there is c0 > 0, c1 ∈ Lp′

(0, T ), and c2 ∈ L1(0, T ) such that for all v ∈ Vdf it
holds that

−
〈

A0(t, v), v
〉

(Vdf)′,Vdf

≥ c0|v|pV − c1(t)|v|V − c2(t)‖v‖2
Hdf

, (3.24)

and satisfy the following growth condition: there is γ ∈ Lp′

([0, T ]) and c : R → R

increasing, so that

‖A0(t, v)‖(Vdf)′ ≤ c(‖v‖H)(γ(t) + ‖v‖p−1
V ),

for all v ∈ Vdf and almost all t ∈ (0, T ), and for a 1 ≤ p < ∞ and p′ such that
1
p + 1

p′ = 1. Let −A0(t, ·) : Vdf → (Vdf)
′ be pseudomonotone, see Definition 2.17,

for almost all t ∈ (0, T ].
Then, there is a solution u ∈ W1,p,p′

(0, T ;Vdf; (Vdf)
′) to

u̇(t)−A0(t, u(t)) = fdf(t), for a.a. t ∈ (0, T ), u(0) = a0, (3.25)

for any fdf ∈ Lp′

(0, T ; (Vdf)
′) and a0 ∈ Hdf.

If A0 fulfills Assumption 3.8 on Vdf →֒ Hdf , then a solution to (3.25), with
fdf = P[H′

df
|H′

c
]f ∈ H ′df ⊂ (Hdf)

′ and p = p′ = 2, also solves (3.21), as by Corollary
3.21, a function w ∈ W(0, T ;Vdf ; (Hdf)

′) can be identified with a function w̃ ∈
W(0, T ;Vdf ;H

′
df).

Remark 3.39. Theorem 3.38 establishes existence of solutions to the nonlinear ab-
stract ODE (3.25) via semi-coerciveness and bounded growth of the involved op-
erator A0. Existence of solutions can also be proved if, among other conditions,
A0 is a sum of a monotone and a strongly continuous operator [40, Thm. 8.4.2].
Unique solvability is proved for A0 monotone, coercive, and hemicontinuous [162,
Thm. 30A] or radially continuous [45, Thm. VI.1.1].

Remark 3.40. Except from Theorem 3.38, and the statements that an initial con-
dition for v must be well-defined, see Section 3.1, all results in this Section 3 are
independent of the degree of Bochner integrability of the functions. All results hold
for candidate solutions v ∈ W1;p,q(0, T ;V ;H ′), for a 1 ≤ p, q < ∞, a right-hand
side f ∈ Lq(0, T ;H ′), and Equation (3.1a) posed in Lq(0, T ;V ′). In order to apply
Theorem 3.38, one can consider solutions in W1;p,p′

(0, T ;V, V ′) with 1 ≤ p ≤ ∞, p′

such that 1
p + 1

p′ = 1, and suitable right hand sides.
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3.5. Application to the Navier-Stokes Equation. In this section we show the
applicability of the results of Section 3 to the weak formulation of the Navier-Stokes
Equation

v̇ + (v ⊗∇)v − div(ν∇v) + grad p = f in (0, T )× Ω, (3.26a)

div v = 0 in (0, T ]× Ω, (3.26b)

v
∣

∣

(0,T )×∂Ω
= 0 and v

∣

∣

{0}×Ω
= α, (3.26c)

modelling the evolution of the velocities v ∈
(

(0, T ]×Ω→ Rd
)

, d ∈ {2, 3}, and the
pressure p ∈

(

(0, T ] × Ω → R
)

of a flow in a domain Ω ⊂ Rd for a time interval
(0, T ].

We will assume that Ω and its boundary are regular, i.e. they fulfill Assumption
2.10.

The standard weak formulation, as derived e.g. in [49, 103, 143], formulates
(3.26) as Problem 3.1(NSE). In particular, we have that

V : = [W 1,2
0 (Ω)]d :=

{

v ∈ [W 1,2(Ω)]d : v
∣

∣

∂Ω
= 0

}

,

H : = [L2(Ω)]d,

and

QH : = L2(Ω)/R.

Because of v ∈ V being zero at the boundary, we can define J2 := −div : V → Q′H
and J ′1 – representing grad in (3.26) – via J ′1 = J ′2 using

〈

J̄1
′
q, w

〉

:= −
∫

Ω

q · divw dω, for q ∈ QH and w ∈ V. (3.27)

We will use the short notation J ′1 = −J ′2 =: ∇, with ∇ being the formal vector of
partial derivatives as introduced in Section 2.4. Note, that the formal notation ∇
has to be interpreted with respect to the domains of definition.

To apply the decoupling of Lemma 3.30, we introduce Q := W 1,2(Ω)/R and show
that with this choice Q →֒ QH and that J2 = −∇′ and J ′1 = ∇ fulfill Assumptions
3.5 and 3.13. To establish also Assumption 3.8, we give sufficient conditions for the
additional regularity of solutions of weak formulations of (3.26).

The quotient space W 1,2(Ω)/R is the space of equivalence classes [q] ⊂W 1,2(Ω)
defined as q1, q2 ∈ [q], if q1 − q2 ∈ R. Considering the norm ‖[q]‖W 1,2(Ω)/R :=
infq∈[q]‖q‖W 1,2(Ω), it is a Banach space, see e.g. [122, Ch. 1.1.7]. Writing [q] = q0+R

for some q0 ∈ [q], we have that ‖[q]‖W 1,2(Ω)/R = infc∈R‖q0 + c‖W 1,2(Ω).

Proposition 3.41. The space W 1,2(Ω)/R is continuously and densely embedded
in L2(Ω)/R and L2(Ω)/R is a Hilbert space.

Proof. The norm in L2(Ω)/R is defined as ‖[q]‖L2(Ω)/R := infq∈[q]‖q‖L2(Ω). Since
W 1,2(Ω) →֒ L2(Ω), we have that the injection I : W 1,2(Ω)/R → L2(Ω)/R is con-
tinuous. Next, we show that W 1,2(Ω)/R is dense in L2(Ω). Viewing R as a
closed subspace of L2(Ω) one finds that the Hilbert space R⊥ = {q ∈ L2(Ω) :
∫

Ω
q dω = 0} is rendered isometrically isomorph to L2(Ω)/R by the isomorphism

T : R⊥ → L2(Ω)/R : q 7→ q + R. Thus, any [q] ∈ L2(Ω)/R can be identified with a
unique L2(Ω) ∋ q0 = T−1[q]. Since W 1,2(Ω) is dense in L2(Ω), there is a sequence
{q0,n}n∈N ∈W 1,2(Ω) that converges to q0 in L2(Ω). Then, the sequence {[q0,n]}n∈N
approaches [q] ∈ L2(Ω)/R, since infc∈R‖q0,n − q0 + c‖L2(Ω) ≤ ‖q0,n − q0‖L2(Ω) → 0

as n → ∞. Furthermore, L2(Ω)/R can be equipped with the scalar product
(

T−1·, T−1·
)

L2(Ω)
, which is taking the L2(Ω) scalar-product of the unique rep-

resentatives of the equivalence classes that have a zero mean. �
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We will write q ∈W 1,2(Ω)/R instead of [q].
So, we can define the Gelfand triple

Q := W 1,2(Ω)/R →֒ QH := L2(Ω)/R →֒ (W 1,2(Ω)/R)′ = Q′ (3.28)

to weakly formulate the divergence constraints (3.26). For the weak formulation of
the differential part (3.26a), we use the standard Gelfand triple

V := [W 1,2
0 (Ω)]d →֒ H := [L2(Ω)]d →֒ [W 1,2

0 (Ω)′]d = V ′.

With the assumption of a regular boundary of Ω, we have that W 1,2(Ω)
c→֒ L2(Ω)

and that there exist c1, c2 > 0, such that

c1‖q‖W 1,2(Ω)/R ≤ ‖∇q‖[L2(Ω)]d ≤ c2‖q‖W 1,2(Ω)/R, for all q ∈W 1,2(Ω)/R, (3.29)

i.e. on W 1,2(Ω)/R, the norms ‖·‖W 1,2(Ω)/R and ‖∇·‖[L2(Ω)]d are equivalent [122,
Thm. II.7.2].

This implies that ∇′ : [W 1,2
0 (Ω)]d ⊂ [L2(Ω)]d → (W 1,2(Ω)/R)′ is bounded. Hav-

ing this, we can establish Assumption 3.5(a), stating that

Proposition 3.42. The closure of ∇ : [W 1,2
0 (Ω)]d ⊂ [L2(Ω)]d → (W 1,2(Ω)/R)′,

∇′ : [L2(Ω)]d → (W 1,2(Ω)/R)′ (3.30)

is surjective, i.e. its dual ∇ : W 1,2(Ω)/R→ [L2(Ω)]d is a homeomorphism onto its
range.

Proof. By (3.29) one has that∇ is bounded from below, what makes it injective. By
linearity and boundedness from below, it follows that the preimage of any Cauchy
sequence in the image of ∇ is a convergent sequence in W 1,2(Ω)/R. Thus, by
continuity, we have that the range of ∇ also contains the limits of the sequences
and, thus, is closed. �

Remark 3.43. With the choice J̄1 = −J̄2 = ∇, we get that also part (b) of Assump-
tion 3.5 holds, cf. Remark 3.22.

Since the definition of weak derivatives given in Section 2.4 requires the derivative
to be in L1

loc(Ω), in this setup, we cannot simply write ∇′ = −div. However, for
v ∈ [W 1,2

0 (Ω)]d and q ∈ W 1,2(Ω)/R, by Green’s Formula [122, Thm. III.1.1], one
has that

∫

Ω

q div v dω =

∫

∂Ω

qv · ~n dσ −
∫

Ω

∇q · v dω. (3.31)

This implies that ∇′v = −div v, for v ∈ [W 1,2
0 (Ω)]d, as v · ~n = 0 ∈ L2(∂Ω), where

~n is the outer normal vector of ∂Ω.
By continuity arguments, Green’s formula (3.31) can be extended to functions

in W div,2(Ω) := {v ∈ [L2(Ω)]d : div v ∈ L2(Ω)}. Also, one can continuously extend
the domain of definition of the mapping v → v · ~n ∈ L2(∂Ω)|∂Ω to W div,2(Ω), see
[49, Thms. I.2.5-6].

Thus, the space Hdf := {v ∈ [L2(Ω)]d : div v = 0 and ~n ·v|∂Ω= 0} is well defined.
Its orthogonal complement is given by Hc := j im J ′ = im∇, with ∇ as defined in
(3.30), cf., e.g., [49, Thm. I.2.7]. Since Hdf = ker J ′ = ker∇′, cf. [54, Lem. 4.4],
these spaces set up the splitting of H = Hdf ⊕Hc as established by Lemma 3.6.

We can call on a classical result on strong solutions of the Navier-Stokes Equa-
tion:

Proposition 3.44 ([140], Lems. 25.1,2). Consider the setup of Problem 3.1(NSE).
Let Vdf be the kernel of J2 = ∇′ and Hdf be the kernel of J̄2 = ∇′. If fdf ∈
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L2(0, T ;Hdf) and α ∈ Vdf, then there exists 0 < Tc ≤ T , and a unique v ∈
L2(0, Tc;Vdf ∩W 2,2(Ω)) ∩ C([0, Tc];Vdf) with v̇ ∈ L2(0, Tc;Vdf) that fulfills

v̇(t)−A(t, v(t)) = fdf(t) in (Vdf)
′, a.e. in (0, T ),

v(0) = α in H.

If the spatial dimension d = 2, then Tc = T .

Application to our particular setup gives sufficient conditions for Assumption
3.8.

Proposition 3.45. Consider Problem 3.1(NSE). Then

(a) Assumption 3.13 holds.
(b) If, in addition, Q is chosen as W 1,2(Ω)/R ⊂ QH , then Assumption 3.5 is

fulfilled.

Additionally,

(c) if T is sufficiently small, f ∈ L2(0, T ;H ′) and α ∈ Vdf := kerJ2 are suffi-
cient for Assumption 3.8 to hold.

Proof. The existence of the splitting of the variable space, i.e. Assumption 3.13,
follows from ∇′ : W 1,2

0 (Ω) → L2(Ω)/R fulfilling the inf-sup condition [103, Prop.
4.5] and W 1,2

0 (Ω) being a Hilbert space, cf. Remarks 3.16 and 3.14. Part (b)
follows from Proposition 3.42 and Remark 3.43. Part (c) follows from Proposition
3.44 as follows. Given f ∈ L2(0, T ;H ′), by (b) we can consider the components
fdf ∈ L2(0, T ;H ′df), that defines a vdf ∈ L2(0, T ;Vdf ∩W 2,2(Ω)), and the remainder
fc = f − fdf . Since with vdf(t) ∈ V ∩ W 2,2(Ω), it holds that A(v(t)) is in H ′

for almost all t ∈ (0, T ), we can similarly split A(v(t)) into a part in H ′df and the
remainder Ac(v(t)). By (a), for almost all t ∈ (0, T ), there exists a unique p(t) ∈ Q,
so that −J ′1p(t) = Ac(v(t)) + fc(t) ∈ H ′. There can be no other solution, since by
homogeneity of (3.6b), any solution v to must lie in the kernel of J2 and is thus
uniquely defined by Proposition 3.44. �

Thus, if the assumptions of Proposition 3.45 hold, then the decoupling of Lemma
3.30 and the solvability results of Theorem 3.37 apply for the weak formulation of
the Navier-Stokes Equation as given in Problem 3.1(NSE).

By now, we have only addressed space regularity of the problem. If the de-
coupling is possible, the necessary time regularity of the data, that give e.g. v ∈
W(0, T ;V ;H ′), can be read off from Equations (3.19). In particular for the differ-
ential variables, time regularity depends on the nonlinear operator A, specifically,
on A0 as defined in (3.23). In the case of d = 3 in the Navier-Stokes Equation, one
has

A0 : L2(0, T ;Vdf) ∩ L∞(0, T ;Hdf)→ L4/3(0, T ; (Vdf)
′),

see e.g. [143, Thm. III.3.3]. Accordingly, recalling (3.19), v̇ and p in (3.26) are
not square integrable in time. This is different from d = 2, where A0 maps into
L2(0, T ;V ′), see [143, Lem. III.3.4]. In the linear case this regularity follows from
the boundedness of A : V → V ′.

Accordingly, the formulation of the optimal control problem and particularly
the adjoint ADAE in three spatial dimensions will require λ̇v ∈ L4(0, T ;H ′), see
Remarks 3.40 and 6.19.
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3.6. Application to the Maxwell Equation. As a further application example,
in this section, we briefly illustrate that the methods developed in the beginning of
the current section also apply to a class of equations that model electrodynamical
phenomena.

In a time interval (0, T ) and on a bounded domain Ω ∈ Rd, d ∈ {2, 3}, we
consider the Maxwell Equation

ǫĖ + σE − curlH = j, (3.32a)

µḢ + curlE = 0, (3.32b)

div(ǫE) = ρ, (3.32c)

div(µH) = 0, (3.32d)

describing the coupled time evolution of an electric field density E and the coupled
magnetic field intensity H for a given current j and a given charge density ρ. The
material parameters ǫ, µ, and σ represent the dielectric constant, the magnetic
permeability, and the conductivity, respectively. See [124] for the basic principles of
Maxwell equations.

We complete equations (3.32) by initial conditions

E
∣

∣

{0}×Ω
= E0 and H

∣

∣

{0}×Ω
= H0 (3.33)

and boundary conditions that model a perfectly conducting boundary, cf. [120, Ch.
1],

n× E
∣

∣

(0,T )×∂Ω
= 0 and n ·H

∣

∣

(0,T )×∂Ω
= 0, (3.34)

where n is the outer normal to ∂Ω.
Typically, the applied charge density fulfills the charge conservation law

ρ̇+ div(σE − j) = 0 in (0, T )× Ω.

In this case, using the identity div curl = 0 that holds for smooth vector fields [120,
App. B], one can show that for consistent initial values, the algebraic relations
(3.32c) and (3.32d) are a-priori fulfilled for all time, cf. [74]. For this reason, in the
analytical and numerical analysis of the Maxwell Equation, the constraint for the
divergence of the magnetic and the electric field is typically omitted [74, 104, 119,
120].

However, in recent publications [30, 158] the enforcement of the divergence con-
straint by means of an Lagrange multiplier has been proven beneficial for the nu-
merical approximation. We will show, how the results of Section 3 apply to the
part of (3.32) that constitutes the magnetic field H and comment on a possible
treatment of the part that defines E.

We introduce the following spaces

W curl,2(Ω) : = {v ∈ [L2(Ω)]d : curl v ∈ [L2(Ω)]d} and

W div,2(Ω) : = {v ∈ [L2(Ω)]d : div v ∈ [L2(Ω)]d}
that are complete with the norms ‖·‖W curl,2(Ω) := ‖·‖[L2(Ω)]d + ‖curl ·‖[L2(Ω)]d and
‖·‖W div,2(Ω) := ‖·‖[L2(Ω)]d +‖div ·‖L2(Ω), cf. [120, Ch. 3.5]. Since the trace operator
v 7→ n · v|∂Ω : W div,2(Ω)→ H−1/2(∂Ω) is well defined, one can use

W div,2
0 (Ω) = {v ∈ [L2(Ω)]d : div v ∈ [L2(Ω)]d, n · v|∂Ω= 0}

and

W curl,2
0 (Ω) = {v ∈ [L2(Ω)]d : div v ∈ [L2(Ω)]d, n× v|∂Ω= 0}

to define the space where the magnetic and electric fields are sought in:

Vt := W curl,2(Ω) ∩W div,2
0 (Ω) and Vn := W curl,2(Ω) ∩W curl,2

0 (Ω), (3.35)
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cf. [120, Ch. 3.8]. It holds that Vt →֒ [L2(Ω)]d, see [120, Cor. 3.49]. With
H := [L2(Ω)]d, we can consider the Gelfand triple

Vt →֒ [L2(Ω)]d := H ∼= H ′ →֒ (Vt)
′.

For the modelling of the divergence constraint (3.32d) we use the same evolution
triple 3.28 as for the Navier-Stokes Equation

Q := W 1,2(Ω)/R →֒ QH := L2(Ω)/R →֒ (W 1,2(Ω)/R)′ = Q′. (3.36)

Because of the zero normal component of functions in Vt, we can define the diver-
gence ∇′ : Vt → QH similarly to ∇′ : V → QH , cf. (3.27). By definition of Vt, for
v ∈ Vt, we have ∇′v ∈ L2(Ω), and, thus, also ∇′v ∈ L2(Ω)/R is well-defined. With
this definition of the operator ∇′ : Vt → QH and Vt as defined in (3.35), we state
the following weak formulation for the time-dependent magnetic field h:

Problem 3.46. Let T > 0 and Ω ⊂ Rd, d ∈ {2, 3}, a domain with a regular
boundary. For given e ∈ L2(0, T ;Vn) and h0 ∈ Vt, find h ∈ L2(0, T ;Vt) and
φ ∈ L2(0, T ;Q), such that

ḣ(t) + curl e(t)−∇φ(t) = 0 in (Vt)
′, a.e. in (0, T ), (3.37a)

∇′h = 0 in (L2(Ω)/R)′, a.e. in (0, T ), (3.37b)

h(0) = h0 in Vt, (3.37c)

holds in the sense described in Section 3.1.

The magnetic permeability µ is a material constant. Thus, it is assumed to
be piecewise constant across subdomains [120, Ch. 4.2]. Accordingly, for a single
domain, one can set µ ≡ 1 as we did in (3.37a).

We will show that in the continuous case, in (3.37a), the multiplier φ will be
zero, so that (3.37) is a weak formulation of (3.32b)-(3.32d).

We show that the spaces and operators used in Problem 3.46 fulfill Assumptions
3.5 and 3.13, i.e. the divergence operator and its extension allow for splitting of the
solution and the equations. In a second step, we show that Assumption 3.8 holds,
i.e. Equation (3.37a) is posed in H ′ rather then in (Vt)

′ ⊃ H ′. In summary, we
prove that we can apply Theorem 3.37 to split the equation (3.37).

Proposition 3.47. Consider Vt as defined in (3.35) for a smooth domain Ω. The
divergence operator ∇′ : Vt → (L2(Ω)/R)′ has a bounded right inverse.

Proof. Since ∇′ : [W 1,2
0 (Ω)]d → (L2(Ω)/R)′ fulfills an inf-sup condition [103, Prop.

4.5], it fulfills the inf-sup condition if one extends the considered space to Vt ⊃
[W 1,2

0 (Ω)]d. Since the kernel of ∇′ : Vt → (L2(Ω)/R)′ is closed, the operator is
bounded and the claim follows from Remark 3.16. �

Since Vt is a Hilbert space, ∇′ : Vt → QH fulfills Assumption 3.13. The extension
∇ : H := [L2(Ω)]d → (W 1,2(Ω)/R)′ is the same operator as the one considered in
Proposition 3.42 and, thus, also Assumption 3.5 is fulfilled.

In particular, we can split H = [L2(Ω)]d and there is projection P[] : H → H

onto the kernel of ∇′ with P[]j∇ = 0 as defined by virtue of Lemma 3.6. For
e ∈ L2(0, T ;Vn) and φ ∈ L2(0, T ;QH), we obtain that a solution h to (3.37) will be
in the kernel of ∇′ and thus of ∇′ for almost all t ∈ (0, T ).

Since curl maps Vn into the kernel of ∇, cf. [120, Eq. 3.59], we find that for any
w ∈ Vt, for any φ ∈ C∞0 (0, T ), and for any sequence {qn}n∈N ⊂ L2(0, T ;Q), with
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qn → π in L2(0, T ;QH), by the symmetry of P[] it holds that
∫ T

0

(

v(t),∇π(t)
)

H
φ(t) dt =

lim
n→∞

∫ T

0

(

v(t),∇qn(t)
)

H
φ(t) dt =

∫ T

0

(

[I − P[]] curl e(t), w
)

H
φ(t) dt−

∫ T

0

(

[I − P[]]h(t), w
)

H
φ̇(t) dt = 0.

Thus, at a solution, one has that ∇π = 0. Consequently, Problem 3.46 is indeed
a consistent weak formulation of (3.32b) and (3.32c).

Another immediate consequence of ∇π = 0 is that a solution h has its time de-
rivative ḣ ∈ L2(0, T ;H) so that Assumption 3.8 is fulfilled. By virtue of Proposition
3.47 and Proposition 3.42, the formulation of Problem 3.46 meets all assumptions
for the application of Theorem 3.37.

Remark 3.48. Since in Problem 3.46, eventually ∇π will be zero, in the first place,
Theorem 3.37 recovers the known fact that the divergence free constraint (3.32d),
and in the same way (3.32c), is redundant in theory. Nevertheless, the splitting
of the infinite dimensional problem, gives a base for the convergence analysis of
spatial discretization where the solution is not divergence free a priori and where
the constraint is enforced in a discrete sense.

Remark 3.49. For the treatment of the equations for the electric field e one has
to consider the tangential boundary conditions on n× e|∂Ω in the definition of the
divergence and its dual. The definition of ∇′ : [L2(Ω)]d → (W 1,2

0 (Ω))′ is possible via
Green’s formula, cf. (3.31), and gives an operator that fulfills an inf-sup condition,
cf. [158, Eqn. 3.13] which is readily extended to [L2(Ω)]d. By Remark 3.16, in the
considered setting, the inf-sup condition is equivalent to Assumption 3.13.

However, the definition of ∇′ on the space Vt is unclear. Following the derivation
for the Navier-Stokes Equation in Section 3.5 and for the magnetic field in the
current section, the domain is to be assumed as a subset of L2(Ω). Then, however,
a definition via Green’s formula (3.31) is not possible since it does not respect the
tangential values of e. This is not a problem for ∇ that maps into (W 1,2

0 (Ω))′ where
a zero trace of the elements of the dual space is well defined.
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4. Semi Discretization of the State Equations

In this section we investigate finite-dimensional approximations to the abstract
DAEs as defined in Problem 3.1. The approximations are semi-discrete as the time
parameter t ∈ (0, T ) remains continuous. Having in mind finite element schemes,
we tend to talk of spatial semi-discretizations here, although the used Galerkin
approximations are more general.

The approach of discretizing the spatial variable and solving sequences of DAEs
in the time variable is commonly referred to as method of lines. The other approach
- to discretize the time and to solve a sequence of unsteady problems in space - is
often called Rothe’s method, see [133] for general results and [39] for results on the
Navier-Stokes Equation.

We will consider separate discretizations of V and Q via sequences of finite-
dimensional subspaces {Vk}k∈N and {Qk}k∈N. This so called mixed Galerkin ap-
proach leads to a standard Galerkin scheme for V ×Q but an external approximation
to Vdf = kerJ2, i.e. Vkdf ( Vdf , where Vkdf is the finite-dimensional approximation
to Vdf . An internal approximation of Vdf , such that a solution vk to the semi-
discrete equations will always fulfill J2vk = 0, via spaces that a priori fulfill the
algebraic constraint, is in general impractical [50, p. 267] and intrinsically unstable
in the approximation of the algebraic variables [7].

We start by formulating a decoupling of the discrete equations that – in the same
way as for the continuous equations – defines separate equations for the differential
vkdf and algebraic variables vkc and pk.

To show convergence of the discrete approximations to a solution of the contin-
uous problem, we will restrict our analysis to the symmetric case of Problem 3.1,
where J1 = J2. We will apply the theory of external approximation schemes, see
[142] for an introduction, in combination with results on standard abstract evolu-
tion equations [133] to show that the discrete solutions vkdf converge to solutions
vdf of the continuous equation (3.21), when k → ∞. We will use the uniform
boundedness of the decoupling operators to conclude that also the associated vkc

and pk converge to vc and p solving the continuous equations (3.19a,c). Finally,
from Theorem 3.37 and a discrete counterpart, we will infer that the sequence of
solutions (vk, pk) converges to (v, p) solving the continuous problem (3.1).

We point out that the external approximation is a nonconforming scheme as
defined, e.g., in [53]. In most cases, and in particular in the realm of computational
fluid dynamics [150], nonconforming relates to the case where the trial functions
are not part of the solution space in terms of regularity as, for example, in the
approximation of smooth solutions via discontinuous Galerkin schemes [66]. This
is different to our case, where the discrete solutions are not included in the actual
solution space, because they do not fulfill an algebraic constraint. Thus, we can
rely on the theory of external approximations to establish existence of converging
sequences and we can use the norms of the solution space to measure the conver-
gence.

4.1. Galerkin Approximation. We start by defining a general Galerkin scheme
and related notions and state the semi-discretized system. Having assumed the
existence of a Schauder basis of the approximated space, we formalize the approx-
imation properties via projectors.

We define the abstract Galerkin approximation property:
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Definition 4.1. A sequence of finite-dimensional subspaces {Wk}k∈N of a Banach
space W fulfills the abstract Galerkin approximation property, if

W0 ⊂W1 ⊂ · · · ⊂W and
⋃

k∈N
Wk is dense in W. (4.1)

In view of approximating solutions in W in a subspace Wk, we will refer to a
sequence {Wk}k∈N as approximation scheme. If the sequence fulfills (4.1), one has

lim
k→∞

inf
vk∈Wk

‖v − vk‖W = 0, (4.2)

for all v ∈W , and we will call it a Galerkin scheme, cf. [40, Def. 4.1].
We give sufficient conditions for the existence of these approximation schemes

and accompanying projectors that project from W onto the subspace Wk.

Lemma 4.2 ([40], Lem. 4.1.2). If W is a separable Banach space, then there exists
a sequence {Wk}k∈N that has the abstract Galerkin approximation property (4.1).

In view of establishing the existence of a uniformly bounded projection onto the
subspaces, we state a result that holds for spaces W with a Schauder basis.

Definition 4.3 (cf. [46], Def. 7.18). A normed space W has a Schauder basis, if
there exists a countable subset {φi}i∈N ⊂ W , such that for every element w ∈ W
there exists a unique sequence of scalars {si}i∈N with

w =
∞

∑

i=0

siφi. (4.3)

Lemma 4.4. Let W be a Banach space with a Schauder basis {φi}i∈N. For k ∈ N,
define Wk := span{φ0, · · · , φk} and P[Wk|·] : W →W via

P[Wk|·] : w 7→
k

∑

i=0

siφi (4.4)

making use of the representation (4.3). Then

(a) {Wk′}k′∈N fulfill (4.1),
(b) Pk : W → W is a projection with PkW = Wk and ‖P[Wk|·]‖L(W,W ) is

bounded independently of k, and
(c) for all w ∈W , ‖w − Pk′w‖W → 0 as k′ →∞.

Proof. The approximation property (4.1) of {Wk}k∈N follows from the definition
of Wk as the span of the truncated Schauder basis. The projection property and
uniform boundedness of P[Wk|·] is proven in [46, Thm. 7.19]. By (4.3) the series
∑∞

i=0 siφi converges in the norm of W so that 0 = limk′→∞‖w −
∑k

i=0 siφi‖W =
limk′→∞‖w − Pk′w‖W . �

Since V and Q, as introduced in Problem 3.1 and Assumption 3.5, are separable,
we can assume the existence of sequences of finite-dimensional subspaces {Vk}k∈N
and {Qk}k∈N that fulfill (4.1). There are separable Banach spaces, that do not
have a Schauder basis, but all commonly used Banach spaces, as the Lp-spaces,
1 < p <∞, do have such a basis, see [25, p. 146] and the references provided there.
Thus, the following assumption on the approximation schemes of V and Q is not a
severe restriction.

Assumption 4.5. The approximation schemes {Vk}k∈N, {Qk}k∈N that are used to
approximate the Banach spaces V , Q, are chosen such, that for every k ∈ N, there
exists a projector P[Vk|·] : V → V with P[Vk|·]V = Vk bounded independently of k
and ‖v − Pk′v‖V → 0, as k′ →∞.
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If W is a Hilbert space, then every subspace Wk comes with an orthogonal
projection which has always norm 1. In the general separable Banach space, one
can prove that there exists a projection that is at least bounded for every k:

Proposition 4.6. Given a dk dimensional subspace Wk of a Banach space W .
Then there exists a bounded projection P[Wk|·] : W →W with P[Wk|·]W = Wk.

Proof. The space Wk is dk-dimensional. Thus, we can take a basis of normal-
ized vectors e1, · · · , edk

and define functionals fj : Wk → R via fj(ei) = δij ,
i, j = 1, · · · , dk. The functionals fj have norm ‖fj‖W ′

k
= 1 and, by the Hahn-

Banach Theorem as stated in [83, Thm. III.1.21], extend to functionals in W ′

of the same norm. Thus, we can define the projection P[Wk|·] : W → W via

P[Wk|·]v =
∑dk

i=1 fi(v)ei that is bounded by the dimension dk, as can be seen from

‖P[Wk|·]‖W ≤
∑dk

i=1‖fi‖W ′‖v‖W ‖ei‖W ≤ dk‖v‖W . �

We will refer to k as the discretization parameter. A fixed k that realizes a
finite-dimensional approximation to Problem 3.1 we will call discretization level.

In finite dimensions all norms are equivalent. Thus, at one discretization level,
one may identify, e.g., Hk and Vk. However, in view of asymptotic results for
k →∞, we will always distinguish between Hk and Vk and Qk and QH k. In par-
ticular, if we assume an fk in Hk for all k ∈ N, this will mean that fk is bounded
in H independently of k.

Noting that Hk := Vk
‖·‖H is a closed subspace of H, we find (Hk)′ ∼= j′(Hk) =:

H ′k, cf. Corollary 3.21. In the same way, we define QH k := Qk
‖·‖QH and identify

(QH k)′ ∼= Q′H k := j′q(QH k) →֒ (Qk)′. Thus, we can define the discrete Gelfand
triples

Vk →֒ Hk
∼= H ′k →֒ (Vk)′ and Qk →֒ QH k

∼= Q′H k →֒ (Qk)′, (4.5)

with embedding operators that are bounded independently of k.
As in the infinite-dimensional case, there will be necessary conditions for the

consistency of the initial values in the discrete approximations. We will characterize
them in the end of this section.

We refer to infinite-dimensional formulation given in Problem 3.1 as continuous
problem and define the discrete problem as follows:

Problem 4.7. Consider the setup of the continuous Problem 3.1 and let Q ⊂ QH

be as in Assumption 3.5. Let the approximation schemes {Vk′}k′∈N, {Qk′}k′∈N to
V , Q fulfill (4.1). Let k ∈ N and consider the discrete Gelfand triples (4.5). Let
the finite-dimensional approximations fk ∈ L2(0, T ; (Vk)′) and gk ∈ L2(0, T ;Q′H k)
be the restriction of f(t) and g(t) to Vk and QH k, respectively, and let αk ∈ Hk be
an approximation of α ∈ H.

Find vk ∈ W(0, T ;Vk, (Vk)′) and pk ∈ L2(0, T ;Qk) that fulfill

v̇k(t)−Ak(t, vk(t))− J ′1kpk(t) = fk(t) in (Vk)′, a.e. in (0, T ), (4.6a)

−J2kvk(t) = gk(t) in Q′H k, a.e. in (0, T ), (4.6b)

vk(0) = αk in Hk, (4.6c)

with J2k : Vk → Q′H k defined via
〈

J2kvk, qk

〉

:=
〈

J2vk, qk

〉

for vk ∈ Vk and for all qk ∈ QH k,

with J ′1k : QH k → (Vk)′ defined via
〈

J ′1kqk, vk

〉

:=
〈

J ′1qk, vk

〉

for qk ∈ QH k and for all vk ∈ Vk,

and with Ak(t, ·) : Vk → (Vk)′ : vk 7→ A(t, vk)
∣

∣

Vk
.
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4.2. Decomposition of the Discrete Solutions. The existence of a decompo-
sition of the continuous solution space was ensured by Assumption 3.13. This
property of V and Q in the interplay with J2 and J1 is not necessarily taken over
by their discrete approximations. One can construct simple examples but there are
also commonly used Galerkin schemes, like the so called Q1 − P0 scheme for the
Navier-Stokes Equation, that fail to fulfill the LBB condition [38, 50]. Recall that,
in particular cases, the LBB condition (3.14) is equivalent to 3.13, cf. Remark 3.16.

Also, to ensure stability of the approximation when k goes to infinity, we need
bounds on the decomposing projections that are independent of k. Thus, we will
call on the following assumption.

Assumption 4.8. Consider Problem 3.1 and its finite-dimensional approximation
defined in Problem 4.7 with the operators J2k : Vk → Q′H k and J ′1k : QH → (Vk)′.

(a) For all k ∈ N, J2k has a bounded right inverse and J ′1k is a homeomorphism
onto its range, i.e., it has a bounded left inverse

(b) The norms of both inverses are bounded independently of k.

Remark 4.9. Assumption 4.8(b), i.e. uniformity of the bounds with respect to k, is
posed in view of asymptotic results for k →∞. To establish existence of solutions
of Problem 4.7 for a fixed k, Assumption 4.8(a) is sufficient.

We denote the right inverse of J2k by J2
−
k : Q′H k → Vk. If we assume existence

of J2
−
k (Assumption 4.8), then there exists a decomposition

Vk = Vkdf ⊕ Vkc, (4.7)

where Vkdf := kerJ2k and Vkc is the image of Q′H k under J2
−
k , cf. Lemma 3.17.

Remark 4.10. If for all k ∈ N, there exists a projection P[Vk|·] : V → V onto Vk that
is bounded independently of k, cf. Assumption 4.5, then, with Assumption 4.8, we
have that [I − J2

−
k J2k]P[Vk|·] is a projection from V onto Vkdf that is uniformly

bounded in k. If, in addition, J1 = J2, then Assumption 4.8 is equivalent to the
discrete uniform LBB condition commonly used in the literature [49, Lem. II.1.1].

Remark 4.11. If the discrete operators J1k, J2k fulfill Assumption 4.8, then their
continuous representation J1, J2 fulfill Assumption 3.13. Consider, for example,
J1
′
k : QH k → (Vk)′ being bounded from below by a constant c independent of k.

Since {Qk}k∈N fulfills (4.1) and since Q is dense in QH , for every q ∈ QH there
exists a sequence of qk ∈ Qk so that qk → q in QH . Then by

‖J ′1q‖V ′ = lim
k→∞

‖J1
′
kqk‖V ′ ≥ lim

k→∞
c‖qk‖QH

= c‖q‖QH
,

we find that also J1 is bounded from below and thus an homeomorphism onto its
range. The existence of a bounded right inverse to J2 is established within the
proof of Lemma 4.26.

In view of decoupling the equations, as it was the case for the decoupling of
the solution space, the properties (Assumption 3.5) that were the base for the
decoupling of the continuous system are not inherited by the discrete formulation.
They have to be established for the chosen discretization, cf. [49, Ch. II.1.4].
In finite dimension surjectivity and injectivity of J1k and J̄1k carry over to their
extensions. For the decoupling we will assume that ker J̄2k and j(im J̄1

′
k) split the

space. This gives a discrete version of Assumption 3.5(b). Furthermore, to ensure a
stable approximation of the algebraic variables, we assume the splitting projection
to be bounded uniformly in k.

Proposition 4.12. Consider Problem 3.1 and its discrete approximation Problem
4.7, and let Assumption 4.8 hold. Then the discrete representations J̄1

′
k : Qk → H ′k
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and J̄2k : Hk → (Qk)′ of the extensions J̄1, J̄2 : H → Q′ introduced in Assumption
3.5, defined via

〈

J̄1
′
kqk, hk

〉

H′,H
: =

〈

J̄1
′
kqk, hk

〉

H′,H
, for qk ∈ Qk and for all hk ∈ Hk, (4.8a)

and
〈

J̄2khk, qk

〉

Q′,Q
: =

〈

J̄2hk, qk

〉

Q′,Q
, for hk ∈ Hk and for all qk ∈ Qk, (4.8b)

is a homeomorphism onto its range and surjective, respectively. In particular, there
exists a constant γ1(k), such that

‖J̄1
′
kqk‖H′ ≥ γ1(k)‖qk‖Q, for all qk ∈ Qk. (4.9)

Proof. By Assumption 3.13 the operators J1k, J2k : Vk → QH k, as defined in Prob-
lem 4.7, have the stated properties. Since the considered finite-dimensional spaces
are isomorphic these properties are transferred to the extension J̄1k, J̄2k. In par-
ticular, there exists c such that ‖J1kqk‖(Vk)′ ≥ c‖qk‖QH k

, for all qk ∈ QH k, cf.
Remark 3.16, and with the constants c1(k), c2(k) from the norm equivalence of
(Vk)′ and H ′k and QH k and Qk, respectively, we have that

‖J̄1kqk‖H′
k
≥ c1(k)‖J1kqk‖Vk

′ ≥ c1(k)c‖qk‖QH k
≥ c1(k)c2(k)c‖qk‖Qk

.

Thus, we arrive at (4.9) having defined γ1(k) := c1(k)c2(k)c and having used that
the norm of the discrete spaces use the same norm as the continuous spaces. �

Assumption 4.13. Consider Problem 3.1, let Assumption 3.5 hold, and consider
J̄1k, J̄2k as defined in (4.8).

(a) There exists a constant γ2(k), such that

‖J̄2khk‖Q′ ≥ γ2(k)‖hk‖H ,

for all hk ∈ j(im J̄1
′
k).

(b) There is a constant γ such that γ1(k), γ2(k) ≥ γ > 0 for all k ∈ N, where
γ1(k) is the constant defined in (4.9).

Remark 4.14. With Proposition 4.12, Assumption 4.13(a) is the discrete version
of Assumption 3.5, cf. Corollary 3.7. Assumption 4.13(b) is posed in view of
establishing asymptotic results as k →∞.

Remark 4.15. If J̄1k = J̄2k, then Assumption 4.13 is equivalent to a discrete uniform
LBB condition, i.e. there exists a γ such that

inf
0 6=qk∈Qk

sup
0 6=hk∈Hk

〈J̄2
′
kqk, hk〉H′,H

‖qk‖Q‖hk‖H
≥ γ > 0,

cf. [49, Lem. I.4.1].

Remark 4.16. By Assumption 4.13(a), we have that

‖J̄2kjJ̄1
′
kqk‖Q′ ≥ γ2‖J̄1

′
kqk‖H′ ≥ γ2γ1‖qk‖Q,

for all qk ∈ Qk, and, thus, that Sk := J̄2kjJ̄1
′
k : Qk → (Qk)′ is invertible with

‖S−1
k ‖L((Qk)′,Qk) ≤ 1

γ1γ2
. If also Assumption 4.13(b) holds, then S−1

k is bounded
independently of k.

Lemma 4.17. Consider Problem 4.7, let J̄1
′
k, J̄2k fulfill Assumption 4.13, and

define

Lk := J̄1
′
kS
−1
k J̄2k : Hk → H ′k. (4.10)

Then one has
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Hkdf : = ker J̄2k = im[IHk
− jLk] (a)

Hkc : = im jLk = im jJ̄1
′
k, (b)

Hk = Hkdf ⊕Hkc, (c)

H ′kc : = imLkj = j′(Hkc), (d)

H ′kdf : = im[IH′
k
− Lkj] = j′(Hkdf), (e)

H ′k = H ′kdf ⊕H ′kc, (f)

where j : H ′ → H is the Riesz isomorphism.

Proof. The same arguments as in the continuous case apply, see Lemma 3.6. �

Remark 4.18. Since a finite-dimensional subspaces Wk ⊂ W of a Banach space W
is closed, its dual (Wk)′ can be identified with a subspace of W ′, cf. Lemma 3.19.
Thus, we find that the embedding operators in the discrete triples Vk →֒ Hk →֒ (Vk)′

and Qk →֒ QH k →֒ (Qk)′ are bounded independently of k.

Remark 4.19. Because for any k ∈ N, we can identify H ′k with (Vk)′, Assumption
3.8 has no meaning in finite dimensions.

By Remark 4.19, Assumptions 4.8 and 4.13 are sufficient for the application of
Lemma 3.30 in order to decouple the discrete system (4.6a,b) as follows: Every so-
lution (vk, pk) ∈ W(0, T ;Vk; (Vk)′)×L2(0, T ;Qk) of System (4.6a,b) can be written
as (vkdf + vkc, pk), where vkc ∈ L2(0, T ;Vkc) satisfies

vkc(t) = −J2
−
k gk(t), (4.11a)

where vkdf ∈ W(0, T ;Vkdf ;H
′
kdf) is a solution to

P[H′
kdf
|H′

kc
]v̇kdf(t)−

P[H′
kdf
|H′

kc
]Ak

(

t, vkdf(t)− J2
−
k gk(t)

)

= P[H′
kdf
|H′

kc
][fk(t)− d

dt (J2
−
k gk)(t)],

(4.11b)

and where pk ∈ L2(0, T ;Qk) satisfies

pk(t) + S−1
k

[

J̄2kjAk

(

t, vkdf(t)− J2
−
k gk(t)) = J̄2kjfk(t) + J̄2kj

d
dt (J2

−
k gk(t))

]

.
(4.11c)

Equations (4.11a-c) hold for almost all t ∈ (0, T ) as specified in Lemma 3.30.
Repeating the arguments of Corollary 3.31 and noting that on the discrete level,

J̄2
−
k : Q′H ⊂ Q′k → Vkc ⊂ Hk is bounded, so that ġk can be assumed in L2(0, T ;Q′k),

cf. Remark 3.29, we obtain a discrete analogue to Theorem 3.37.

Theorem 4.20. Consider Problem 4.7. Let Assumptions 4.8(a) and 4.13(a) hold,
let f ∈ L2(0, T ;V ′), g ∈ L2(0, T ;Q′), and αk ∈ Hk. Then, the semi-discretized
ADAE (4.6) has a (unique) solution (vk, pk) ∈ W(0, T ;Vk;H ′k)×Qk if and only if

ġ ∈ L2(0, T ;Q′), αk = αkdf − J̄2
−
k (0)gk(0), with αkdf ∈ Hkdf, and

ẇk − P[H′
kdf
|H′

kc
]Ak(wk − J2

−
k gk) = P[H′

kdf
|H′

kc
][fk − d

dt (J2
−
k gk)], in Vkdf,

(4.12a)

wk(0) = αkdf in H, (4.12b)

has a (unique) solution wk ∈ W(0, T ;Vkdf;H
′
kdf).



47

Proof. The proof is analogous to the continuous case for Theorem 3.37. Note, that
the restriction gk of g, has the same time regularity as g, since by assumption there
is a bounded projection onto QH k. �

4.3. Convergence of the (External) Approximation Scheme. As mentioned
in the beginning of this section, the Galerkin scheme that defines the semi-discrete
equations in Problem 4.7 leads to an external approximation of the space Vdf . In
view of proving convergence of the solutions vkdf of the discrete inherent differential
equation (4.12) to a solution vdf of the continuous inherent differential equation
(3.21), we need to establish stability and convergence properties of the external
scheme.

We will prove that any mixed Galerkin scheme, that fulfills Assumption 4.8 and,
thus, by Remark 4.10 any discrete LBB stable mixed finite element scheme, defines
a stable external approximation to the subspace Vdf of the differential variable vdf .

We follow the notation of [143].

Definition 4.21. [143, Def. I.3.2] An external approximation of a normed space
W is a set consisting of

(a) a normed space F and a linear, bounded, and injective synchronization
operator ω̄ : W → F and

(b) a family of triples {Wk, pk, rk}, in which, for each k,
- Wk is a normed space,
- pk is a linear continuous mapping of Wk into F , and
- rk is a (possibly nonlinear) mapping of W into Wk.

As an example, consider a Galerkin scheme {Vk}k∈N to a Banach space V . Then,
with ω̄ := I : V → V being the identity, with pk := I|Vdf

: Vdf → V , and with
Rk := P[Vk|·] defined as the projection of V onto Vk, we find that a general Galerkin
scheme {Vk}k∈N is included in the definition of an external scheme.

Definition 4.22. cf. [143, Def. I.3.4] An external approximation of the space W
as defined in Definition 4.21 is said to be stable, if the norm of the prolongation
operator pk ∈ L(Wk, F ) is bounded independently of k.

Definition 4.23. [143, Def. I.3.6] An external approximation of the space W as
defined in Definition 4.21 is said to be convergent

(a) if for all u ∈W ,
lim

k→∞
pkrku = ω̄u in F,

(b) and if for each sequence {vk′} of elements in Wk′ , such that pk′ converges
to some element φ weakly in F , there exists a u ∈W such that φ = ω̄u.

We show that the spaces Vkdf , k ∈ N, containing the solutions of the discrete
inherent differential equation (4.11b) define an external approximation to Vdf .

Lemma 4.24. Consider the setup of Problem 4.7 and P[Vk|·] from Proposition 4.6.
If Assumption 4.8 holds, then there exists a splitting Vk = Vkdf⊕Vkc, for all k ∈ N,
and the choice of

F : = V, (4.13a)

ω̄ : = I : V → V, (4.13b)

rk : = P[Vkdf|Vkc]P[Vk|·]
∣

∣

Vdf

: Vdf → Vkdf, (4.13c)

pk : = I : Vkdf → V (4.13d)

defines an external approximation scheme to Vdf as illustrated in Figure 2.
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Vdf V

Vkdf

ω̄

rk
pk

Figure 2. Illustration of the external approximation of Vdf via {Vkdf}k∈N.

Proof. Assumption 4.8 provides the splitting Vk = Vkdf ⊕ Vkc and the projector
P[Vkdf |Vkc] : Vk → Vk. Proposition 4.6 states the existence of P[Vk|·] : V → Vk and
Assumption 3.13 implies that P[Vk|·]

∣

∣

Vdf

is well defined. Thus, we can define rk :=

P[Vkdf |Vkc]P[Vk|·]
∣

∣

Vdf

. Since ω̄ and pk are the identity operators, they are linear,
injective, and bounded. Thus, the proposed scheme fulfills Definition 4.21. �

To prove that the external approximation scheme defined in Lemma 4.24 is
convergent, we use that J2k has a right inverse bounded uniformly in k.

Lemma 4.25. Consider the setup of Problem 4.7, assume that J2k fulfills Assump-
tion 4.8, and that {Vk}k∈N fulfills Assumption 4.5. Then the external approximation
scheme (4.13) is stable and convergent.

Proof. As pk := I is bounded independently of k, the external approximation (4.13)
is stable. To establish convergence, we need to show that parts (a) and (b) of
Definition 4.21 hold.

Ad (a):
With ω̄ and pk chosen as the identities in V , we have to show that for v ∈ Vdf ,

‖v − rkv‖V → 0 as k → ∞. Let v ∈ Vdf and consider P[Vk|·]v ∈ Vk. With
Vk = Vkdf ⊕ Vkc, we have

P[Vk|·]v = vkdf + vkc and rkv = P[Vk|·]v − vkc,

with vkdf ∈ Vkdf and vkc ∈ Vkc.
Since J2kv = 0 and J2kvkdf = 0, we have J2k[−vkc] = J2k[v − P[Vk|·]v]. By

Assumption 4.8, J2k has a uniformly bounded right inverse. This implies that
J2k|Vkc

is uniformly bounded from below by a constant γ. Thus,

‖vkc‖V ≤
1

γ
‖J2kvkc‖Q′

H k
=

1

γ
‖J2k[v−P[Vk|·]v]‖Q′

H k
≤
‖J2‖L(V,Q′

H
)

γ
‖v−P[Vk|·]v‖V ,

where we have used that on Vkc the norm of J2k is majorized by the norm of J2

since Q′H k ⊂ Q′H . Thus, we obtain that

‖v − rkv‖V ≤ ‖v − P[Vk|·]v‖V + ‖vkc‖V ≤ (1 +
‖J2‖L(V,Q′

H
)

γ
)‖v − P[Vk|·]v‖V → 0,

as k → ∞, using the approximation property of P[Vk|·] established in Assumption
4.5.

Ad (b):
Let vkdf ∈ Vkdf , for k ∈ N, and vkdf ⇀ φ ∈ F . We need to show that there exists

a vdf ∈ Vdf , such that φ = ω̄vdf = vdf . Since ω̄ is the identity, there exists v ∈ V ,
such that φ = v. We show that v ∈ Vdf , i.e. J2v = 0. Since

〈

vkdf − φ, f
〉

V,V ′ → 0,
as k →∞, for all f ∈ V ′, this convergence is in particular valid for f ∈ im J ′2 ⊂ V ′.
Since J ′2 is an homeomorphism onto its range, cf. Remark 4.11, we find that for all
q ∈ QH we have

〈

J2[vkdf − φ], q
〉

Q′
H

,QH
=

〈

vkdf − φ, J ′2q
〉

V,V ′ → 0,
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as k →∞. We show that limk→∞
〈

J2vkdf , q
〉

Q′
H

,QH
= 0 for all q ∈ QH , to get that

J2v = J2φ = 0 ∈ Q′H . As Q is dense in QH , the scheme {Qk}k∈N has property
(4.1) also with respect to QH . Thus for any q ∈ QH there exists a sequence
{q′k}k′∈N, with qk′ ∈ Qk′ , that converges to q in QH . By definition of Vdf , we have
〈

J2vkdf , qk′

〉

Q′
H

,QH
= 0 for all k′ ≤ k. Thus we obtain for given q ∈ QH that

|
〈

J2vkdf , q
〉

Q′
H

,QH
| = |

〈

J2vkdf , q−qk

〉

Q′
H

,QH
| ≤ ‖J2‖L(V,Q′

H
)‖vkdf‖V ‖q−qk‖QH

→ 0

with k →∞, since {vkdf}k∈N as a weakly convergent sequence is bounded.
�

4.4. Convergence of the Galerkin Approximations. In this section we will
establish conditions for the convergence of solutions (vk, pk) of (4.6) to (v, p) solving
(3.1).

We will separate the Galerkin approximation vk into the differential vkdf and
algebraic vkc part, see Theorem 4.20 for the discrete case.

To prove convergence of vkc := −J2
−
k gk, we will establish a continuity in the

choice of J2
−
k , which is both possible and necessary, since the right inverse is not

unique.
Then, assuming that J1 = J2, we prove weak convergence of the approximations

for the differential parts as defined in Theorems 3.37 and 4.20. Having formulated
pseudomonotonicity and semi-coerciveness conditions for the shifted nonlinear op-
erator as it results from the decoupling procedure, we will extend standard results
on (internal) Galerkin approximations to the considered setup. If the continuous
problem is uniquely solvable, we can drop the limiting factor, that the convergence
holds only for subsequences.

As a direct consequence of the stability assumptions, we will also obtain conver-
gence of the approximations of the algebraic variable pk.

We start by establishing convergence in vkc:

Lemma 4.26. Consider Problem 4.7 and let Assumption 4.8 hold. If the sequence
{gk}k∈N ⊂ W(0, T ;QH ;Q′) converges to g strongly in L2(0, T ;QH), then we can
choose J2

−
k , k ∈ N, and J−2 , such that

−J2
−
k gk =: vkc → vc := J−2 g

in the norm of L2(0, T ;V ). If, in addition, d
dt (J−2 g) ∈ L2(0, T ;H ′), then

− d
dt (J2

−
k gk) = v̇kc ⇀ v̇c = d

dt (J−2 g)

in L2(0, T ;H ′).

Proof. We start by proving that it is possible to choose J2
−
k such that they converge

to a J−2 , where J−2 is a right inverse of J2 and such that Vkc ⊂ Vk+1c ⊂ · · · ⊂ Vc.
Then the choice of J−2 as a limit of the J2

−
k will give the convergence of vkc to vc.

We will use induction and we assume that dimQk = k. The case that the growth
in dimension of Qk is not incremental can be covered by doing the corresponding
number of induction steps at once.

The proof is constructive – start with any k ∈ N.
By Assumption 4.8, there exists a right inverse J2

−
k : Q′H k → Vkc to J2k bounded

by a constant γ independent of k. Consider the next discretization level k+1. Again,
by assumption there exists a right inverse J̃2

−
k+1 : Q′H k+1 → Vk+1c of J2k+1 bounded

by the same constant. We have that J2k+1(Vkc) = Q′H k ⊂ Q′H k+1 is a k-dimensional
subspace. Thus, there exists a q ∈ Q′H k+1 such thatQ′H k+1 = J2k+1(Vkc)⊕span{q}.
Let w := J̃2

−
k+1q ∈ Vk+1. This w exists since Q′H k+1 = J2k+1(Vk+1). For q̃ ∈

Q′H k+1, written as q̃ = qk + αq, with qk ∈ Q′H k and α ∈ R, define the alternative
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right inverse J2
−
k+1 via J2

−
k+1q̃ = J2

−
k qk +αw. Since J2

−
k and J̃2

−
k+1 are bounded by

γ, also J2
−
k+1 is bounded by γ. By construction, we have that Vkc ⊂ J2

−
k+1(Vk+1c).

Set Vk+1c := J2
−
k+1(Q′H k+1) and proceed to k + 2.

With this procedure we can construct the sequences of J2
−
k and Vkc, such that

Vkc ⊂ Vk+1c ⊂ · · · . (4.14)

Next, we show that these J2
−
k converge to a right inverse of J2 : V → Q′H , so that

we can define Vc as the superspace of all Vkc.
Define J−2 : Q′H → V as follows. Let q ∈ Q′H , then there exists {qk}k∈N ⊂ Q′H ,

with qk ∈ Q′H k and qk → q, as k →∞, to give

J−2 q = lim
k→∞

J2
−
k qk (4.15)

Since J2
−
k is uniformly bounded, this limit exists and J−2 is bounded.

Now, we show that J2J2
−
k qk → q ∈ Q′H . Consider the orthogonal projection

P[Q′
H k

] : Q
′
H → Q′H onto Q′H k and that J2kwk = J2wk on QH k, for any wk ∈ Vk.

Then

lim
k→∞

‖J2J2
−
k qk‖2

Q′
H

= lim
k→∞

‖P[Q′
H k

]J2J2
−
k qk‖2

Q′
H

+ lim
k→∞

‖P[Q′
H k⊥

]J2J2
−
k qk‖2

Q′
H

= lim
k→∞

‖J2kJ2
−
k qk‖2

Q′
H

= ‖q‖2
Q′

H
(4.16)

since J2, J2
−
k , and qk are uniformly bounded and since P[Q′

H k⊥
] → 0, as k →∞.

Thus, we have that J−2 , as defined in (4.15), is a bounded right inverse to J2 : V →
Q′H and, by Lemma 3.17, we can define the splitting V = Vdf⊕Vc with Vc = im J−2 ⊃
Vkc, for all k ∈ N.

Since J2 : V → Q′H , J−2 : Q′H → Vc, and J2
−
k : Q′H k → Vkc are linear and

bounded, their extension to mappings on abstract functions J2 : L2(0, T ;V )→ QH
and J−2 : Q′H → L2(0, T ;V )c, and J2

−
k : Q′Hk → L2(0, T ;Vkc) are bounded by the

same constants. Using the same arguments as in (4.16) and that gk → g in Q′H, as
k →∞, we obtain that J2vkc = −J2J2

−
k gk → −g = J2vc in Q′H. By boundedness of

J−2 we obtain that P[Vc|Vdf ]vkc → P[Vc|Vdf ]vc in L2(0, T ;V )c. Since by construction,
for every k, Vkc ⊂ V , we also have that vkc → vc in L2(0, T ;V ), as k →∞.

Having established the convergence of vkc → vc and having assumed that v̇c ∈
L2(0, T ;H ′), we will now prove weak convergence in the derivatives. By Lemma 3.28
we have that g has a time derivative ġ ∈ L2(0, T ;Q′). That is why also its restriction
has a time derivative ġk ∈ L2(0, T ; (Qk)′). Because of the equivalence of the norms
in finite-dimensional spaces, we have that d

dt (J2
−
k gk) ∈ L2(0, T ;H ′k) ⊂ L2(0, T ;H)

for any k ∈ N. Thus, for all v ∈ H and all φ ∈ C∞0 (0, T ), we have, by the definition
of the weak derivative as in (3.7bb), that

〈

d
dt (J2

−
k gk)φ, v

〉

H′,H = −
(

J2
−
k gkφ̇, v

)

H → −
(

J−2 gφ̇, v
)

H =
〈

d
dt (J−2 g)φ, v

〉

H′,H ,

as k ∈ N, since −J2
−
k gk → −J−2 g in L2(0, T ;V ) as proven in the first part of the

lemma. As this relation holds for all φ ∈ C∞0 (0, T ), by the Fundamental Lemma of
Calculus of Variations as given, e.g., in [40, Lem. 3.1.5], the pointwise convergence
of v̇kc to v̇c is shown, i.e. for all w ∈ H,

〈

v̇kc(t), w
〉

H′,H
→

〈

v̇c(t), w
〉

H′,H
(4.17)

for almost all t ∈ (0, T ). Since, by definition, the space of simple functions in
(

(0, T ) → H
)

, namely the space of functions that are piecewise constant on mea-
surable subsets of (0, T ), is dense in L2(0, T ;H), see [133, Def. IV.1.5] and since
vc ∈ L2(0, T ;H ′), we conclude from (4.17) that v̇kc ⇀ vc in L2(0, T ;H ′). �
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Remark 4.27. The particular choice of the right inverse to J2 is needed to prove the
individual convergence of the separated parts. This should be only a theoretical
concern. In practise, at a discretization level k, the use of J2

−
k is in general not

advisable [7]. Nevertheless, the solutions vk = vkdf +vkc converge to v independent
of the choice of J2

−
k at a particular level. Thus, if required, the choice of J2

−
k can

be done with respect to, e.g., stability or efficiency issues.

Having, in theory, established convergence in the part vkc, we will now investigate
the behavior of the differential parts of the solution. The nonlinearity Ak(t, · +
vkc(t)) in the differential equation (4.11b) appears as a shifted operator, with a
shift vkc that varies for every k ∈ N. We will assume properties of the nonlinearity
in the Galerkin approximations that are uniform with respect to these shifts.

Assumption 4.28. Consider Problem 3.1(Sym) and its finite-dimensional approx-
imation defined in Problem 4.7. Assume that Assumption 4.8 holds, such that we
can define the sequence {vkc}k∈N, where vkc := −J2

−
k gk ∈ L2(0, T ;Vkc), that con-

verges to vc := −J−2 g, cf. (4.11a) and Lemma 4.26. For k ∈ N define

A0k
: L2(0, T ;V )→

(

(0, T )→ V ′
)

: v 7→ NA(v + vkc), (4.18)

via the Nemyckij map of A : (0, T )× V → V ′.
We will add the shift to the explicit dependence of A on t and write A0k

: (0, T )×
V → V ′ and A0k

(t, v(t)) ∈ V ′.
We assume that A0k

: L2(0, T ;V ) → L2(0, T ;V ′) is bounded and that it has the
following properties:

(a) Bounded Growth: There is γ ∈ L1(0, T ) and β : R → R, increasing, such
that for all v ∈ V with A0k

(t, v) ∈ H ′:
‖A0k

(t, v)‖H′ ≤ β(‖v‖H)(γ(t) + ‖v‖H), (4.19)

(b) vkc-uniform Semi-Coerciveness: There is c0 > 0, c1 ∈ L2(0, T ), and c2 ∈
L1(0, T ), such that for all v ∈ V :

〈

A0k
(t, v), v

〉

V ′,V
≥ c0‖v‖2

V − c1(t)‖v‖V − c2(t)‖v‖2
H , (4.20)

and
(c) vkc-uniform Pseudomonotonicity, cf. [133, Def. 2.1]: The operator A0k

is
bounded and, for given {uk}k∈N ⊂ L2(0, T ;V ), with uk ⇀ u ∈ L2(0, T ;V ),
if

lim sup
k→∞

〈

A0k
(uk), uk − u

〉

V′,V ≥ 0

it follows that for any w ∈ L2(0, T ;V ),
〈

A(u+ vc), u− w
〉

V′,V ≤ lim inf
k→∞

〈

A0k
(uk), uk − w

〉

V′,V . (4.21)

The assumed bounds in (a) and (b) are independent of k ∈ N and hold for almost
all t ∈ (0, T ).

Note that the notions of bounded growth, semi-coerciveness, and pseudomono-
tonicity are adjusted to the particular setup and, thus, are different from the def-
initions in [133]. For the vk-uniform pseudomonotonicity we have the following
sufficient condition:

Lemma 4.29. If A : L2(0, T ;V ) → L2(0, T ;V ′) is pseudomonotone and weakly
continuous then A0k

, as defined in (4.18), is vk-uniform pseudomonotone as defined
in (4.21).
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Proof. Consider sequences and limits uk ⇀ u and vk → v in L2(0, T ;V ). We write
A0k

(uk) as A(uk + vk). For a constant shift, i.e. vk = v, for all k ∈ N, a similar
result was proven in [133, Lem. 2.11]. By weak continuity of A we have that

lim sup
k→∞

〈

A(uk + vk), uk − u
〉

V′,V = lim sup
k→∞

〈

A(uk + vk), uk + vk − u− vk

〉

V′,V

= lim sup
k→∞

〈

A(uk + vk), uk + vk − u− v
〉

V′,V .

In fact, since the sequence A(uk + vk) ⇀ A(u + v) in L2(0, T ;V ′) and vk → v
in L2(0, T ;V ), by [161, Prop. 21.23(k)] the limit of

〈

A(uk + vk), u + vk

〉

V′,V , as

k →∞, exists and thus lim supk→∞
〈

A(uk+vk), u+vk

〉

V′,V =
〈

A(u+v), u+v
〉

V′,V =

lim supk→∞
〈

A(uk + vk), u+ v
〉

V′,V .

This means that if lim supk→∞
〈

A0k
(uk), uk−u

〉

V′,V ≥ 0, then it holds that also

lim supk→∞
〈

A(uk +vk), uk +vk−u−v
〉

V′,V ≥ 0. Thus, by the pseudomonotonicity

of A, we find that for any w ∈ L2(0, T ;V ),
〈

A(u+ v), u+ v − w
〉

V′,V ≤ lim inf
k→∞

〈

A(uk + vk), uk + vk − w
〉

V′,V ,

or
〈

A0(u), u− w
〉

V′,V ≤ lim inf
k→∞

〈

A0k
(uk), uk − w

〉

V′,V+

+ lim
k→∞

〈

A(uk + vk), vk

〉

V′,V −
〈

A(u+ v), v
〉

V′,V .

Since limk→∞
〈

A(uk + vk), vk

〉

V′,V −
〈

A(u + v), v
〉

V′,V = 0, we can conclude that
A0k

is vk-uniform pseudomonotone. �

Corollary 4.30. If A : L2(0, T ;V )→ L2(0, T ;V ′) is strongly continuous, then A0k

as defined in (4.18) is vk-uniform pseudomonotone as defined in (4.21).

Proof. Since every strongly convergence sequence is weakly convergent, strong con-
tinuity implies weak continuity. Also, strong continuity of A implies pseudomono-
tonicity of A, so that the assumptions of Lemma 4.29 are fulfilled. �

Remark 4.31. We will show convergence of the approximations from the discrete
differential equations from Theorem 4.20 only for the symmetric problem, where
J1 = J2, and, thus, J1k = J2k. The general case is not covered here since we have
not established pointwise convergence of the projections P[H′

kdf
|H′

kc
] → P[H′

df
|H′

c
], as

k →∞.
In particular, in the proof of Theorem 4.36 we call on the convergence of

〈

P[H′
kdf
|H′

kc
]fk, uk

〉

H′,H →
〈

P[H′
df
|H′

c
]f, u

〉

H′,H, as k →∞, (4.22)

given {uk}k∈N ⊂ L2(0, T ;V ), uk ∈ Vkdf for all k ∈ N, and uk ⇀ u in L2(0, T ;V ).
As a consequence of the Closed Range Theorem, see e.g. [83, Thm. IV.5.13], the

dual of P[H′
kdf
|H′

kc
] : H

′
k → H ′k is given as P ′[H′

kdf
|H′

kc
] = P[(H′

kc
)0|(H′

kdf
)0], see [83, p.

156]. If (H ′kc)0 = Hkdf and (H ′c)0 = Hdf , then we obtain the convergence in (4.22)
via

lim
k→∞

〈

P[H′
kdf
|H′

kc
]fk, uk

〉

H′,H = lim
k→∞

〈

fk, uk

〉

H′,H =
〈

f, u
〉

H′,H

=
〈

f,P[(H′
c
)0|(H′

df
)0]u

〉

H′,H

=
〈

P[H′
df
|H′

c
]f, u

〉

H′,H,

since by Lemma 3.18 it holds that Vkdf ⊂ Hkdf and Vdf ⊂ Hdf , i.e. uk and u are
already in the range of the dual projections.

The preceding remark motivates the following lemma:
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Lemma 4.32. Consider the symmetric problem 3.1(Sym), where J1 = J2, and its
finite-dimensional approximation defined in Problem 4.7. If Assumptions 4.13 and
Assumption 3.5 hold, such that H = Hdf ⊕Hc and Hk = Hkdf ⊕Hkc as defined in
Lemma 3.6 and Lemma 4.17, then

(Hkc
′)0 = Hkdf, for all k ∈ N, and (H ′c)0 = Hdf.

Proof. Since all considered spaces are closed subspaces of the reflexive space H, by
the Closed Range Theorem, see e.g. [83, Thm. IV.5.13], and by Lemma 3.6 with
J1 = J2 we have that

Hdf = ((Hdf)
0)0 = ((kerJ2)0)0 = (im J ′2)0 = (H ′c)0.

Analogous arguments hold in particular for the finite-dimensional case. �

Before we show the convergence of the discrete solutions, we state convergence in
the right hand sides that is, in particular, a necessary condition for the convergence
of the algebraic parts vkc, cf. Lemma (4.14).

Proposition 4.33. Consider Problem 4.7. For the restrictions fk and gk of f ∈
L2(0, T ;H ′) and g ∈ L2(0, T ;Q′H) onto Hk and QH k, respectively, we have that
fk → f ∈ L2(0, T ;H ′) and gk → g ∈ L2(0, T ;Q′H), as k →∞.

Proof. Since V , Q are dense in H, QH , the schemes {Vk}k∈N, {Qk}k∈N have the
abstract Galerkin approximation property (4.1) also for the Hilbert spaces H, QH .
The strong convergence then follows from the existence of orthogonal and, thus,
uniformly bounded projections onto the finite-dimensional subspaces. �

As mentioned in Remark 4.19, Assumption 3.8 stating that A(t, v(t)) is in H ′

rather than in V ′ does not make sense on finite-dimensional spaces. Instead, we
assume smoothness in the equations uniformly in k:

Assumption 4.34. If f is in L2(0, T ;H ′) and if g ∈ L2(0, T ;Q′) and αk ∈ Hk are
sufficiently smooth, then any solution (vk, pk) to (4.6) is such that ‖A(t, vk(t))‖H′ ≤
c1 and ‖pk(t)‖Q ≤ c2 almost everywhere on (0, T ) and with constants c1, c2 inde-
pendent of k.

It will turn out, that if g fulfills the necessary and sufficient smoothness con-
ditions as specified in Lemma 3.28, then its finite-dimensional approximation is
sufficiently smooth, see Lemma 4.26. Again, the necessary smoothness of the ini-
tial values depends on the particular choice of the nonlinearity A in Problem 3.1.

Before we can prove convergence, we need to establish a priori estimates on the
sequences of the discrete solutions to Problem 4.7.

Lemma 4.35 (C.f. [133], Lem. 8.23). Consider Problem 4.7 and let the assump-
tions of Theorem 4.20 hold. Let A : (0, T ) × V → V ′ be a Carathéodory mapping
and let Assumption 4.28(a-b) hold for −A0k

, with A0k
as defined in (4.18).

If {αkdf}k∈N is bounded in H, then

(a) there exists a constant C1 > 0 independent of k and a solution vk to (4.12),
satisfying

‖vk‖L∞(0,T ;H) ≤ C1 and ‖vk‖L2(0,T ;V ) ≤ C1, (4.23)

(b) and there exists a constant C2 > 0 independent of k so that

‖v̇k‖L2(0,T ;H′) ≤ C2. (4.24)

Proof. Having assumed semi-coerciveness as defined in (3.24), we obtain existence
of vk ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) and estimate (4.23a) from [133, Lem. 8.23].

To prove the uniform bound on v̇k, we use the additional regularity that we have
introduced with Assumption 4.34.
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Because of boundedness of convergent sequences we have that f̃k := fk+ d
dt (J2

−
k gk)

is uniformly bounded in L2(0, T ;H ′) by a constant c4, see Proposition 4.33 and
Lemma 4.26 for convergence of fk and d

dt (J2
−
k gk), as k →∞.

By Remark 4.16 and Lemma 4.17, we have that ‖P[H′
kdf
|H′

kc
]‖L(H′,H′) = ‖IH′

k
−

Lkj‖L(H′,H′) ≤ 1 + c5, with c5 independent of k.
Since A : (0, T )× V → V ′ is a Carathéodory mapping, A0k

(·, v) : (0, T ) → V ′ is
measurable for all v ∈ V and k ∈ N. Since the dual product in V is the extension
of the dual product in H, A0k

(·, wk) : (0, T ) → H ′ is measurable, provided that
A0k

(t, wk) ∈ H ′ for almost all t ∈ (0, T ). If we take a vk solving (4.12), by As-
sumption 4.34, we have that A0k

(t, vk(t)) is in H ′, for almost all t ∈ (0, T ). Since
vk is in L∞(0, T,H), the growth condition (4.19) implies that the Nemyckij map
t 7→ A0k

(t, wk(t)) ∈ H ′ is measurable, cf. Section 2.4. Thus, we can estimate

∫ T

0

‖P[H′
kdf
|H′

kc
]A0k

(t, vk(t))‖2
H′ dt ≤ (1 + c5)2

∫ T

0

‖A0k
(t, vk(t))‖2

H′ dt

≤ (1 + c5)2

∫ T

0

[

β(‖vk(t)‖H)
(

γ(t) + ‖vk‖H

)]2
dt

≤ c2
6 := (1 + c5)2β2(C1)

[

‖γ‖L2(0,T ) + C1

]2
,
(4.25)

using (4.23) and (4.19).
With this, we find that

‖v̇k‖H′ ≤ ‖P[H′
kdf
|H′

kc
]A0k

(vk)‖H′ + ‖P[H′
kdf
|H′

kc
]f̃k‖H′ ≤ C2 := c6 + (1 + c5)c4.

�

Having established that the sequences of the discrete solutions and their deriva-
tives are uniformly bounded, we can now prove convergence to a solution of the
continuous differential equation (3.21).

Theorem 4.36 (Cf. [133], Thm. 8.27). Consider the setup of Problem 4.7 for the
symmetric case defined in Problem 3.1(Sym), with J1 = J2 and with the approxi-
mation scheme {Vk}k∈N to V fulfilling Assumption 4.5. Let Assumptions 4.8 and
4.13 hold, let f ∈ L2(0, T ;V ′), g ∈ L2(0, T ;Q′), and αk ∈ Hk. Let the sequences
of inverses to J2k be chosen as defined in Lemma 4.26, let d

dt (J−2 g) ∈ L2(0, T ;H ′),
and let the Carathéodory mapping −A : (0, T )× V → V ′ satisfy Assumption 4.28.

If for the sequence of initial values to the discrete problem converges to the initial
value of the continuous problem, i.e. αkdf → αdf in H, then there exists a v ∈
L2(0, T ;V ) solving the continuous equation (3.21) and vk ⇀ v in L2(0, T ;V ) and
v̇k ⇀ v̇ in L2(0, T ;H ′), as k →∞, (possibly in terms of subsequences), where, for
k ∈ N, vk is a solution to the discrete equations (4.12).

Proof. The proof follows the lines of the proof for [133, Thm. 8.27] but with mod-
ifications that in particular account for the external approximation of the variable
v.

Since by Lemma 4.35 the sequence {vk}k∈N is bounded, and since with V reflex-
ive, also L2(0, T ;V ) is reflexive, there exists a subsequence {vk′}k′∈N ⊂ {vk}k∈N
that converges weakly to v in L2(0, T ;V ). By the same arguments, there exists
a subsequence {v̇k′′}k′′∈N ⊂ {v̇k}k∈N and a ν ∈ L2(0, T ;H ′) so that v̇k′′ ⇀ ν in
L2(0, T ;H ′). In what follows, we will assume that the subscript k always labels the
subsequence that is currently under consideration.
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We conclude that there exists a subsequence {vk}k∈N with limit v, so that v̇ = ν
in L2(0, T ;H ′), since for all w ∈ V and all φ ∈ C∞0 , we have

∫ T

0

〈

ν(t), w
〉

V ′,V
φ(t) dt = lim

k→∞

∫ T

0

〈

v̇k(t), w
〉

H′,H
φ(t) dt

= − lim
k→∞

∫ T

0

(

vk(t), w
)

H
φ̇(t) dt

= −
∫ T

0

(

v(t), w
)

H
φ̇(t) dt.

So far, we have established existence of v ∈ W(0, T ;V ;H ′), that is the weak
limit of a subsequence of solutions vk ∈ Vkdf to the discrete equations (4.12). We
will show that v is in W(0, T ;Vdf ;H

′
df) and that it solves (3.21).

Since the external approximation scheme {Vkdf}k∈N to Vdf is stable and since
v is the weak limit of functions vk with vk(t) ∈ Vkdf , for almost all t ∈ (0, T ),
we have that v(t) ∈ Vdf for almost all t ∈ (0, T ), see Lemma 4.25, and, thus,
v ∈ L2(0, T ;Vdf).

Take a u ∈ W(0, T ;Vdf ;H
′
df) and {uk}k∈N ⊂ L2(0, T ;Vkdf) with uk → u in

L2(0, T ;V ) as k → ∞. Such a sequence exists, see [143, Lem. III.5.10], since
{Vkdf}k∈N is a stable and convergent external approximation scheme for Vdf , see
Lemma 4.25.

By the assumption on −A, we can consider −A0k
, with A0k

as defined in (4.18),
satisfying the semi-coerciveness condition (4.20), growth condition (4.19), and the
condition for vkc-uniform pseudomonotonicity (4.21).

Since vkdf is a solution to (4.12), we have for any w ∈ L2(0, T ;Vkdf):
∫ T

0

〈

v̇k(t)− P[H′
kdf
|H′

kc
]A0k

(vk(t)), w(t)
〉

H′,H
dt

=

∫ T

0

〈

P[H′
kdf
|H′

kc
]f̃k(t), w(t)

〉

H′,H
dt, (4.26)

where f̃k := fk + d
dt (J2

−
k gk), which, by Lemma 4.26 is in L2(0, T ;H ′) for all k.

With the assumption that J1 = J2, in (4.26), the projection P[H′
kdf
|H′

kc
] has no

effect, cf. Remark 4.31. Thus, putting w = uk − vk, we can write (4.26) as

−
〈

A0k
(vk), uk−vk

〉

V′,V =
〈

f̃k, uk−vk

〉

V′,V−
〈

v̇k, uk−vk

〉

V′,V =: I
(1)
k −I

(2)
k . (4.27)

Note that for functionals in H ′ ⊂ V ′ and elements of V the dual product in H and
V coincide.

With vk ⇀ v and uk ⇀ u weakly in L2(0, T ;V ), by [161, Prop. 21.23(j)] we have
I

(1)
k =

〈

f̃k, uk − vk

〉

V,V′ →
〈

f̃ , u− v
〉

V′,V as k →∞, since f̃k → f̃ := f + d
dt (J−2 g),

see Proposition 4.33 and Lemma 4.26. Since the limit u − v is in L2(0, T ;Vdf), by
Remark 4.31 and Lemma 4.32, we have that

lim
k→∞

I
(1)
k = lim

k→∞

〈

f̃k, uk − vk

〉

V′,V =
〈

f̃ , u− v
〉

V′,V =
〈

f̃ ,P ′[H′
df
|H′

c
][u− v]

〉

V′,V

=
〈

P[H′
df
|H′

c
]f̃ , u− v

〉

V′,V .

(4.28)

With vk ∈ W(0, T ;Vk, H
′
k), we have that

〈

v̇k, vk

〉

V′,V = 1
2 (‖vk(T )‖2

H−‖vk(0)‖2
H),

see [133, Rem. 7.5]. Since, by Lemma 4.35 and by assumption, vk, v̇k, and vk(0) =
αkdf , are uniformly bounded, vk(T ) is uniformly bounded in H and we can conclude
that there exists a ζ ∈ H, such that vk(T ) ⇀ ζ in H. We will show that ζ = v(T )
and that vk(0)→ v(0).
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Let ψ ∈ C∞([0, T ]), and for any w ∈ V consider ψw ∈ W(0, T ;V ;V ′). Then, by
[133, Lem. 7.3] and by the reflexivity of V = L2(0, T ;V ), we have

(

ζ, ψ(T )w
)

H
−

(

v(0), ψ(0)w
)

H
= lim

k→∞
[
(

vk(T ), ψ(T )w
)

H
−

(

vk(0), ψ(0)w
)

H
]

= lim
k→∞

[
〈

v̇k, ψw
〉

V′,V +
〈

vk, ψ̇w
〉

V,V′ ]

=
〈

v, ψw
〉

V′,V −
〈

v, ψ̇
〉

V,V′

=
(

v(T ), ψ(T )w
)

H
−

(

v(0), ψ(0)w
)

H
.

Having chosen ψ, such that ψ(0) = 0 and ψ(T ) = 1, we conclude that for any
w ∈ V , it holds that

(

v(T ), w
)

H
=

(

ζ, w
)

H
and, thus, v(T ) = ζ since V is dense in

H. Choosing ψ, such that ψ(0) = 1 and ψ(T ) = 0, it also follows that v(0) = αdf

in H. By assumption, we have that vk(0) = αkdf → αdf , so that we can conclude
that vk(0)→ v(0) in H.

To proceed, we recall two fundamental facts for Banach spaces. The norm is
weakly lower semicontinuous, i.e. if

uk(T ) ⇀ u(T ), then ‖u(T )‖H ≤ lim inf
k→∞

‖uk(T )‖H , (4.29)

see [149, Thm 2.12]. Secondly, if

v̇k ⇀ v̇ in L2(0, T ;V ′) and uk → u in L2(0, T ;V ), then
〈

v̇k, uk

〉

V′,V →
〈

v̇, u
〉

V′,V ,

(4.30)
as k →∞, see [161, Prop. 21.23(k)].

Consider I(2)
k =

〈

v̇k, uk − vk

〉

V′,V from (4.27). By (4.29) and (4.30) it follows
that

lim sup
k→∞

I
(2)
k = lim

k→∞

〈

v̇k, uk

〉

V′,V −
1

2
lim inf
k→∞

‖vk(T )‖2
H +

1

2
lim

k→∞
‖vk(0)‖2

H

≤
〈

v̇, u
〉

V′,V −
1

2
‖v(T )‖2

H +
1

2
‖v(0)‖2

H =
〈

v̇, u− v
〉

V′,V . (4.31)

By (4.25) we have that A0k
(vk) is uniformly bounded in L2(0, T ;V ′), so that

〈

A0k
(vk), uk − u

〉

V′,V → 0, as k →∞. Thus, using also (4.31), we can estimate

− lim sup
k→∞

〈

A0k
(vk), vk − u

〉

V′,V
= − lim sup

k→∞

〈

A0k
(vk), vk − uk

〉

V′,V

− lim
k→∞

〈

A0k
(vk), uk − u

〉

V′,V

= lim
k→∞

〈

f̃k, vk − u
〉

V′,V
− lim sup

k→∞

〈

v̇k, vk − u
〉

V′,V

≤
〈

f̃ − v̇, v − u
〉

V′,V . (4.32)

Setting u := v in (4.32), we find that − lim supk→∞
〈

A0k
(vk), vk − v

〉

V′,V ≤ 0, so
that the vkc-uniform pseudomonotonicity of A0k

implies that

lim inf
k→∞

−
〈

A0k
(vk), vk − u

〉

V′,V ≥ −
〈

A0(v), v − u
〉

V′,V . (4.33)

Combining (4.32) and (4.33), we obtain that−
〈

A0(v), v−u
〉

V′,V ≤
〈

f−v̇, v−u
〉

V′,V .

Since u ∈ L2(0, T ;Vdf) is arbitrary, we get equality. In the same way as in (4.28)
we can put back the projectors to get

v̇ − P[H′
df
|H′

c
]A0(v) = P[H′

df
|H′

c
][f + d

dt (J2
−
k g)] in L2(0, T ;V ′).

�

We now show how the convergence of the partial solutions vkc → vc and vkdf →
vdf in L2(0, T ;V ) makes the remaining part pk of the solutions to (4.6) converge to
p as the part of a solution to the continuous problem problem as defined in (3.19c).
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Lemma 4.37. Consider Problem 3.1 and its finite-dimensional approximation
defined in Problem 4.7. Assume that the approximation schemes {Vk}k∈N and
{Qk}k∈N fulfill Assumption 4.5. Let the assumptions of Theorem hold 4.20 and
let the nonlinear operator A : L2(0, T ;V ) → L2(0, T ;V ′) be bounded and weakly
continuous.

If for {vk}k∈N, with A(vk) ∈ L2(0, T ;H ′), vk = vkc + vdf, for all k ∈ N, there
exists vdf, vc ∈ L2(0, T ;V ), such that vkc → vc and vkdf ⇀ vdf in L2(0, T ;V ), then
pk ⇀ p, where pk ∈ L2(0, T ;Qk) is defined in (4.11c) and p ∈ L2(0, T ;Q) is defined
in (3.19c).

Proof. By (3.19c) and with vkc := −J2
−
k gk, for k ∈ N, we have that

pk = −S−1
k

[

J̄2kjAk

(

vkdf + vkc) + J̄2kjfk + ġk

]

.

By Proposition 4.33 and Lemma 4.26, we have that fk → f in L2(0, T ;H ′) and
ġk → ġ in Q′. By the weak continuity of A we have that A(vk) ⇀ A(v), and by
the existence of uniformly bounded projections onto Hk also that Ak(vk) ⇀ A(v)
in L2(0, T ;H ′). By Assumption 4.5 for {Qk}k∈N, there exists a uniformly bounded
projection P[Qk] : Q→ Q onto Qk. Thus, for all q ∈ Q, one has that

〈

J̄2kjA(vk), q
〉

Q′,Q
=

〈

jA(vk), J̄2
′P[Qk]q

〉

H,H′

→
〈

jA(v), J̄2
′
q
〉

H,H′ =
〈

J̄2jA(v), q
〉

Q′,Q,

as k →∞, i.e., recalling that Q is reflexive, J̄2kjAk(vk) ⇀ J̄2jA(v) in Q′. Since
strong convergence is preserved by J̄2k we conclude that

− Skpk = J̄2k[jAk(vk) + jfk] + ġk ⇀ J̄2[jA(v) + jf ] + ġ = −Sp in Q′, (4.34)

as k →∞. Since S−1
k is uniformly bounded, see Remark 4.16, from (4.34) we have

that the sequence {pk}k∈N ⊂ Q is bounded. We show that every weakly convergent
subsequence converges to p, to conclude that the sequence {pk}k∈N itself converges
weakly to p [161, Prop. 21.23(i)].

Let {pk′}k′∈N ⊂ {pk}k∈N be a convergent subsequence, i.e. there exists a p′ ∈ Q
with pk′ ⇀ p′, as k′ →∞. By (4.34), we have that Sk′pk′ ⇀ Sp, as k′ →∞. Let
q ∈ Q, and consider

lim
k′→∞

〈

Sk′pk′ , q
〉

Q′,Q =
〈

Sp, q
〉

Q′,Q =
〈

p, J̄1jJ̄2
′
q
〉

Q,Q′ . (4.35)

On the other hand we have that
〈

Sk′pk, q
〉

Q′,Q =
〈

pk′ , J̄1P[Hk′ ]jJ̄2
′P[Qk′ ]q

〉

Q,Q′ →
〈

p′, J̄1jJ̄2
′
q
〉

Q,Q′ , (4.36)

using [161, Prop. 21.23(j)] and, in particular, J̄1P[Hk′ ]jJ̄2
′P[Qk′ ]q → J̄1jJ̄2

′
q, be-

cause the involved projections fulfill Assumption 4.5. Since J̄1jJ̄2
′
: Q → Q′ is bi-

jective, see Lemma 6.12, combining Equations (4.35) and (4.36) yields
〈

p′, q̃
〉

Q,Q′ =
〈

p, q̃
〉

Q,Q′ for all q̃ ∈ Q′, i.e. p′ = p ∈ Q.
Thus we have that pk ⇀ p.

�

Remark 4.38. Convergence of the finite-dimensional approximations to a solution of
the abstract DAE (Problem 3.1) was established on the base of several assumptions
that address the following aspects of the problem statement:

(a) Space Regularity: We assume additional smoothness of the right hand side
f ∈ L2(0, T ;H ′) and that the corresponding solution of Problem 3.1 is such
that A(t, v(t)) and J ′1p(t) are in H ′, for almost all t ∈ (0, T ) (Assumption
3.8). Since at a fixed discretization level k, (Vk)′ and H ′k are isomorphic,
in finite dimension, instead, we assume uniform boundedness of Ak(vk(t))
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in L2(0, T ;H ′) and of pk(t) in Q. (Assumption 4.34). To formalize this, we
assume existence of Q ⊂ QH , densely and continuously embedded in QH ,
such that, e.g., J ′1(Q) ∈ H ′ and such that J1, J2 : H → Q′ are bounded
(Assumption 3.5).

(b) Decoupling of Equation and Solution Spaces: We assume that the operators
J1, J2 : V → Q′H that account for the coupling of differential and algebraic
equations in (3.1) allow for a decoupling as follows: The kernel of J2 splits
the solution space V into a differential and an algebraic part and J ′1 can be
inverted to compute p separately (Assumption 3.13). To split the equations
conformingly, we assume that H ′ decomposes into the image of J̄1

′
and a

part that is identified with ker J̄2 (Assumption 3.5).
(c) Consistency and Regularity of the Data: If the setup allows for a splitting,

existence of solutions to Problem 3.1 implies existence of the separated
solution components and, thus, defines necessary conditions for solvability.
These are smoothness of g in time, i.e. ġ ∈ Q− as specified in Lemma 3.28,
and consistency of the initial value as defined in Definition 3.35.

(d) Stable Approximation Schemes: Consider the discrete setup of Problem
4.7. We assume there are approximation schemes {Qk}k∈N and {Vk}k∈N
that fulfill Assumption 4.5, i.e. they come with a sequence of associated
uniformly bounded projections. Considering J1k and J2k, we assume that
{Qk}k∈N and {Vk}k∈N allow for splittings of the equations and solutions
as in the continuous case and uniformly with respect to the discretization
parameter k (Assumption 4.8 and 4.13). Then, in particular, the underly-
ing external approximation scheme to ker J2 is stable and convergent, cf.
Lemma 4.25. Without further restrictions, we can assume that J2

−
k and

J−2 are chosen such that vkc := −J2
−
k gk → J−2 g =: vc in L2(0, T ;V ), as

k →∞, cf. Lemma 4.26.
(e) Consistent and Convergent Approximation of the Initial Value: We assume

that for every k, the initial value αk of the discrete problem writes as
αk = αkdf − J̄2

−
k gk(0), with αkdf → αdf in H.

(f) Symmetry: To show convergence of the discrete solutions to a solution of
the continuous problem, we have assumed that J1 = J2, cf. Remark 4.31.

(g) Continuity, Coerciveness, Monotonicity and Boundedness of the Nonlinear-
ity: Given the sequence {vkc}k∈N converging to vc, we define the shifted
nonlinearity A0k

as in (4.18) and assume that it has particular boundedness,
coerciveness and pseudo-monotonicity properties uniformly with respect to
vkc (Assumption 4.28). This was sufficient to prove weak convergence of
subsequences of vk to v. To prove convergence in p, we additionally assumed
weak continuity of the nonlinearity A, cf. Lemma 4.37.

We summarize the findings of this section in the following theorem:

Theorem 4.39. Consider Problem 3.1(Sym), where J1 = J2, and the correspond-
ing finite-dimensional approximation defined in Problem 4.7. Let all assumptions
listed in Remark 4.38 hold. In particular, assume right hand sides f ∈ L2(0, T ;H ′)
and g ∈ W 1,2(0, T ;Q,Q−) and an initial value α and approximations αk that
are consistent as specified in Definition 3.35 and convergent as defined in Remark
4.38(e).

For k ∈ N let (vk, pk) ∈ W(0, T ;Vk, H
′
k) × L2(0, T ;Qk) be a solution of the

discrete problem. Then there exists (v, p) ∈ W(0, T ;V,H ′) × L2(0, T ;Q) such that
vk ⇀ v inW(0, T ;V,H ′) and pk ⇀ p in L2(0, T ;Q) and (v, p) solves the continuous
problem. The convergence is in terms of subsequences.
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If the continuous problem has only one solution, then the whole sequence {(vk, pk)}k∈N
converges.

If V →֒ H is compact, then vk → v in L2(0, T ;H).

Proof. Under the given conditions, by Theorem 4.20, for all k ∈ N, we can decom-
pose any solution of the discrete approximations: A solution (vk, pk) to Problem
4.7 writes (vkdf + vkc, pk), with vkc specified in (4.11a), vkdf solving the differential
equation (4.12), and pk defined via (4.11c).

Let k be the subscript of a convergent subsequence. By Lemma 4.26, we have
that vkc → −J−2 g =: vc in L2(0, T ;V ). By Theorem 4.36 we have that vkdf ⇀ vdf

in W(0, T ;V,H ′), where vdf solves (3.21). With v̇kdf ∈ L2(0, T ;H ′) for all k ∈ N

and Assumption 4.34, we have that v̇kc ∈ L2(0, T ;H ′), for all k ∈ N and thus, by
Lemma 4.26, that vkc ⇀ vc inW(0, T ;V ;H ′). By Lemma 4.37, we have that pk ⇀ p
in L2(0, T ;Q), where p fulfills (3.19c). Since with g being sufficiently smooth also
gk is sufficiently smooth and since we have assumed consistency of αk, by Theorem
3.37 we have that, for all k, (vk, pk) := (vkdf + vkc, pk) solves Problem 4.7.

By Lemma 3.30 and Theorem 3.37 a solution (v, p) to Problem 3.1 has the
representation as (vdf + vc, p), where vc is defined via (3.19a), vdf is the solution of
the abstract differential equation (3.21), and p fulfills (3.19c). Thus, the limit of
a convergent subsequence {(vk, pk)}k∈N = {(vkdf + vkc, pk)}k∈N of solutions to the
discrete problem is a solution to Problem 3.1.

If Problem 3.1 has only one solution, then every convergent subsequence of
{(vk, pk)}k∈N converges to the same limit. This implies that the sequence itself
is convergent [161, Prop. 21.23(i)].

If V
c→֒ H, then, by Lemma 2.16, W(0, T ;V ;H ′)

c→֒ L2(0, T ;H), and thus the
weak convergence of vk → v inW(0, T ;V ;H ′) implies strong convergence of vk → v
in L2(0, T ;H).

�

4.5. Initial Conditions. Under the assumptions of Theorem 4.39, for the exis-
tence of a solutions to the sequence of Problems 4.7, it is necessary that the initial
value αk to the discrete equations 4.6 is consistent in the sense of Definition 3.35
for the discrete spaces and for every k ∈ N.

In general, the canonical projections of a consistent initial condition onto a dis-
crete subspace does not give a consistent initial condition for the projected equa-
tions, see [60], for a canonical example for the finite element approximation of Navier
Stokes Equation. Thus, for the proper choice of the initial value αk, a particular
approximation is necessary that takes into account the finite-dimensional realiza-
tions J2k of the operator J2, cf. Corollary 3.36. In addition, in view of convergence
of the solution, any strategy has to ensure the αk → α in H, as k →∞.

In theory, under the assumptions of Remark 4.38(a,b,d), this does not pose a
problem. With the arguments of Section 4.3, one can show that {Vk}k∈N and
{Qk}k∈N also define a stable and convergent approximation scheme for Hdf via the
sequence Hkdf := ker J̄2k. Let rk be the corresponding restriction operator. Let
α = αdf − J̄2

−
g(0) be a consistent initial value. Then we have by Definition 4.23(a)

that αkdf := rkαdf → αdf in H and by Lemma 4.26 and by vkc(0) = −J̄2
−
k g(0), cf.

the proof of Corollary 3.31, that −J̄2
−
k gk(0)→ −J̄2

−
g(0) in H. Thus, the sequence

of initial values αk := αkdf − J̄2
−
k gk(0) is consistent and convergent.

However, this approach for the retrieval of consistent and convergent initial val-
ues is not feasible in practice, since the right inverses of J2 and J2k are not available
in general.

To ensure consistency, at a given discretization level, with αk being an arbitrary
approximation to α, one can use regularization techniques to modify αk such that
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it becomes consistent, see [42], [90, Ch. 6.1], and [102, Ch. 4.3]. However, this
modification may destroy the convergence properties of the parts of αk = αkdf −
J̄2
−
k gk(0) that were needed in the proof of convergence in Theorem 4.39.
In the case where g = 0, convergent sequences of consistent initial values can be

defined via αk := Pkdf
P[Hk], where Pkdf

is an uniformly bounded projector from H
into H that maps Hk onto Hkdf , and P[Hk] is the orthogonal projection in H onto
Hk. By [49, Lem. II.1.1] such a projector Pkdf exists. If J2 = J1, then Pkdf

can be
chosen as the orthogonal projector defined in Lemma 4.17.
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5. Constrained Optimization and Optimal Control

In view of optimal control of systems, we recall classical results that extend
the theory of Lagrangian multipliers for elimination of side constraints in finite
dimensional optimization problems, cf. [44], to infinite-dimensional problems. Par-
ticularly, we will refer to results that take into account the specific structure of
dynamical systems.

We define a general constrained optimization problem.

Problem 5.1. Let Z and W be metric spaces and let W be complete. Consider
the minimization problem

J (z)→ min
z∈Z

, subject to G(z) = 0, (5.1)

for a functional J : Z → R and a mapping G : Z → W . Let NG denote the subset
of Z on which the constraints are fulfilled, i.e.

NG := {z ∈ Z : G(z) = 0}.
In order to state optimality conditions, we will call on the Fréchet derivative, see

Definition 2.18.

5.1. Multipliers and First Order Necessary Optimality Conditions. As-
suming Fréchet-differentiability of J and G locally in the region of interest, one has
the classical result due to Ljusternik:

Theorem 5.2 ([109], p. 398). Consider Problem 5.1. If z0 is a stationary and
an absolutely regular point for J in NG, then there exists a linear functional l on
G;z(z0)[z] such that

J;z(z0)[z] = l(G;z(z0)[z]). (5.2)

In (5.2) and in what follows the subscript ; z to, e.g., J;z denotes the possibly
partial Fréchet derivative of J with respect to z as it was introduced along with
Definition 2.18.

Since the differentiation commutes with the application of bounded linear func-
tionals, (5.2) can be written as

L;z(z0)[z] = 0, where L(z) := J (z)− l(G(z)). (5.3)

Here, z0 is a stationary point for J in NG , if

|J (z′)− J (z0)| = o(‖z′ − z0‖Z) for all z′ ∈ NG . (5.4)

A point z0 ∈ NG is called regular if imG;z(z0) = W .
Let Tz0

:= kerG;z(z0) denote the tangent space to NG in z0. One has that in a
regular point z0 the set NG is asymptotically close to Tz0

in the sense that for all
z′ = z0 + h′ ∈ NG there exists h ∈ Tz0

such that

‖h− h′‖Z = o(‖h‖Z), (5.5)

see [109, p. 393] for a proof. If also the converse is true, i.e. for all h ∈ Tz0
in

a neighborhood of the origin there exists a point z0 + h′, such that ‖h − h′‖Z =
o(‖h‖Z), then z0 is called absolutely regular.

Regularity of a point z0 is often referred to as surjectivity of dG;z(z0). For the
absolute regularity there are sufficient conditions that have been used to formulate
more specific versions of Theorem 5.2.

If there exists a complement space Tc ⊂ Z such that Z = Tz0
⊕ Tc and if the

mapping z0 7→ J;z(z0) is continuous in the norm of B(Z,W ) in a neighborhood of
z0, then, in terms of [109, p. 396], if z0 is regular, then z0 is absolutely regular.
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Accordingly, cf. [159, Thm. 43D], the functional l from (5.2) exists, if G is a
submersion at z0, i.e. z0 is regular, G is locally continuously Fréchet-differentiable
and Tz0 splits W .

The necessary splitting of Z = Tz0 ⊕ Tc is guaranteed if dimTz0 < ∞, if
dimZ/Tz0

<∞ or if Z is a Hilbert space, cf. [159, Ex. 43.16].
If dimW = n <∞, then the constraints in (5.1) can be written as gi(z) = 0 ∈ R,

i = 1, · · · , n and a variant of Theorem 5.2 states that if z0 is a stationary point of
J , then there exist λ1, · · · , λn ∈ R such that

J;z(z0) = λigi;z(z0), (5.6)

cf. [65, Thm. 9.1] and [109, p. 399].
If Z and W are Banach spaces, then the local continuity of the Fréchet differ-

entiation with respect to z makes a regular point an absolutely regular point, see
[109, p. 396] for a proof. This is used in the following variant of Theorem 5.2:

Theorem 5.3 ([96], Thm. 5.4.2). Consider Problem 5.1 and let Z and W be
Banach spaces. Suppose that J and G are continuously Fréchet-differentiable on an
open set O ⊂ X and that z0 ∈ O is a regular point of the constraints G. If J has
a local extremum under the constraint G(z0) = 0 at the regular point z0, then there
exists l ∈W ′ such that the Lagrangian

J (z)− lG(z)

is stationary at z0, i.e. J;z(z0)− lG;z(z0) = 0.

One can weaken the assumption on regularity of z0 in NG and require only that
the range of G;z(z0) is closed in W . Then one has that, if J takes on a local
extremum at z0, then there exists λ0 ∈ R and l ∈W ′ such that

λ0J;z(z0)− lG;z(z0) = 0,

cf. [96, Thm. 5.4.3] or [159, Prp. 43.19].

5.2. Relation to Optimal Control of Systems and the Adjoint State. In
optimal control of systems the variable z is given as z = (x, u), where x ∈ X
denotes the state of the system and u ∈ U is an input or a parameter. Then the
optimization problem is written as:

Problem 5.4. Let X, U , and W be Banach spaces and let J : X × U → R be a
functional. Consider

J (x, u)→ min
(x,u)

, subject to G(x, u) = 0, (5.7)

where G : X × U →W represents the relation of states and inputs.

In PDE constrained optimization, G represents a partial differential equations.
We will consider cases, where G stands for an abstract differential algebraic equa-
tion.

Application of a variant of Theorem 5.2 would give that if (x0, u0) is a stationary
point of J in (5.7), then there exists l ∈W ′ such that J (x, u)−lG(x, u) is stationary
at (x0, u0), i.e.

J;x(x0, u0) + J;u(x0, u0)− lG;x(x0, u0)− lG;u(x0, u0) = 0. (5.8)

In the frequent case that u is a free variable while x = x(u) is well defined in
terms of u via the relation G(x, u) = 0, then the functional l can be interpreted as
the adjoint state defined as the solution λ ∈W ′ of the adjoint equation

λG;x(x, u) + J;x(x, u) = 0. (5.9)

This can be deduced from the following theorem.
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Theorem 5.5 ([96], Thm. 5.5.1). Consider Problem 5.4 with X, U , and W being
normed vector spaces, with the cost functional J : X×U → R, and with G : X×U →
W such that it well defines a mapping u 7→ x(u) via G(x(u), u) = 0. Assume that
G and J are Fréchet-differentiable with respect to x at x = x(u) and continuously
on X × U Gateaux differentiable with respect to u and that u 7→ x(u) is Lipschitz
continuous.

If there exists a solution λ ∈ W ′ to (5.9) at x = x(u), then Ĵ (u) := J (x(u), u)
is Gateaux differentiable at u and

Ĵ;u(u) = J;u(x, u) + λG;u(x, u). (5.10)

Thus, if J , G and u0 meet the conditions of Theorem 5.5, u0 is a stationary
point of Ĵ (u) and the adjoint state λ ∈W ′ exists, then one has that

0 =Ĵ;u(u0) = J;u(x(u0), u0) + λG;u(x(u0), u0)

= J;u(x(u0), u0) + λG;u(x(u0), u0) + J;x(x(u0), u0) + λG;x(x(u0), u0),

i.e. the adjoint state λ serves as the functional −l in (5.8). The following theorem
establishes sufficient conditions for the applicability of Theorem 5.5:

Theorem 5.6 ([160], Thm. 4.B). Consider Problem 5.4. Assume that G : D ⊆
X×U →W is defined on an open neighborhood of D of (x0, u0), with G(x0, u0) = 0,
that G;x exists as a partial Fréchet derivative on D and G;x(x0, u0) : X → W is
bijective, and that G and G;x are continuous on D, then the following statements
hold:

(a) There exist r0, r > 0 such that for every u ∈ U satisfying ‖u − u0‖ ≤
r0, there exists exactly one x(u) ∈ X for which ‖x(u) − x0‖ ≤ r and
G(x(u), u) = 0.

(b) If G is continuous in a neighborhood of (x0, u0), then u 7→ x is continuous
in a neighborhood of u0.

(c) If G is m-times continuously Fréchet-differentiable on a neighborhood of
(x0, u0), 1 ≤ m ≤ ∞, then so is u 7→ x on a neighborhood of u0.

In particular, if G is Fréchet-differentiable, then the input to state map u 7→ x is
locally Lipschitz continuous. If the Fréchet differential of G is uniformly bounded,
then u 7→ x is globally Lipschitz continuous, cf. [160, Problem 4.1b].

For dynamical systems that are formulated with a time variable t, we consider the
optimization problem (5.1) but with G : Z →W, where, for T > 0 and 1 < p <∞,
W := Lp(0, T ;W ), is a Bochner space. In this case, one can call on Theorem 2.13
to determine a representation of l ∈ W ′ in a Bochner space.

5.3. First Order Sufficient Optimality Conditions. In this section we state
conditions that are sufficient for optimality for general optimization problems and
their formulation for optimal control problems.

Theorem 5.7 ([159], Thm. 43D(2)). Let Z and W be Banach spaces and J : Z →
R and G : Z → W be n-times continuously Fréchet-differentiable in an open neigh-
borhood of z0, where n is an even integer, n ≥ 2. Let G be a submersion at z0.
Then z0 is a local solution to (5.1), if there exists c > 0 and l ∈W ′ such that

J;zr (z0)[k]r − lG;zr (z0)[k]r = 0, r = 1, · · · , n− 1

J;zn(z0)[h]n − lG;zn(z0)[h]n ≥ c‖h‖n,

for all k ∈ Z and h ∈ Tz0 .

In the most frequent case when n = 2, one has to check existence of the functional
l and c > 0 with

J;z(z0)− lG;z(z0) = 0 and J;zz(z0)[h, h]− lG;zz[h, h] ≥ c‖h‖2,
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to conclude that z0 is a local minimum.

Remark 5.8. With the assumptions of Theorem 5.7 the set NG := {z ∈ Z : G(z) =
0} is a C1-manifold, cf. [159, Thm. 43.C(3)]. If Z = X ×U and G(x, u) = 0 defines
a Fréchet-differentiable mapping u 7→ x(u), then NG = {(x(u), u) : u ∈ U}, with
the tangent space at (x(u0), u0) given via

T(x(u0),u0) = {(x;u(u0)hu, hu) : hu ∈ U}.
In fact, for any smooth curve γ : t 7→ (x(u(t)), u(t)) ∈ NG with parameter t in
a neighborhood of 0 ∈ R and with γ(0) = (x(u0), u0) the tangential vector h =
γ′(0) = (x;u(u0)u′(0), u′(0)) is in T(x(u0),u0). Conversely, any h = (x;u(u0)hu, hu) ∈
T(x(u0),u0) is a tangent vector with the curve t 7→ (x(u + thu), u + thu). See [159,
Def. 43.8] for the definition of a manifold and the tangent space in Banach spaces.

Furthermore, in the setting of Theorem 5.7 one has

T(x(u0),u0) = kerG;x,u(x(u0), u0), (5.11)

as the tangent space was defined for Theorem 5.2, cf. [159, Thm. 43.C(1)].

Thus, one can formulate sufficient conditions tailored to dynamical systems with
state x and input u:

Theorem 5.9. Let X, U and W be Banach spaces G : X × U → W such that it
defines a Fréchet-differentiable mapping u 7→ x(u) via G(x(u), u) = 0. Let G and
J : X ×U → R be 2-times continuously Fréchet-differentiable in an open neighbor-
hood of (x0, u0) := (x(u0), u0). Let G be a submersion at (x0, u0). Then (x0, u0) is
a local solution to (5.7), if there exists c > 0 and l ∈W ′ such that

J;(x,u)(x0, u0)− lG;(x,u)(x0, u0) = 0 and
(

J;(x,u)2(x0, u0)− lG;(x,u)2(x0, u0)
)

[hx(hu), hu]2 ≥ c‖(hx(hu), hu)‖2

for all hu ∈ U and hx(hu) := x;u(u0)hu.

Remark 5.10. As the conditions of Theorem 5.9 imply that the local solution is a
strict extremum, there exists a neighborhood in which the local solution is the only
solution to the optimization problem, cf. the proof of [159, Thm. 43D].

Remark 5.11. If, in addition to the assumptions of Theorem 5.9 the partial Fréchet
derivative G;x is invertible, the differential x;u(u0)hu of the input to state map
u 7→ x(u) at u0 can be established by resolving the total derivative of G(x(u), u) = 0
with respect to u at (x0, u0) applied to hu given via

G;x(x0, u0)x;uhu + G;u(x0, u0)h0 = 0.

See Theorem 5.6 establishing the necessary smoothness of u 7→ x and see [139,
Ch. 2.3] for a general discussion of the relation between x;uhu and linearized state
equations for finite dimensions, [149, Thm. 4.25] for a concrete formulation for
some generic PDE cases, and [1] for the Navier-Stokes case.

For an overview of results regarding existence of optimal controls we refer to [28].
Here, we list results for constrained optimization problems with convex or related
properties. Writing the minimization (5.1) as

min
z∈NG

J (z) = α, (5.12)

one can state existence of a minimizer z0 via the following theorem.

Theorem 5.12 ([159], Thm. 38.A, Cor. 38.8). For the functional J : Z ⊃ NG → R̄

with NG 6= ∅, there exists a solution to (5.12) provided the following conditions hold:

(a) Z is a real reflexive Banach space.
(b) NG is bounded, closed and convex.
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(c) J is sequentially lower semicontinuous on NG.

The case that NG is convex and closed but not bounded is treated in the following
proposition that also lists alternative requirements on J .

Proposition 5.13 ([159], Prop. 38.15, [96], Thm. 7.2.3). On real Banach space Z,
a functional J : Z ⊃ NG → R̄, with NG 6= ∅ convex and closed and with J (z)→∞
as ‖z‖ → ∞, possesses a minimum if, in addition, J is convex and continuous or
convex and Gateaux differentiable over NG.

The conditions can be checked locally to state existence of local minima. Global
convexity, however, leads to global results:

Proposition 5.14 ([112], Ch. 7.8). Consider Problem 5.1. If J and NG are
convex, then a local solution to (5.12) is a global solution.

Uniqueness of a minimizer z0 is given if, in addition, J is strictly convex on NG ,
cf. [159, Thm. 38.C]. Another property of convex optimization is that the necessary
conditions J;z(z0) = 0 for z0 being a free minimum, i.e. a minimum in the interior
of NG , is also sufficient, see [96, Thm. 6.2.1]. Thus, combining Theorem 5.5 and
Proposition 5.13 one can derive the following theorem that in particular suits linear
quadratic optimal control of systems:

Theorem 5.15. Consider Problem 5.4 and let the assumptions of Theorem 5.5
hold. If Ĵ (u) := J (x(u), u) is (strictly) convex and Ĵ (u)→∞, as ‖u‖ → ∞, and
U is convex and closed, then (5.7) has a (unique) solution.

Furthermore, if there exists a solution u0 ∈ U and λ0 ∈ W ′ to the adjoint
equation

λ0G;x(x0, u0) + J;x(x0, u0) = 0

and to
λ0G;u(x0, u0) + J;u(x0, u0) = 0,

at x0 = x(u0), then u0 is a (the) global solution to (5.7).

Remark 5.16. The basic assumption that the input to state map is one-to-one,
cf. Theorem 5.5 an 5.6 is very restrictive as it is tied to the existence of unique
solutions of the state equations. For the Navier-Stokes Equation in the standard
weak formulation as considered in Section 3.5, uniqueness of solutions in three
spatial dimensions is only proven for small right-hand sides, small initial values,
and for short time intervals [143, Ch. 3.3]. Furthermore, the sufficient conditions,
cf. [143, Eq. 3.115], are hard to check in practical applications. In [152], it has
been shown that the conditions for unique solvability of optimal control problems
are less restrictive and more immediate for a certain class of non-Newtonian flows.
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6. Optimal Control Problem and the Adjoint Equation

In this section we discuss a general optimal control problem for the abstract
differential-algebraic equations considered in Section 3. Optimal control problems
constrained by partial differential equations or more general abstract equations
have been widely investigated, see e.g. [149, 16, 43, 106, 23, 73]. The literature
on analysis of infinite-dimensional control problems that explicitly treat abstract
differential-equations as constraints is sparse, as, in theory, the differential-algebraic
structure can be resolved in the input to state map. However, there is a vast
amount of results on optimal control for the Navier-Stokes Equation, see [1, 56]
for an overview and, in particular, [70] for existence and representation of adjoint
states.

We define the optimal control problem:

Problem 6.1. Consider the setup of the abstract DAE in Problem 3.1. Let U
be a Banach space and let U ⊂

(

(0, T ) → U
)

be the space of input functions. Let
M : H → R and K : (0, T )×V ×U → R be Fréchet differentiable weighting functions
and K(t, v, u) = K1(t, v) + K2(t, u) be such that the Nemyckij mappings associated
with the partial derivatives, K;u : U → U ′ and K;v : V → V ′, are well defined.

Consider the task of minimizing the cost functional

J : V × U → R : J (v, u) =M(v(T )) +

∫ T

0

K(t, v(t), u(t)) dt, (6.1)

subject to the constraints G(v, p, u) = 0 defined via G(v, p, u) = 0, if (v, u) ∈ V × U
solve

v̇(t)−A(t, v(t))− J ′1p(t)−B1u(t) = f(t) in V ′, a.e. in (0, T ), (6.2a)

−J2v(t) = g(t) in Q′H , a.e. in (0, T ), (6.2b)

v(0) = α in H, (6.2c)

for a p ∈ L2(0, T ;Q′H), for given f ∈ L2(0, T ;V ′), g ∈ L2(0, T ;Q′H) and α ∈ H,
and where B1 : U → L2(0, T ;V ′) is a bounded and injective input operator.

Remark 6.2. The assumption that the partial derivatives of K with respect to u and
v are independent of v and u, respectively, i.e. K;v(t, v(t), u(t)) = K;v(t, v(t)) and
K;u(t, v(t), u(t)) = K;u(t, u(t)) is no restriction, as long as we consider necessary
conditions for solvability and since we allow for explicit time dependency of K.

The terms coupling v and u in the cost functional are commonly referred to as
cross terms. In the finite-dimensional case, we will illustrate, why the exclusion of
cross terms in the theoretical considerations is not a restriction, see Section 8.5.

Remark 6.3. Requiring injectivity of B1 is necessary to have a unique state (v, p)
for any input u. This is not a restriction if one considers B1 on U/ kerB1 that can
be seen as a closed subspace of U since U is a Hilbert space and B1 is bounded, cf.
the discussion in Remark 3.14.

In view of establishing optimality conditions as defined in Theorem 5.5 we state
the formal adjoint equation.

Problem 6.4. Consider Problem 6.1. Let A be Fréchet-differentiable and let w ∈
W(0, T ;V ;V ′). Find (λ, µ) ∈ W(0, T ;V ;V ′)× L2(0, T ;QH) that solve

−λ̇(t)−A;v(t, w(t))′λ(t)− J ′2µ(t) +K;v(t, w(t)) = 0 in V ′, (6.3a)

J1λ(t) = 0 in Q′H , (6.3b)

for almost all t ∈ (0, T ), and

λ(T ) = −jM;v(w(T )) in H. (6.3c)
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The formal definition of (6.3) is motivated by the following lemma.

Lemma 6.5. Consider Problem 6.1. If for a w ∈ W(0, T ;V ;V ′), there exists a
solution (λ, µ) ∈ W(0, T ;V ;V ′)×L2(0, T ;QH) to (6.3), then Λ := (λ, µ, λ(0)) is in
V ×QH ×H =

(

V ′ ×Q′H ×H
)′

and

ΛG;(v,p)(w) + J;(v,p)(w) = 0 in V ′ ×Q′H . (6.4)

Proof. The representation of Λ in V×QH×H being a functional on V ′×QH×H is
well defined by the embedding of W(0, T ;V, V ′) →֒ C([0, T ], H) and the reflexivity
of the considered spaces.

The Fréchet derivative of G with respect to the states at (w, p0) is given via

(hv, hp) 7→





ḣv −A;v(w)hv − J ′1hp

−J2hv

hv(0)



 . (6.5)

Let hv ∈ W(0, T ;V, V ′) and hp ∈ L2(0, T ;QH). To interpret the derivative of
M(v(T )) applied to hv we introduce the operator T : W(0, T ) → H : v 7→ v(T )
which is linear and well-defined since W(0, T ) →֒ C([0, T ], H). Then M : H →
R extends to M ◦ T : W(0, T ) → R and by the chain rule we can obtain the
representation of M;v in H ′ via

〈M(T (v));v, hv〉V′,V =M;T (v)(T (v))
[

Tv[hv]
]

= 〈M;T (v)T (v), T (hv)〉H′,H = 〈M;v(T )v(T ), hv(T )〉H′,H ,

since T (hv) = hv(T ) ∈ H. Thus, omitting the arguments (w, p0), we have

(ΛG;(v,p) + J;(v,p))[hv, hp] = 〈λ, ḣv〉V,V′ + 〈λ,−A;vhv − J ′1hp〉V,V′

− 〈µ, J2hv〉Q,Q′ +
(

λ(0), hv(0)
)

H
+

(

jM;v(w(T )), hv(T )
)

H
+ 〈K;v, hv〉V′,V

= −〈λ̇, hv〉V′,V + 〈λ,−A;vhv − J ′1hp〉V,V′

− 〈µ, J2hv〉Q,Q′ + 〈K;v, hv〉V′,V

= 〈−λ̇−A′;vλ− J ′2µ+K;v, hv〉V′,V + 〈−J1λ, hp〉Q′,Q

= 0,

where we have used the assumption that (λ, µ) solves Problem (6.4) and, in partic-
ular, that λ admits the application of the formula of integration by parts, as given,
e.g., in [45, p. 147] to obtain

〈λ, ḣv〉V,V′ = −〈λ̇, hv〉V′,V +
(

λ(T ), hv(T )
)

H
−

(

λ(0), hv(0)
)

H
. (6.6)

�

Remark 6.6. Since G is linear in p and J does not depend on p, the algebraic
variable p does only formally appear in the definitions of the Fréchet derivatives.

Since with A and J being Fréchet-differentiable, see Theorem 5.6, the smooth-
ness assumptions in Theorem 5.5 are fulfilled and we can state the following corol-
lary:

Corollary 6.7. Consider Problem 6.1 and assume that the ADAE (6.2) has a
unique solution for all inputs. Let u0 ∈ U and let (v(u0), p(u0)) be the corresponding
solution. If (v(u0), u0) is a local minimum of (6.1), then for (λ, µ) solving the formal
adjoint equation (6.3) at w = v(u0) one has

− λB1 +K;u(u0) = 0 in U ′. (6.7)

For further reference we state another immediate corollary:
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Corollary 6.8. Consider Problem 6.1 and assume that the ADAE (6.2) has a
unique solution for all inputs u. Let u0 ∈ U and let (v(u0), p(u0)) be the corre-
sponding solution. If the adjoint equation (6.3) has a solution (λ, µ) at w = v(u0),
then the mutual solvability of (6.2), (6.3), and (6.7) is necessary for optimality of
(v(u0), u0). This means that (v, p, λ, µ, u0) is a solution to

v̇(t)−A(t, v(t))− J ′1p(t)−B1u0(t) = f(t) in V ′, (6.8a)

−J2v(t) = g(t) in Q′H , (6.8b)

−λ̇(t)−A;v(t, v(t))′λ(t)− J ′2µ(t) +K;v(t, v(t)) = 0 in V ′, (6.8c)

J1λ(t) = 0 in Q′H , (6.8d)

for almost all t ∈ (0, T ), and

v(0) = α in H, (6.8e)

λ(T ) + jM;v(v(T )) = 0 in H, (6.8f)

as well as

−λB1 +K;u(u0) = 0 in U ′. (6.8g)

Remark 6.9. The necessary optimality conditions (6.8) fail in the case that the
optimal control problem has a solution while the adjoint ADAE is not solvable
because of inconsistency or insufficient regularity of the data, cf. [91, 92]. Similarly,
the sufficient conditions that we will state in Corollary 6.10 may fail, if the linearized
ADAE with zero initial conditions does not have a solution.

We reformulate the sufficient second order conditions given in Theorem 5.9 for
the optimal control problem defined in Problem 6.1.

Corollary 6.10. Let A,M, and K be two times Fréchet differentiable. Let (v0, u0) ∈
V × U solve (6.2) and assume that the Fréchet derivative with respect to state and
control, cf. (6.5), of the constraints is surjective. Then (v0, u0) is locally optimal
for (6.1) if there is (λ, µ) solving (6.3) and (6.7) at (v0, u0) and if there is c > 0
such that

(

M;vv(v0(T ))hv(T ), hv(T )
)

H
+

〈

K;(v,u)2(hv, hu), (hv, hu)
〉

V′×U ′,V×U

−
〈

λA;vvhv, hv

〉

V′,V ≥ c‖(hv, hu)‖2
V×Q

(6.9)

at (v0, u0) and for all (hv, hu) ∈ T(v0,u0) ⊂ V × U , i.e. all (hv, h0) solving the
linearized about (v0, u0) state equations.

Remark 6.11. As p appears only linear, the above optimality conditions do not
depend on the associated algebraic variable p0 := p(u0). For formal considerations,
we will also use the tangent space T(v0,p0,u0) ⊂ V×Q×U containing all (hv, hp, hu)
that solve the linearized state equations.

To investigate existence of solutions to the adjoint ADAE (6.3), we can use a
similar approach as for the primal ADAE (3.1). In particular, Assumption 3.5 also
works for the decoupling of the adjoint equation:

Lemma 6.12. Consider Problem 3.1 and assume that Assumption 3.5 holds. Then,

Sad := J̄1jJ̄2
′
: Q→ Q′

is invertible and
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ker J̄1 = Hc⊥, (a)

im jJ̄2
′
= Hdf⊥, (b)

H = Hc⊥ ⊕Hdf⊥, (c)

and H ′ = Hc
0 ⊕Hdf

0, (d)

where Hc and

Hdf are defined in Lemma 3.6.

Proof. By assumption, the operators J̄1 and J̄2 are surjective, and thus closed, so
we can use the Closed Range Theorem, see e.g. [83, Thm. IV.5.13]. Using the

identities (Hg
0)

0
= Hg and Hg

0 = (j(Hg))⊥ that hold for subspaces of Hilbert
spaces, we conclude with the arguments of Lemma 3.20 that

ker J̄1 = (im J̄1
′
)
0

= (H ′c)
0

= (Hc⊥
0)

0
= Hc⊥

and that

j(im J̄2
′
) = j((ker J̄2)

0
) = j(Hdf

0) = Hdf⊥.

This proves parts (a) and (b). Ad (c): j(im J̄1
′
) ⊕ ker J̄2 = Hc⊥ ⊕Hdf⊥ = (Hc ∩

Hdf)⊥ = H, cf. [46, Thm. 7.57], since H = Hc ⊕Hdf . Part (d) follows by Lemma
3.20 and [83, Thm. IV.4.8].

Since by assumption J̄1
′
and J̄2

′
are homeomorphisms onto their range and since

H = j(im J̄1
′
)⊕ ker J̄2, the invertibility of Sad follows by the same arguments that

were used to show that S := J2jJ1 is invertible, see the proof of Lemma 3.6. �

As for the decoupling of the ADAE (3.1), we need additional regularity of the
problem.

Assumption 6.13 (Cf. Assumption 3.8). Let Assumption 3.5 hold. For an in-
homogeneity K;v(v) ∈ H′ (rather than in V ′) and v ∈ W(0, T ;V, V ′), such that
−jM(v(T )) is sufficiently smooth, any corresponding solution (λ, µ) to the formal
adjoint ADAE (6.3) is such that A;v(w)λ ∈ H′ and such that µ ∈ Q.

Remark 6.14. Since there is no inhomogeneity in (6.3b), there is no smoothness
constraint as for the primal equations, cf. Assumption 3.8.

To decouple the solutions of the adjoint ADAE analogously to the solutions of
the DAE, we need to mirror Assumption 3.13:

Assumption 6.15. The operator J ′2 ∈ L(QH , V
′) is a homeomorphism onto its

range and J1 ∈ L(V,Q′H) has a bounded right inverse.

Remark 6.16. If Assumption 3.13 holds, then J ′2 is a homeomorphism onto its range.
However, Assumption 3.13 is not sufficient for a bounded right inverse to J1, cf.
Remark 3.14.

Theorem 6.17. Consider Problem 3.1, let Assumptions 3.5 and 6.13 hold, and
let K;v(w) ∈ H′. Then the formal adjoint ADAE (6.3) has a (unique) solution
(λ, µ) ∈ W(0, T ;V ;H ′)× L2(0, T ;Q) if, and only if, jM;v(w(T )) is in ker J̄1 and

−P[Hc
0|Hdf

0]λ̇df’ − P[Hc
0|Hdf

0]A;v(w)′λdf’ − P[Hc
0|Hdf

0]K;v(w) = 0, in V ′ (6.10a)

λdf’(T ) = −jM;v(w(T )),
(6.10b)

has a (unique) solution λdf’ ∈ W(0, T ; kerJ1;P[Hc
0|Hdf

0]H
′), where P[Hc

0|Hdf
0] :=

IH′ − J̄2
′
S−1

ad J̄1j.
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Proof. The formal adjoint ADAE (6.3) has the same structure as the ADAE (3.1)
with J̄1 and J̄2 interchanged. By assumption and, in particular, by Lemma 6.12, all
conditions of Theorem 3.37 are fulfilled. In particular, we can define the decoupling
projector

P[Hc
0|Hdf

0] := IH′ − J̄2
′
S−1

ad J̄1j (6.11)

that has the image of J̄2
′

as its kernel and j′(ker J̄1) as its range. �

Remark 6.18. In the optimal control setup, the condition jM;v(w(T )) ∈ ker J̄1 is
not restrictive. By Theorem 3.37, for a solution v, one has that v(T ) = P[Hdf ]v(T )−
jJ̄1
′
S−1g(T ). Thus, the endpoint restriction in the cost functional (6.1), if con-

strained by the DAE under the conditions of Theorem 3.37, can also be written as
M

(

P[Hdf ]v(T ) − jJ̄1S
−1g(T )

)

, where P[Hdf ] := IH − jJ̄1
′
S−1J̄2. In this case, the

end condition for λ in (6.3) reads

−jPH
′M;v(w(T )) = j[IH′ − J̄2

′
S−1

ad J̄1
′
j]M;v(w(T ))

= [IH − jJ̄2
′
S−1

ad J̄1]jM;v(w(T )),

which is in the kernel of J̄1.

Remark 6.19. With the same arguments as for the state equations, one can replace
the solution space W(0, T ;V ;V ′) for λ by W1;p′,q′

(0, T ;V ;V ′), where p′, q′ are the
conjugated exponents to p, q in the definition of the space W1;p,q(0, T ;V, V ′) that
is used to formulate the state equations, see Remark 3.40.

As an example, we consider the linear-quadratic optimal control problem to
minimize

J (v, u) =
1

2

(

M1[v(T )− v∗(T )], v(T )− v∗(T )
)

H
+

+
1

2

∫ T

0

(

K1[v(t)− v∗(t)], v(t)− v∗(t)
)

H
+

(

Ru(t), u(t)
)

U
dt, (6.12)

subject to (3.1) with linear A, with a target state v∗ ∈ L2(0, T ;H), and with
self-adjoint and positive operators M1, K1 : H → H and self-adjoint, positive and
invertible R : U → U .

Assume, that for given data the unique solvability of the ADAE and its formal
adjoint with respect to the quadratic cost functional has been established, e.g. via
Theorems 3.37 and 6.17. Then, by Lemma 6.5, if (v, u) are optimal, then the system

v̇ −Av − J ′1p−B1u = f, v(0) = α

−J2v = g, (6.13a)

λ̇−A′λ− J ′2µ+K1v = K1v
∗, λ(T ) +M1v(T ) = 0,

−J1λ = 0, (6.13b)

−B′1λ+Ru = 0, (6.13c)

is solvable.

6.1. Semi-discretization of the Adjoint Equation. In this section we address
the semi-discretization of the necessary optimality conditions (6.8). We start with
formulating a semi-discretization for the formal adjoint equation (6.3) in the same
way as for the state equations in Section 4. Then, we formulate the conditions
under which the semi-discretized formal adjoint equation is the formal adjoint to
the semi-discretized state equations with respect to the cost functional (6.1). This
will in particular answer the question, when does the spatial discretization of the
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necessary optimality conditions coincide with the necessary optimality condition
for the semi-discretized optimal control problem.

We define the semi-discrete approximations to the formal adjoint equation (6.3):

Problem 6.20. Consider Problem 6.1 and let Q ⊂ QH as in Assumption 3.5. As-
sume that A, K, and M are Fréchet differentiable. Let the approximation schemes
{Vk′}k′∈N, {Qk′}k′∈N to V , Q fulfill (4.1). Let k ∈ N and consider the discrete
Gelfand triples (4.5). For given w ∈ W(0, T ;V ;V ′) and ωk approximating the ter-
minal value −jM;v(w(T )) in Hk, find (λk, µk) ∈ W(0, T ;Vk, (Vk)′)×L2(0, T ;QH

′
k)

that fulfill

−λ̇k −Ak;v(t, w(t))′λk(t)− J2
′
kµk(t) +Kk;v(t, w(t)) = 0 in (Vk)′, (6.14a)

J1kλk(t) = 0 in QH
′
k, (6.14b)

for almost all t ∈ (0, T ), and

λk(T ) = ωk in H, (6.14c)

with J2k and J1k as defined in (4.6) and with Ak;v and Kk;v denoting the restrictions
of A;v and K;v onto Vk.

System (6.14) arises from necessary optimality conditions for an unknown func-
tion w ∈ W(0, T ;V ;V ′). In practice, at a discretization level k, w may not be ac-
cessible but a finite-dimensional approximation wk ∈ W(0, T ;Vk;V ′k)∩L∞(0, T ;H),
cf. Lemma 4.35. Thus, we formulate a further approximation to the formal adjoint
equation (6.14).

Problem 6.20(wk). Consider the setup of Problem 6.20. Let wk ∈ L∞(0, T ;Hk)∩
W(0, T ;Vk; (Vk)′) and let ωk approximate the terminal value −jM;v(wk(T )) in Hk.
Find (λk, µk) ∈ W(0, T ;Vk, (Vk)′)× L2(0, T ;QH

′
k) that fulfill

−λ̇k −Ak;v(t, w(t))′λk(t)− J2
′
kµk(t) +Kk;v(t, wk(t)) = 0 in (Vk)′, (6.15a)

J1kλk(t) = 0 in QH
′
k, (6.15b)

for almost all t ∈ (0, T ), and

λk(T ) = ωk in H, (6.15c)

with J2k and J1k as defined in (4.6) and with Ak;v and Kk;v denoting the restrictions
of A;v and K;v onto Vk.

We will establish conditions for solvability of Problem 6.20 for k ∈ N via a
decoupling as it was introduced for the semi-discrete state equations in Section 4.

Then we investigate convergence of the discrete solutions of (6.14) to solutions
of the formal adjoint equations (6.3). This will also give a solvability result for
the formal adjoint that is needed for the formulation of the necessary optimality
conditions given in Corollary 6.8.

We start with a splitting of the solution space.

Proposition 6.21. Consider Problem 6.20 with the operators J1k : Vk → QH
′
k and

J ′2k : QH → (Vk)′. If Assumption 4.8(a) holds, then, for all k ∈ N, J1k has a right
inverse J1

−
k and J ′2k is a homeomorphism onto its range. Furthermore, it holds

that

Vk = kerJ1k ⊕ im J1
−
k . (6.16)
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Proof. By Assumption 4.8(a) one has that J2k has a right inverse and that J ′1k is a
homeomorphism onto its range. The former implies that J ′2k is a homeomorphism
onto its range and the latter, together with finite-dimensionality of Vk that makes
every subspace complementable, implies that J1k has a right inverse, cf. Remark
3.14. The projection I − J1

−
k J1k gives the splitting (6.16). �

In view of decoupling the equations (6.14), we state the following result:

Proposition 6.22. Consider Problem 6.20, let Assumption 4.8(a) hold, let the
extensions J̄1k, J̄2k : Hk → (Qk)′ be defined as in (4.8), and let k ∈ N. Then there
is a constant γ′2(k), such that

‖J̄2
′
kqk‖H′ ≥ γ′2(k)‖qk‖Q, for all qk ∈ Qk,

If, in addition, Assumption 4.13(a) holds, then there is a constant γ′1(k), such
that

‖J̄1khk‖Q′ ≥ γ2(k)‖hk‖H , (6.17)

for all hk ∈ j(im J̄2
′
k).

Proof. By Assumption 4.8 and Proposition 6.22, J̄1
′
k, J̄2

′
k are homeomorphisms onto

their range, cf. Proposition 4.12, from which also the existence of γ′2(k) is inferred.
Given this, by Lemma 4.17, Assumption 4.13(a) implies thatHk = ker J̄2k⊕im jJ̄1

′
k.

With the arguments of Lemma 6.12, this implies that Hk = ker J̄1k⊕im jJ̄2
′
k, which,

by Corollary 3.7, implies existence of γ′1 as in (6.16). �

Based on Propositions 6.21 and 6.22, and since Assumption 3.8 has no meaning
at a fixed discretization level k, we conclude that the conditions that were sufficient
for the decoupling of the semi-discrete state equations defined in Problem 4.7, are
also sufficient for the decoupling of the semi-discretizations of the formal adjoint
equations as given in Problem 6.20.

As in the continuous case, cf. Lemma 6.12, if the conditions of Proposition 6.22
are fulfilled, then we have that

Hk = Hkc⊥ ⊕Hkdf⊥ and H ′k = Hkc
0 ⊕Hkdf

0,

where Hkc and Hkdf are defined in Lemma 4.17 and with Hkc⊥ = ker J̄1k and
Hkdf

0 = j′(Hkdf⊥) = im J̄2
′
k. In particular, we can define the decoupling projector

P[Hkc
0|Hkdf

0] : H
′
k → H ′k, (6.18)

with kerP[Hkc
0|Hkdf

0] = im J̄2
′
k and imP[Hkc

0|Hkdf
0] = j(ker J̄1k).

Lemma 6.23. Consider Problem 6.20 and let the conditions of Propositions 6.21
and 6.22 be fulfilled. Then any (λk, µk) ∈ W(0, T ;Vk, V

′
k) × L2(0, T ;QH

′
k) that

fulfill (6.14a-b) also solve

−P[Hkc
0|Hkdf

0]λ̇k(t)− P[Hkc
0|Hkdf

0]Ak;v(w(t))′λk(t)

− P[Hkc
0|Hkdf

0]Kk;v(w(t)) = 0, in V ′k

and

µk(t) = −Sk
−1
ad J̄1kj[Ak;v(w(t))′λk(t)−Kk;v(w(t))], in Qk,

where Skad := J1kjJ̄2
′
k : Qk → (Qk)′ and the equalities hold for almost all t ∈ (0, T )

as specified in Lemma 3.30.

Proof. This is a special case of Lemma 3.30 with a zero right hand side in the
algebraic constraint. �

Application of Corollary 3.31 gives necessary solvability conditions for Problem
6.20.
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Corollary 6.24. Consider Problem 6.20 and let the conditions of Propositions
6.21 and 6.22 be fulfilled. For the existence of (λk, µk) ∈ W(0, T ;Vk, (Vk)′) ×
L2(0, T ;QH

′
k) solving (6.14) it is necessary, that ωk ∈ ker J̄1k.

Application of Theorem 3.37 gives the following necessary and sufficient con-
ditions. Note that because of linearity of the equations, there can only be one
solution.

Corollary 6.25. Consider Problem 6.20 and let the conditions of Propositions
6.21 and 6.22 be fulfilled. Then, for given w ∈ W(0, T ;V ;V ′), the semi-discretized
formal adjoint equation (6.14) has a solution, if, and only if, ωk ∈ ker J̄1k and

−λ̇k(t)− P[Hkc
0|Hkdf

0]Ak;v(t, w(t))′λk(t) (6.19a)

− P[Hkc
0|Hkdf

0]Kk;v(w(t)) = 0 in (ker J1k)′, (6.19b)

λk(T ) = ωk in H, (6.19c)

for almost all t ∈ (0, T ), has a solution inW(0, T ; kerJ1k; j′(ker J̄1k)). If a solution
exists, then it is unique.

Remark 6.26. As the results above hold for a fixed discretization level k, one can
replace w by any wk, so that all derivations hold in particular for Problem 6.20(wk).

6.1.1. Convergence of the Discrete Solutions. To establish convergence of the dis-
crete solutions (λk, µk) to a solution of the continuous problem (6.3), we proceed
in a similar way as for the state equations in Section 4. We will assume existence
of a stable decoupling and prove convergence in the differential part, i.e. that the
sequence of discrete solutions to (6.19) converges to a λ ∈ W(0, T ;V ;V ′) solving
(6.10). By stability of the decoupling, we then can reconstruct convergent sequences
of the algebraic variables µk.

The formal adjoint equation is linear in (λ, µ) so that one can employ the theory
of Galerkin approximations for linear evolution equations, see, e.g., [161]. However,
as discussed in Section 4, a standard semi-discretization of the ADAE (6.3) leads
to an external approximation scheme to (6.19). Also, existence and uniqueness of
solutions will depend on properties of the Fréchet derivative A;v of the nonlinearity
A of the state equations (3.1). We will establish convergence for a generic case of
A, for which the results on external approximations derived in Section 4.4 carry
over to the approximation of the adjoint equation.

We start with formulating the counterpart to Assumption 4.28, that ensured
uniform boundedness, semi-coerciveness, and pseudomonotonicity of the nonlinear-
ity in the state equations, for the operator A;v(t, w(t))′ : V → V ′ from the formal
adjoint (6.3). For the case that w ∈ W(0, T ;V ;V ′) is not directly available but a
sequence {wk}k∈N ⊂ W(0, T ;V ;V ′) that converges to w in L2(0, T ;V ), cf. Prob-
lem 6.20(wk), in this section, we formulate the conditions uniformly with respect
to such a converging sequence. In Remark 6.39 will discuss how the conditions can
be relaxed for the case that wk ≡ w ∈ W(0, T ;V ;V ′) as defined in Problem 6.20.

Assumption 6.27. Consider Problem 6.4 and its finite-dimensional approximation
defined in Problem 6.20. Given a {wk}k∈N ⊂ L2(0, T ;V ) such that wk ⇀ w in
L2(0, T ;V ), as k ∈ N. For k ∈ N consider

A;v(wk)′ : L2(0, T ;V )→
(

(0, T )→ V ′
)

: v 7→ NA;v(wk)′v, (6.20)

defined via the Nemyckij map of A;v(wk) : (0, T )×V → V ′ : (t, v) 7→ A;v(t, wk(t))′v.
We assume that A;v(wk)′ : L2(0, T ;V )→ L2(0, T ;V ′) is bounded and that it has

the following properties:
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(a) Bounded Growth: There is γ ∈ L1(0, T ) and β : R → R, increasing, such
that for all v ∈ V with A;v(t, wk(t))′ ∈ H ′ for almost all t ∈ (0, T ) it holds
that

‖A;v(t, wk(t))′‖H′ ≤ β(‖v‖H)(γ(t) + ‖v‖H), (6.21)

(b) wk-uniform Semi-Coerciveness: There is c0 > 0, c1 ∈ L2(0, T ), and c2 ∈
L1(0, T ), such that for all v ∈ V :

〈

A;v(t, wk(t))′v, v
〉

V ′,V
≥ c0‖v‖2

V − c1(t)‖v‖V − c2(t)‖v‖2
H , (6.22)

and
(c) wk-uniform Pseudomonotonicity, cf. [133, Def. 2.1]: For given {uk}k∈N ⊂

L2(0, T ;V ), with uk ⇀ u ∈ L2(0, T ;V ), it holds that if

lim sup
k→∞

〈

A;v(wk)′uk, uk − u
〉

V′,V ≥ 0

then it follows that for any v ∈ L2(0, T ;V ),
〈

A;v(w)′v, u− v
〉

V′,V ≤ lim inf
k→∞

〈

A;v(wk)′uk, uk − v
〉

V′,V . (6.23)

The assumed bounds in (a) and (b) are independent of k ∈ N and hold for almost
all t ∈ (0, T ).

Remark 6.28. We will base our convergence analysis on vk-pseudomonotonicity,
since we can show that for a generic case, that includes the Navier-Stokes Equation
as given in Problem 3.1(NSE), the vk-pseudomonotonicity carries over from the
state equations to the formal adjoint so that we can directly apply Theorem 4.39.
However, considering the linearity of the equation one may also extend standard
results, as given in [161], to the considered setup of external approximations and
k-dependent operators.

Proposition 6.29. Consider Problem 3.1 and assume that the Nemyckij map of
A : (0, T )×V → V ′ is given as the sum of a strongly continuous Ac : L2(0, T ;V )→
L2(0, T ;V ′) and a linear, bounded, and positive part Am : L2(0, T ;V )→ L2(0, T ;V ′).
Then,

(a) A = Am +Ac is pseudomonotone.

If, in addition, A is Fréchet-differentiable, then

(b) the linear operator A;v(w)′ : L2(0, T ;V )→ L2(0, T ;V ′) is pseudomonotone,
for all w ∈ L2(0, T ;V ).

If, in addition, w 7→ A;v(w) is continuous, then

(c) A;v(wk)′ : L2(0, T ;V )→ L2(0, T ;V ′) is wk-pseudomonotone, for any strongly
convergent {wk}k∈N ⊂ L2(0, T ;V ).

Proof. Ad (a): Consider a sequence of uk ∈ V, such that uk ⇀ u ∈ V. Then,
because of V ′′ = V, for all f ∈ V ′′ = V, we have that

〈

Amuk − Au, f
〉

V′,V =
〈

uk − u,Am′f
〉

V,V′ → 0, which means that Am is demicontinuous. Then, A as
the sum of a monotone and demicontinuous and a strongly continuous operator, is
pseudomonotone [162, Prop. 27.6].

Ad (b): Since Am is linear, Am
;v (·)′ = Am′ and, thus, Am

;v (·)′ again is linear,
bounded, and monotone. Since Ac is strongly continuous, it is compact and thus
A;v(w) is compact, cf. [87, Lem. 4.4.1]. Since then A;v(w)′ is compact [135] and,
thus, as A;v(w)′ is linear, it is also strongly convergent [162, Prop. 26.2]. Then the
claim follows with the arguments of (a).

Ad (c): Since the mapping A;v(w) 7→ A;v(w)′ is linear and preserves the norm
and since the considered spaces are reflexive, we have that L2(0, T ;V ) ∋ w 7→
A;v(w) ∈ L(L2(0, T ;V ), L2(0, T ;V ′)) is continuous. Let {wk}k∈N ⊂ L2(0, T ;V ) be
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such that wk → w in L2(0, T ;V ), then ‖A;v(wk)′ −A;v(w)‖L(V,V′) → 0, as k →∞.
We show that for {uk}k∈N ⊂ V, such that uk ⇀ u ∈ V, it holds that

lim sup
k→∞

〈

A;v(wk)′uk, uk − u
〉

V′,V = lim sup
k→∞

〈

A;v(w)′uk, uk − u
〉

V′,V

and that, for any v ∈ L2(0, T ;V ),

lim inf
k→∞

〈

A;v(wk)′uk, uk − v
〉

V′,V = lim inf
k→∞

〈

A;v(w)′uk, uk − v
〉

V′,V .

If this is the case, then pseudomonotonicity of A;v(w)′ (that was established in (b))
will imply wk-pseudomonotonicity of A;v(wk)′, cf. the Proof of Lemma 4.29.

Since, for k ∈ N,
〈

A;v(wk)′uk, uk − u
〉

V′,V =
〈[

A;v(wk)′ −A;v(w)′ +A;v(w)′]uk, uk − u
〉

V′,V

and, with the strong convergence of {wk}k∈N and boundedness of {uk}k∈N we have
that

|
〈[

A;v(wk)′ −A;v(w)′]uk, uk − u
〉

V′,V |
≤‖A;v(wk)′ −A;v(w)′‖L(V,V′)‖uk‖V‖uk − u‖V → 0,

as k →∞, the equality of the limits superior holds. Using the same arguments,
also the equality of the limits inferior follows. �

Remark 6.30. In the optimal control setup, smoothness of the Fréchet derivative
A;v is commonly assumed, cf. Theorem 5.9.

By Proposition, in certain cases, compactness and monotonicity properties of A
are carried over to A;v(w)′. To ensure a stable decoupling via smoothness properties
of A;v(w)′, we introduce another assumption. See Assumption 4.34 for its coun-
terpart for the semi-discrete state equations and Assumption 6.13 for the infinite-
dimensional version.

Assumption 6.31. Consider Problem 6.20(wk). Given {wk}k∈N ⊂ W(0, T ;Vk; (V ′k))
that is uniformly bounded in L2(0, T ;V ′) ∩ L∞(0, T ;H). Then K;v(t, wk(t)) is
bounded in L2(0, T ;H ′) uniformly in k and ωk is sufficiently smooth for all k ∈ N

and any solution (λk, µk) ∈ W(0, T ;Vk; (Vk)′)×L2(0, T ;QH
′
k) to (6.14) is such that

‖A;v(wk)′λk(t)‖H′ and ‖µk(t)‖Q are bounded almost everywhere on (0, T ) indepen-
dent of k.

Finally, we impose the same assumptions on the approximation schemes that
were used to establish convergence of the semi-discrete state solutions, cf. Remark
4.38(d).

Assumption 6.32. Consider Problem 6.20(wk). We assume that J1 = J2, and
that {Vk}k∈N and {Qk}k∈N are such that they fulfill Assumption 4.5 and such that
J2k and J̄2k allow for splittings of the equations and solutions as in the continuous
case and uniformly with respect to the discretization parameter k, i.e. Assumption
4.8 and 4.13 hold.

Remark 6.33. Consider the formal adjoint equation (6.3) and its finite-dimensional
approximation defined in Problem 6.20(wk) with given {wk}k∈N ⊂ W(0, T ;Vk; (V ′k))
and a w ∈ W(0, T ;V ;V ′) such that wk ⇀ w in L2(0, T ;V ) ∩ L∞(0, T ;H) and
wk(T ) → w(T ) in H. With the findings and assumptions of this section and with
Assumptions 6.13, 6.15, and 3.5, that were imposed to decouple the formal adjoint
equation, we have established the situation that was described in Remark 4.38. In
particular, we have

(a) Space Regularity: As it follows by Assumption 3.5, 6.13, uniform with re-
spect to k, and Assumption 6.31.
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(b) Decoupling of Equation and Solution Spaces: As it follows by Assumptions
3.5, 6.15, and 6.32 that in particular include the assumption that J1 = J2.

(c) Consistency of the Data: Since Equations (6.3b) and (6.15b) are homoge-
neous, there is no additional smoothness constraint on the right hand sides.
For solvability, however, we need assume consistency of the terminal value,
i.e., considering that J1 = J2, that −jM;v(w(T )) ∈ ker J̄2, cf. Theorem
6.17.

(d) Stable Approximation Schemes: As follows by Assumptions 6.32 and, in
particular, by the assumed symmetry J1 = J2 that makes all results on the
convergence and stability of the inherent external approximation schemes
from Section 4.3 hold for the considered case. Note that because of the
homogeneity of (6.3b) there is no need for a particular choice of the discrete
right inverses as for the state equations, cf. Lemma 4.26.

(e) Consistent and Convergent Approximation of the Initial Value: As it is
ensured by the arguments presented in Section 4.5 and the homogeneity of
(6.3b) and (6.15b).

(f) Symmetry: To show convergence of the discrete solutions to a solution of
the continuous problem, we have assumed that J1 = J2, cf. also Remark
4.31.

(g) Continuity, Coerciveness, Monotonicity and Boundedness of A;v(wk)′ and
A;v(w): As it follows by Assumption 6.27. In view of applications, we will,
in particular, consider cases for which Proposition 6.29 applies. Also, as-
suming that wk 7→ A;v(wk)′ is continuous and since A;v(wk)′λk is assumed
uniformly bounded in H′ the assumptions of Lemma 4.37 are fulfilled.

Thus, applying Theorem 4.39, we can state the following theorem:

Theorem 6.34. Consider Problem (6.4) and its finite-dimensional approximation
defined in Problem 6.20(wk), with J1 = J2. Given {wk}k∈N ⊂ W(0, T ;Vk; (V ′k))
and a w ∈ W(0, T ;V ;V ′) such that wk ⇀ w in L2(0, T ;V ′) ∩ L∞(0, T ;H), and
such that K;v(·, wk(·)) → K;v(·, wk(·)) in L2(0, T ;H ′). Let all assumptions listed
in Remark 6.33 hold. In particular, let the terminal value −jM;v(w(T )) and its
approximations −jM;v(wk(T )) be consistent as specified in Definition 3.35 and
convergent as defined in Remark 4.38(e).

For k ∈ N let (λk, µk) ∈ W(0, T ;Vk, H
′
k) × L2(0, T ;Qk) be a solution of the

discrete problem. Then there is (λ, µ) ∈ W(0, T ;V,H ′)×L2(0, T ;Q) such that λk ⇀
λ in W(0, T ;V,H ′) and µk ⇀ µ in L2(0, T ;Q) and (λ, µ) solves the continuous
problem. The convergence is in terms of subsequences.

If the continuous problem has only one solution, then the complete sequence
{(λk, µk)}k∈N converges.

If V →֒ H is compact, then λk → λ in L2(0, T ;H).

Remark 6.35. Convergence of the Galerkin approximations defined in Problem 6.20
with J1 = J2, can be obtained using the above results and considering w instead
of wk at every discretization level. In this case the operator A;v is independent of
k, and the required uniformity in k in Assumptions 6.27 and 6.31 can be omitted.
Then, also continuity of w 7→ A;v(w), used to establish convergence in µk can
be dropped, as well as Proposition 6.29(c). The case that the optimal state w
is available is rather theoretical, however, Theorem 6.34, in particular, addresses
solvability of the formal adjoint equation (6.3) and thus gives sufficient conditions
for the validity of the necessary optimality conditions (6.8).

6.2. Optimal Control of the Semi-discrete Equations. The results of the
previous section establish convergence of discrete approximations solving Problem
6.20 to the multipliers (λ, µ) that are part of the continuous optimality conditions
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(6.8). In general applications, however, in (6.14), the linearization point w is not
available. Also, in general, the discrete approximations (λk, µk) do not define nec-
essary optimality conditions, cf. Corollary 6.8, for Problem 6.1 formulated for a
discretization level k.

In this section, we formulate necessary conditions for optimality with respect to
(6.1) of (vk, u) solving the spatially discretized state equations (6.2).

We start with formulating the optimal control problem Problem 6.1 for the
spatial discretization level k.

Problem 6.36. Consider the setup of the abstract optimal control problem as
defined in Problem 6.1. In particular, let U be the space of input functions, let
M : H → R and K : (0, T ) × V × U → R be Fréchet differentiable weighting func-
tions, and let K(t, v, u) = K1(t, v) + K2(t, u) be such that the Nemyckij mappings
associated with the partial derivatives, K;u : U → U ′ and K;v : V → V ′, are well
defined.

Consider the task of minimizing the cost functional

J : Vk × U → R : J (vk, u) =M(vk(T )) +

∫ T

0

K(t, vk(t), u(t)) dt, (6.24)

subject to the constraints Gk(vk, pk, u) = 0 defined via Gk(vk, pk, u) = 0, if (vk, u) ∈
Vk × U solve

v̇k(t)−Ak(t, vk(t))− J ′1kpk(t)−B1ku = fk(t) in (Vk)′, a.e. in (0, T ), (6.25a)

−J2kvk(t) = gk(t) in QH
′
k, a.e. in (0, T ), (6.25b)

vk(0) = αk in Hk, (6.25c)

for a pk ∈ L2(0, T ;QH
′
k) and where the restrictions Ak, J ′1k, J2k, fk, gk, αk, and

B1k of given A, J ′1, J2, f , g, α and B1 are defined as in Problem 4.7.

As in the continuous case, in view of formulating necessary optimality condi-
tions as in Theorem 5.5, we formally define an adjoint equation to (6.25) via an
application of Lemma 6.5.

Corollary 6.37 (of Lemma 6.5). Consider Problem 6.36 and assume that A is
Fréchet differentiable. If for some w ∈ W(0, T ;V ;V ′), the functions (λk, µk) ∈
W(0, T ;Vk; (Vk)′)× L2(0, T ;QH k) solve

−λ̇k(t)−Ak;v(t, w(t))′λk(t)− (J2k)′µk(t) +K;v(t, w(t)) = 0 in (Vk)′, (6.26a)

J1kλk(t) = 0 in QH
′
k, (6.26b)

for almost all t ∈ (0, T ), and

λk(T ) = −jM;v(w(T )) in Hk,
(6.26c)

meaning that
(

λk(T ), hk

)

H
= −

(

jM;v(w(T )), hk

)

H
for all hk ∈ Hk, then Λk :=

(λk, µk, λk(0)) is in Vk ×QHT k ×Hk =
(

(Vk)′ ×QHT k
′ ×Hk

)′
and

ΛkGk;(v,p)(w) + J;(v,p)(w) = 0 in (Vk)′ ×QHT k
′. (6.27)

Then, applying Corollary 6.8, we can state necessary optimality conditions for
Problem 6.36:

Corollary 6.38. Consider Problem 6.36 and assume that the DAE (6.25) has a
unique solution for all inputs. Let u0 ∈ U and let (vk(u0), pk(u0)) be the correspond-
ing solution. If (vk(u0), u0) ∈ W(0, T ;Vk; (Vk)′)×L2(0, T ;QH k) is a local minimum
of (6.24), and if there is (λk, µk) ∈ W(0, T ;Vk; (Vk)′) × L2(0, T ;QH k) solving the
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formal adjoint equation (6.26) at w = vk(u0), then (vk(u0), pk(u0), λk, µk, u0) is a
solution to the system

v̇k(t)−Ak(t, vk(t))− J ′1kpk(t)−B1ku0(t) = fk(t) in (Vk)′,
(6.28a)

−J2kvk(t) = gk(t) in QH
′
k,
(6.28b)

−λ̇k(t)−Ak;v(t, vk(t))′λk(t)− J ′2kµk(t) +K;v(t, vk(t)) = 0 in (Vk)′, (6.28c)

J1kλk(t) = 0 in QH
′
k, (6.28d)

for almost all t ∈ (0, T ), and

vk(0) = αk in H, (6.28e)

λ(T ) + jM;v(v(T )) = 0 in Hk, (6.28f)

and

−λkB1k +K;u(u0)′ = 0 in U ′. (6.28g)

Proof. This is an application of Corollary 6.8. Note that taking the dual commutes
with restricting to finite-dimensional spaces, i.e. J ′1k = (J1k)′ : QH k → (Vk)′. Also,
considered as a map from Vk to (Vk)′, it holds that (Ak);v(vk) = A;v(vk). �

Remark 6.39. To ensure that any u ∈ U uniquely defines a solution to (6.25) it is
necessary that B1k : U → (Vk)′ is injective. This is not a restriction in theory, as
B1k is bounded, since by Proposition 4.6 Vk is the image of a bounded projection,
and U is a Hilbert space. Thus, one can factor out the kernel of B1k, cf. Remark
6.3.

Remark 6.40. The results of Section 6.1 establish conditions for existence of solu-
tions for the abstract formal adjoint equation defined in Problem 6.4 and to the
discrete formal adjoint equation defined in Problem 6.20. However, in their formula-
tion, they are not applicable to prove convergence of solutions of the formal discrete
optimality system (6.28) to a solution of the abstract optimality system (6.8). Here,
a major obstacle is that the discrete states (vk, pk) only converge weakly towards
the states (v, p) of the abstract equations (3.1)(Sym), cf. Theorem 4.39. For appli-
cation of Theorem 6.34 that establishes convergence in the Galerkin approximations
of the adjoint states defined in Problem 6.4, one needs strong convergence of the
sequences K;v(·, vk(·)) and M;v(vk(T )) in L2(0, T ;H ′) and H ′, respectively.
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7. Iterative Solution of the Nonlinear Optimality System

In this section we investigate Newton schemes to solve the abstract optimality
system (6.8). A direct application of a Newton iteration to the optimality system
leads to a sequence of linear problems. We give sufficient conditions, that extend
standard assumptions to the differential-algebraic setup, to prove existence of the
Newton iterates and convergence of the sequence. As a side product, a direct
proof for solvability of corresponding linear-quadratic optimal control problems is
obtained. Under the same conditions, one may consider the reduced cost functional
and a Newton scheme for the gradient of the reduced cost functional. In this case,
having assumed solvability of the formal adjoint equations, convergence is proved
as for equality constrained optimal control problems in Banach spaces.

All results are given for the abstract setting, but, in particular, apply for semi-
discrete formulations.

We consider the optimal control problem defined in Problem 6.1 and the formal
necessary optimality conditions (6.8) that are given in Corollary 6.8 and which we
will write in short form as

v̇ −A(v)− J ′1p−B1u = fv, v(0) = v0,

−J2v = fp, (7.1a)

−λ̇−A′;v(v)λ− J ′2µ+K;v(v) = fλ, λ(T ) + jM;v(v(T )) = 0,

−J1λ = 0, (7.1b)

−B′1λ+K;u(u) = 0. (7.1c)

We will write the state equations with the formal operator G : W(0, T ;V ;V ′) ×
L2(0, T ;QH)×U → V ′×QH′×H via G(v, p, u) = 0, if (v, p, u) solves (7.1a). Recall
that the cost functional is assumed to be separated in v and u, i.e. K(v, u) =
K1(v) +K2(u). We make the following assumptions:

Assumption 7.1. Given (v∗, u∗) ∈ W(0, T ;V ;V ′) × U that, with a suitable p ∈
L2(0, T ;QH), solves (7.1a). Then, for (vε, uε) in a neighborhood of (v∗, u∗), we
have

(a) that A(vε), K(vε, uε), and M(vε(T )) are twice continuously Fréchet-diffe-
rentiable in a neighborhood of (v∗, u∗) with Lipschitz-continuous second
derivatives and M;vv independent of vε(T ),

(b) that the partial Fréchet derivative G;(v,p)(vε, pε) of the state equations (7.1a)
with respect to (v, p) is invertible and the kernel of G;(v,p,u) splits the space
W ×QH × U ,

(c) that there exists a solution (λ, µ) to (7.1b) at v∗, such that J;(v,u)(v
∗, u∗) +

λG;(v,u)(v
∗, u∗) = 0 on V × U , and

(d) that there exists a constant c > 0 such that

−〈hv(hu), λA′;vv(v∗)hv(hu)〉V,V′+

J;(v,u)2(v∗, u∗)[hv(hu), hu]2 ≥ c‖(hv(hu), hu)‖2
V×U

for (hv(hu), hp, hu) in the kernel of G;(v,p,u)(v
∗, u∗), where hp = hp(hv) is

the associated algebraic variable.

Note that Assumption 7.1 makes (v∗, u∗) part of a local solution of (7.1), cf. The-
orem 5.9, and that the parts (a) and (d) are standard for the analysis of Newton-like
schemes for optimal control problems that do not contain the endpoint penaliza-
tion M, cf. [149, p. 209] and [95, 151]. Also, they imply local uniqueness of the
solution, cf. Remark 5.10. Assuming M;vv independent of v(T ), in the analy-
sis of Newton schemes, we circumvent the difficulties that would come with state
dependent boundary conditions.
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Assumption 7.1(c) is stronger than the standard assumption that (v∗, u∗) are
locally optimal, as it demands the existence of a solution of the formal adjoint
equation, cf. Remark 6.9.

Assumption 7.1(b) is also more restricting than just assuming the submersion
property of G;(v,p,u) at (v∗, u∗) used to formulate necessary optimality conditions,
cf. Theorem 5.2 and the discussion thereafter. However, invertibility of G;(v,p) is
often used to define well-posedness of nonlinear equations, cf. eg. [49, pp. 297] for
the Navier-Stokes Equation, and can be established for concrete applications, cf.,
e.g., [1, 72, 149].

The reference point is the Newton scheme formulated in Banach spaces, cf. [81]
and the textbooks [82] and [34]. The results on Newton schemes listed in [125]
are formulated for finite dimensions with the perspective of being generalized to
Banach spaces.

The steps of the Newton scheme applied to optimality systems as (7.1) can be
interpreted as a sequence of linear-quadratic optimal control problems [149], often
referred to as SQP. This interpretation and its implications for PDE constraints
are investigated, e.g., in [4, 5, 69, 72, 148].

In optimal control a Newton step requires the Hessian Ĵ;uu, i.e. in the setting
of (7.1) the operator [A′;v(v)λ];v. There are definitions to Ĵ;uu that lessen the
computational effort while preserving the convergence properties, see [72, 95] for
formulations of Broyden’s or the BFGS update schemes (see [126] for an overview)
for the approximated Hessian in infinite-dimensional spaces.

If the cost functional is quadratic as in (6.12), then one can obtain a linear
scheme by linearizing the state equations and setting up the optimality system
for the current linear-quadratic problem. This approach is the same as neglecting
[A′;v(v)λ];v in a Newton scheme for (7.1). Then, if one solves the state equations
(7.1a) and the adjoint equations (7.1b) consequently in an iterative fashion, one
obtains a Newton Gauss-Seidel iteration, cf. [125], for the blocks (7.1a) and (7.1b).
This decoupling, however, may destroy the convergence properties that may hold
for the coupled equations [84, 118, 157].

A decoupling of the Newton scheme for (7.1), that is shown to be still locally
quadratically convergent, and linearly convergent inexact variants are given with a
class of so called tangential block Newton methods [29, 76, 118].

In implementations, rounding and discretization errors occur. For this reason,
one considers inexact Newton methods, see, e.g., [34, 75, 137, 151] for formulations
in function spaces.

7.1. Linearizations and Newton Schemes for the Functional Equations.
For illustration, consider the task of finding x in a Banach space X, such that

P (x) = 0 ∈ Y, (7.2)

where Y is a Banach space and P : X → Y .
Given a starting value x0 ∈ X, the Newton scheme defines a sequence {xk}k∈N

via
P;v(xk)[xk+1 − xk] = −P (xk), k = 1, 2, · · · . (7.3)

Common sufficient conditions for the convergence of Newton schemes establish
the following generic situation.

Assumption 7.2. For a starting value x0, the sequence {xk}k∈N defined in (7.3)
converges to a x∗ ∈ X solving (7.2), if

(a) x0 is close to an x∗,
(b) P;v(x0) is invertible, and
(c) P;v(x) is smooth in a neighborhood of x0.
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In the pioneering work [81] on Newton schemes in Banach spaces, the conditions

‖P;v(x0)P (x0)‖ ≤ η0, (7.4a)

‖P;v(x0)‖ ≤ B0, (7.4b)

‖P;vv(x)‖ ≤ K on Ω0, (7.4c)

with h0 := η0B0K ≤ 1
2 , Ω0 = U r(x0), and r = 1−

√
1−2h0

h0
η0, were used to prove

quadratic convergence in Ω0.
If (7.4b) can be replaced by a uniform bound

‖P;v(x)‖ ≤ B on Ω0, (7.4b∗)

then the domain of quadratic convergence Ω0 = U r(x0) is specified from the

requirements h = η0BK < 2 and r > r̂ =
∑∞

k=0

(

h
2

)2k−1
, cf. [82, Thm. 5,

Ch. XVIII.2].
Throughout this section, for x0 in a Banach space X and a r > 0, we will use

the notation
Ur(x0) := {x ∈ X : ‖x− x0‖ < r}

and its closure U r(x0) in X to denote a suitable neighborhood of x0.

Remark 7.3. Condition (7.4c) can be replaced by Lipschitz continuity of P;v(x),
cf., e.g., [125, 12.6.2] for a general or [4, Sec. 3] for an optimal control setting,
or by affine covariant Lipschitz conditions [34, Thms. 2.2, 2.3]. Given Lipschitz
continuity of P;v and an estimate of ‖P;v(x∗)−1‖ one can use the results in [132] to
establish convergence.

7.2. Newton for the Optimality Conditions. We will establish conditions un-
der which a Newton iteration for (7.1) can be analyzed via an uniform bound
as in (7.4b∗). Having reformulated (7.1) as an operator equation P (x) = 0,
with x := (v, p, λ, µ, u), the Fréchet derivative of the optimality system taken at
xk = (vk, λk, uk) reads

P;x(xk) =





0 F1(vk) B
F ad

1 (vk) W (vk, λk) 0
B′ 0 R(uk)



 :

[

W
Q

]

×T

[

W
Q

]

×U →
[

V ′
Q′

]

×
[

V ′
Q′

]

×U .

(7.5)
Here, and in what follows, we use the abbreviations W := W(0, T ;V ;V ′) and

V = L2(0, T ;V ), Q = L2(0, T ;Q) and U = L2(0, T ;U), for the function spaces that
were introduced in Section 3. The symbol ×T is used to denote that because of
initial and end conditions, the domain of definition is restricted to

W ×T W := {(v, λ) ∈ W2 : v(0) = 0, λ(T ) +M;vv(vk(T ))v(T ) = 0} ⊂ W2.

The operator components in (7.5) are given via

F1(vk)[v, p] +Bu =

[

v̇ −A;v(vk)v − J ′1p
−J2v

]

+

[

−B1u
0

]

, (7.6a)

W (vk, λk
v)[v, p] =

[

−λk
vA;vv(vk)v +K;vv(vk)v

0

]

, (7.6b)

F ad
1 (vk)[λ, µ] =

[

−λ̇−A′;v(vk)λ− J ′2µ
−J1λ

]

, (7.6c)

and

B′[λ, µ] +R(uk)u = −B′1λ+K;uu(uk)u. (7.6d)

Then, application of the Newton scheme as in (7.3), gives:
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Algorithm 7.4 (Newton Scheme for the Optimality Conditions). Given x0 =
(v0, λ0, u0) ∈ W ×T W×U , define xk = (vk, pk, λk, µk, uk), for k = 1, 2, · · · via the
iterative scheme:

(1) Solve P;x(xk)∆k
x = −P (xk), i.e.





0 F1(vk) B
F ad

1 (vk) W (vk, λk) 0
B′ 0 R(uk)









(∆k
λ,∆

k
µ)

(∆k
v ,∆

k
p)

∆k
u



 = (7.7)

−













v̇k −A(vk)− J ′1pk −B1u
k − fv

−J2v
k − fp

−λ̇−A′;v(vk)λk − J ′2µk +K;v(vk)− fλ

−J1λ
k

−B′1λk +K;u(uk)













,

for ∆xk.
(2) xk+1 = xk + ∆k

x.

Remark 7.5. Because the equations are linear in (p, µ), there exists no need for a
starting value for these variables.

Remark 7.6. Because of the linearity of the algebraic equations imposed by F1 and
F ad

1 , one has that all iterates xk, k ≥ 1, are consistent, i.e. J2v
k = fp and J1λ

k = 0.

To prove existence and convergence of the sequence defined by Algorithm 7.4 to
a candidate optimal solution x∗, we first establish invertibility of P;x(x) at x∗ and
then use a result from operator perturbation theory [83] to show that invertibility
is also given for x0 close to x∗.

To account for the differential-algebraic structure of the equations, we will give
a direct proof. We extend the arguments from [97] to fit the setup of end point
penalization in (6.1) and the standard second order sufficiency conditions (6.9).

In what follows, we will omit the dependencies of the components of (7.5) on
the linearization point, i.e. we will write, e.g. F1 instead of F1(v∗). Also, we will
use the abbreviations

X :=

[

W
Q

]

×T

[

W
Q

]

× U and Y ′ =

[

V ′
Q′

]

×
[

V ′
Q′

]

× U .

Lemma 7.7. Consider P;x as defined in (7.5) and consider (v∗, u∗) ∈ W × U for
which Assumption 7.1 holds. Assume there exists an ε > 0 such that for all v ∈
Uε(v∗), there exists a solution (λ, µ) to F ad

1 [λ, µ] = 0 with the terminal condition
λ(T ) + jM;vvv(T ) = 0. Then there is no sequence xk = (vk, pk, λk, µk, uk) ∈ X ,
k = 1, 2, . . . , with ‖xk‖X = 1, such that P;xx

k → 0 as k →∞.

Proof of Lemma 7.7. By Assumption 7.1(c), there exists a λ∗ ∈ W associated with
(v∗, u∗) via (λ∗, µ∗) solve (7.1b) at v∗, so that we can consider P;x := P;x(v∗, λ∗, u∗).
By Assumption 7.1(b), the operator F1 : W×QH → V ′×Q′H is invertible. We first
show, that with the given assumption on jM;vvw, the operator F ad

1 is invertible
too, i.e. F ad

1 [λ, µ] = g, with λ(T ) + jM;vvv(T ) = 0, has a unique solution for any
g ∈ V ′ ×Q′H and for v ∈ Uε(v∗). Note, that for zero terminal condition λ(T ) = 0
one has F ad

1 = F ′1 and F ′1 is invertible, as F1 is invertible, cf. [82, Thm. 4(2.XII)].
Thus, for any g ∈ V ′ × Q′H we find that [λ, µ] = [λh, µh] + [λp, µp] is a solution
to F ad

1 [λ, µ] = g, where [λh, µh] solves F ′1[λh, µh] = g, λh(T ) = 0 and [λp, µp] is a
solution of F ad

1 [λp, µp] = 0, λp(T ) + jM;vvw(T ) = 0, which exists by assumption.
There cannot be a different solution to F ad

1 [λ, µ] = g as the difference z of two
solutions must solve the homogeneous equation F ad

1 z = F ′1z = 0, which means that
z = 0, since F ′1 is invertible.



85

Now, assume the converse, i.e., there exists a sequence {xk}k=1,2,... ⊂ X with
‖xk‖X = 1, for all k ∈ N, and with P;xx

k → 0 as k →∞.
By Assumption 7.1(b), the input to state map x : u 7→ (v(u), p(u)), defined via

G(v, p, u) = 0, is Fréchet differentiable and, thus, locally Lipschitz-continuous [160,
Thm. 4.B]. Thus, by Remark 5.8, we have that the tangent space T(v0,p0,u0) =

{(x;u(hu) : hu ∈ U} coincides with the kernel of the operator
[

F 1 B
]

as defined in
(7.6a). Since, by Assumption 7.1(b), T(v0,p0,u0) splits the domain of

[

F 1 B
]

, we
can assume that (vk, pk, uk) ∈ T(v0,p0,u0), as a part (vk

r , p
k
r , 0) in the complement of

T(v0,p0,u0) goes to zero with F 1[vk
r , p

k
r ]→ 0, as k →∞.

From P;xx
k → 0, computing the dual product of the three components of P;xx

k

with −(λk, µk), (vk, pk), and uk, we get that

−
〈

(λk, µk), F1[vk, pk]
〉

−
〈

λk, B1u
k
〉

+
〈

F ad
1 [λk, µk], (vk, pk)

〉

+

+
〈

[K;vv − λ0A;vv]vk, vk
〉

+
〈

B′1λ
k, uk

〉

+
〈

K;uuu
k, uk

〉

= −
〈

λk, v̇k
〉

−
〈

λ̇k, vk
〉

+
〈

[K;vv − λ0A;vv]vk, vk
〉

+
〈

K;uuu
k, uk

〉

=
(

jM;vvv
k(T ), vk(T )

)

+
〈

[K;vv − λ0A;vv]vk, vk
〉

+
〈

K;uuu
k, uk

〉

≥ c‖(uk, vk)‖2
V×U (7.8)

goes to zero. This implies that uk → 0 as k →∞. Here we have used the properties
of the dual operators, the symmetry of the dual product, and the optimality condi-
tion from Assumption 7.1(a). From the invertibility of F1 and F ad

1 , we obtain that
(vk, pk) and (λk, µk) go to zero, and, thus, a contradiction to the initial assumption
that ‖xk‖X = 1 for all k ∈ N. �

Lemma 7.8. Consider P;x as defined in (7.5) and let the assumptions of Lemma
7.7 hold. Then, kerP ′;x = {0}.
Proof. Computing and comparing the corresponding dual products, we find that

the dual operator of

[

0 F1

F ad
1 W

]

is given via

[

0 F1

F ad
1 W ′

]

:

[

W
Q

]

×T ′

[

W
Q

]

→
[

V ′
Q′

]

×
[

V ′
Q′

]

,

with×T ′ referring to the dual side conditions jM′;vvwλ(T )+wv(T ) = 0 and wλ(0) =
0. We assume the contrary, i.e. that there exists 0 6= (wv, wp, wλ, wµ, wu) =: w ∈
D(P ′;x), with





0 F1 B
F ad

1 W ′ 0
B′ 0 R′









(wv, wp)
(wλ, wµ)
wu



 = 0. (7.9)

The second block line in (7.9) implies (wλ, wµ, wu) ∈ ker
[

F 1 B
]

= T(v0,p0,u0).
Computing the dual product of the components in (7.9) with (−wv,−wp, wλ, wµ, wu),
using the definition of the dual operators, and Assumption 7.1(d), we find that

0 = −
〈

wλ, ẇv

〉

+
〈

wλ,W
′wλ

〉

−
〈

ẇλ, wv

〉

+
〈

wu, R
′wu

〉

=
(

wλ(T ), jM′;vvwλ(T )
)

+
〈

wλ,W
′wλ

〉

+
〈

wu, R
′wu

〉

≥ c‖(wλ, wu)‖2
V×U ,

and we conclude that wu = 0 and subsequently that w = 0, which is a contradiction
to the initial assumption. �

Theorem 7.9 (Cf. [97], Thm. 1). Let the assumptions of Lemma 7.7 hold. Then,
the operator P;x(x∗) defined in (7.5) is invertible. In particular, there exists a
constant c∗ > 0 such that ‖P;x(x∗)−1‖L(Y′,X ) <

1
c∗ .
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Proof. The assertion of Lemma 7.7 is equivalent to the statement: there exists a
c∗ > 0 such that

‖P;x(x∗)x‖Y′ > c∗‖x‖X , (7.10)

for all x ∈ X . This means, that P;x(x∗) is injective and, since P;x(x∗) is bounded
and defined on a whole Banach space, that imP;x(x∗) is closed in Y ′, cf. [3, Def.
2.1 and Thm. 2.5]. By invertibility of F1 and F ad

1 we have that imP;x(x∗) =
(V × QH′) × UP , where UP is the part of the range of P;x in U , cf. (7.5). Since
U is a Hilbert space, and UP is closed, it has an orthogonal complement UP⊥, and
we can write Y ′ = imP;x(x∗) ⊕ Z, where Z = {(0, 0)}2 × UP⊥. Then, the dual is
the direct sum of the annihilators Y = (imP;x(x∗))0 ⊕ Z0, cf. [83, Thm. IV.4.8].
By [83, Thm. IV.5.13] and Lemma 7.8 we have (imP;x(x∗))0 = kerP ′;x(x∗) = {0}
implying that Z0 = Y, i.e. Z = {0}, and, thus, imP;x(x∗) = Y ′.

Thus, P;x(x∗) is invertible and we can estimate

‖P−1
;x y‖X ≤

1

c∗
‖P;xP

−1
;x y‖Y′ =

1

c∗
‖y‖Y′ . (7.11)

�

Remark 7.10. For the linear-quadratic case, where the cost functional is as in (6.12),
Lemmata 7.7 and 7.8 and Theorem 7.9 establish a direct proof for the unique
solvability of the corresponding optimality system (6.13).

So far, we have established invertibility of P;x(x∗) at an optimal solution x∗ =
(v∗, p, λ∗, µ, u∗). To apply a Newton iteration we need invertibility of P;x in a
neighborhood of x∗ and, in particular, at a starting point x0. If the components of
P;x(x) are smooth in x, then there exists a neighborhood Uǫ(x

∗) on which P;x is
invertible. To formulate this, we write x = x∗+∆∗x and P;x(x) = P;x(x∗)+∆P;x(x∗),
where

∆P;x(x∗) := P;x(x∗ + ∆∗x)− P;x(x∗) =:





∆F;v(v∗) 0 0
∆W (v∗, λ∗) ∆F ad

;v (v∗) 0
0 0 ∆R(u∗)



 ,

(7.12)
with

∆F1(v∗)[v, p] : =

[

−[A;v(v∗ + ∆∗v)−A;v(v∗)]v
0

]

∆W (v∗, λ∗v)[v, p] : =
[

−
[

[λ∗v + ∆∗λ]A;vv(v∗ + ∆∗v)− λ∗A′;vv(v∗)
]

v + [K;vv(v∗ + ∆∗v)−K;vv(v∗)]v
0

]

,

∆F ad
1 (v∗)[λ, µ] : =

[

[A′;v(v∗ + ∆∗v)−A′;v(v∗)]λ
0

]

, and

∆R(u∗)u : = [K;uu(u∗ + ∆∗u)−K;uu(u∗)]u.

Lemma 7.11. If the assumptions of Lemma 7.7 hold, i.e., in particular, there exists
a locally optimal solution (v∗, u∗) ∈ W×U to Problem 6.1 for which Assumption 7.1
holds and the adjoint equation is solvable for v in a neighborhood of v∗. Consider
x∗ = (v∗, p∗, λ∗, µ∗, u∗) ∈ X , where (p∗, λ∗, µ∗) are the variables that complete
(v∗, u∗) to a solution of (7.1). Then there exists a r1 < 0, such that ‖∆P;x(x∗)‖X ≤
c1 < c0, for all ‖∆∗x‖ < r1, where ∆P is defined in (7.12) and c0 is the constant that
bounds P;x(x∗) from below, and such that P;x(x) is invertible for all x ∈ Ur1

(x∗)
with

‖P;x(x)−1‖L(Y′,X ) ≤
1

c0(1− c1

c0
)
.
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Proof. By Assumption and by Theorem 5.6, the operators setting up ∆P;x(x∗) are
Lipschitz-continuous so that ‖∆P;x‖L(X ,Y′ → 0 as ∆∗x goes to zero. Thus, there
exists a radius r1 and c1 < c0, such that ‖∆∗x‖X < r1 implies ‖∆P;x‖L(X ,Y′ ≤ c1.
Invertibility of P;x(x) = P;x(x∗) + ∆P;x(x∗) and the uniform bound for its inverse
on Ur1(x∗) then follows by [83, Thm. IV.1.16]. �

Remark 7.12. If A(v) is quadratic implying A;v(v) is linear and A;vv(v) is constant,
the contributions of A to ∆P;x reduce to A;v[∆∗v], A′;v[∆∗v], and ∆∗λA;vv. If the
cost functional is quadratic, it does not contribute to ∆P;x. Then, in particular,
smallness of ∆P;x does not depend on u.

Having established uniform invertibility of P;x(x) in a neighborhood of x∗ satis-
fying Assumption 7.1, we can formulate conditions sufficient for the convergence of
Newton’s method applied to the optimality system (7.1).

Corollary 7.13. [Cf. [34, Thm. 2.2]] Let the assumptions of Lemma 7.11 hold.
Consider (v∗, u∗) for which Assumption 7.1 holds and let x∗ := (v∗, p∗, λ∗, µ∗, u∗)
make up the corresponding solution of (7.1). If x0 is such that for constants r1,
B0, η0 > 0,

(a) ‖x∗−x0‖X < r1, where r1 is as specified in Lemma 7.11 so that there exists
a constant B with ‖P−1

;x (x)‖L(Y′,X ) ≤ B on Ur1
(x∗),

(b) ‖P (x0)‖L(X ,Y′) ≤ η0, and
(c) LBη0 < 2, where L is the Lipschitz constant of P;x on Ur1(x∗),

then the iterates of Algorithm 7.4 converge quadratically towards a solution x̄∗ of
(7.1) and the following estimates are valid:

‖xk+1 − xk‖ ≤1

2
LB‖xk − xk−1‖2,

‖xk − x̄∗‖ ≤ ‖xk − xk+1‖
1− 1

2LB‖xk − xk−1‖ .

Proof. The proof for [34, Thm. 2.2] holds also for the current assumptions. In
particular the uniform bound on the inverse and Lipschitz continuity of P;x imply
the affine covariant Lipschitz condition used in [34]. For the extension to infinite
dimension one can resort to the arguments used in the proof of [34, Thm. 2.1]. �

Corollary 7.13 bases on the conditions (7.4a), (7.4b∗), and (7.4c) replaced by
Lipschitz continuity of P ′(x). Convergence can be also assured by the variants
using condition (7.4b) or an estimate of ‖P ′(x∗)−1‖L(Y′,X ), cf. Remark 7.3.

7.3. Newton for the Reduced Cost Functional. We consider the optimal con-
trol problem Problem 6.1 and assume that Assumption 7.1 holds. By Assumption
7.1(b), the input to state map u 7→ (v(u), p(u)) is well defined [160, Thm. 4.B], and
we can define the reduced cost functional for (6.1) via Ĵ (u) := J (v(u), u). By As-
sumption 7.1(d), one has local convexity of the problem and thus local uniqueness
of an optimal control u∗ and that the necessary optimality condition Ĵ;u(u∗) = 0
is also sufficient, cf. Theorem 5.9.

We formulate the Newton scheme (7.3) directly for the optimality condition.
Given a starting value u0, we compute the sequence uk, k = 1, 2, · · · via

Ĵ;uu(uk)∆k
u = −Ĵ;u(uk), uk+1 = uk + ∆k

u. (7.13)

By Theorem 5.3 and, in particular, by Lemma 6.5 we have that

Ĵ;u(uk) = J;u(v, uk)− λB1,
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where v = v(uk) is the solution of the state equations (3.1) at uk, and where
λ = λ(v(uk)) solves the adjoint system (6.3) at v(uk)). With the assumption
J;uv = 0 one has

Ĵ;uu(uk)∆k
u = J;uu(v, uk)∆k

u − δλvB1, (7.14)

where δλv := λv;u∆k
u solves the linearized adjoint equation:

−
[

˙δλv

0

]

−
[

A;v(v)′ J ′2
J1 0

] [

δλv

µ

]

+

[

K;vv(v)δv − [A;vv(v)δv]′λ
0

]

= 0,

δλv(T ) + jM;vv(v(T ))δv(T ) = 0, (7.15)

where δv := v;u[∆k
u] solves the linearized about uk state equations with input ∆k

u:
[

δ̇v
0

]

−
[

A;v(v) J ′1
J2 0

] [

δv
p

]

+

[

B1∆k
u

0

]

= 0,

δv(0) = 0. (7.16)

For the relation of the derivative of the input to state maps and the linearized state
equations see Remark 5.11.

Thus, one arrives at Algorithm 7.14 for one Newton step uk → uk+1:

Algorithm 7.14 (Newton Scheme for the Reduced Cost Functional).

(1) Compute v = v(uk) and then λ = λ(v),
(2) Solve





F1(v) 0 B
W (v, λ) F ad

1 (v) 0
0 B′ R(uk)









(δv, p)
(δλ, µ)

∆k
u



 = −





0
0

J;u(v, uk)− λB1



 (7.17)

for ∆k
u,

(3) uk+1 = uk + ∆k
u .

The operators used in (7.17) are as defined for (7.5).
By Assumption 7.1, we have regularity of the cost functional and the constraints,

we have a local solution u∗ such that Ĵ (u∗) = 0, and we have the submersion prop-
erty of the state equations at the optimal solution. If, as for the convergence result
Corollary 7.13, we additionally assume solvability of the formal adjoint equation
(7.1b) in a neighborhood of v(u∗), we obtain local quadratic convergence of the
sequence generated by Algorithm 7.14, see [73, Thm 2.15].

Remark 7.15. Each iteration in Algorithm 7.14 requires one solve of the nonlinear
state equation and the adjoint equation. If one resorts to iterative methods to
solve (7.17), the action of Ĵ;uu onto an iterate can be determined by subsequently
computing δv and δλ in order to make use of relation (7.14).
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8. Optimal Control of Finite-dimensional Index-2 DAEs

As in the abstract setting, one can can formally set up necessary optimality
conditions by means of the formal adjoint equation, cf. Section 6.

Again, unlike the ODE case, for DAE constraints the existence and uniqueness
of solutions to the involved adjoint equations and thus to the optimality system is
in general not guaranteed, cf. [10, 12, 32, 98] and in particular [88] for the linear
quadratic case. To provide necessary and sufficient conditions for the existence of
optimal controls one can for example exploit the special structure of semi-explicit
equations, cf. [32, 47, 48], or consider linear DAEs with properly stated leading
term, cf. [9, 10, 11, 13, 98, 113]. The special case of Riccati-feedback solutions was
investigated in [99]. The general way is to regularize the DAEs and formulate the
conditions for the resulting strangeness-free system [27, 91]. In [89, 90] conditions
and procedures for the construction of state feedbacks are presented such that the
system is strangeness-free in the behavior formulation.

In our approach we make use of the structure of an optimality system that is
stated in the original variables and the original equations. We will apply a decou-
pling only for theoretical considerations. The obtained results regarding optimality
of the solutions to the Euler-Lagrange equations are already covered by [9, 10]. The
innovations we propose base on the specific structure of the semi-explicit index-2
formulation, as it arises in linearized Navier-Stokes equations. We use the struc-
ture to prove the existence of an optimal solution directly. Thereto we introduce
a differential-algebraic matrix Riccati equation that seems suitable for numerical
computations, as it is stated in the original system matrices. Also, we mention
how the necessity gap between the considered formal and the true [92] optimality
conditions can be closed in applications.

We start with investigating classical solutions to a class of finite-dimensional
DAEs and related optimal control problems that include the spatially discretized
Problems discussed in Section 3 and 6. In fact, consider Problem 4.7 and let {ψi}nv

i

and {φj}np

j be bases of Vk and Qk. Then, a solution vk and pk to (4.6a-b) always has
the representation vk(t) =

∑nv

i=1 v
i(t)φi and pk(t) =

∑np

j=1 p
j(t)ψj where the coor-

dinate vectors v(t) =
[

v1(t) . . . vnv (t)
]

∈ Rnv and p(t) =
[

p1(t) . . . pnp(t)
]

∈
Rnp are solutions to

Mv̇(t)−A(t, v(t))− JT

1 p(t) = f(t),

−J2v(t) = g(t),

on (0, T ), with coefficient matrices

M = [mnm] ∈ Rnv,nv , mnm :=
(

φn, φm
)

H
,

JT

1 = [j1nl] ∈ Rnv,np , j1nl :=
(

φn, J ′1ψ
l
)

H
, and (8.1)

J2 = [j2lm] ∈ Rnp,nv , j2ml :=
(

ψl, J2φ
m

)

Q

and with the nonlinearity

A(t, v(t)) = [an] ∈ Rnv , an :=
(

φn, A(t,

nv
∑

m=1

vi(t)φm)
)

H

and right hand sides

f(t) = [
(

φn, fk(t)
)

H
] ∈ Rnv and g(t) = [

(

gk(t), ψl
)

Q
] ∈ Rnp .

In particular, we will consider the case where the nonlinearity can be written
as A(t, v(t))[v(t)] as it comes out of the semi discretization of the Navier Stokes
Equation (3.6). We will allow for time dependent coefficients M , JT

1 , J2, as they
may arise in the case of time dependent basis functions.
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Having at hand the explicit matrix formulations of all operators, we can give
explicit representations of the decoupling operators that were considered in the
infinite-dimensional and in general semi-discrete setting in Section 3 and 4.

We will also define an associated optimal control problem and set up sufficient
optimality conditions via a formal adjoint equation, cf. Section 6 and 7. For the
linear-quadratic case as it occurs for linear state equations and quadratic costs or
in the course of Newton iterations for the general nonlinear optimality systems, see
Section 7, we state the existence of a Riccati decoupling of the optimality system.
Using this decoupling of states and adjoint states, we derive necessary and sufficient
conditions for the existence of optimal solutions.

In the main part, we will consider cost functionals that only depend on the
variable v. It will turn out that the direct inclusion of p in the cost functional
will require additional regularity of p. We will discuss how to formally include p
without needing more regularity and properties of the optimality system with the
direct inclusion of p in the end of this section.

8.1. The Finite-dimensional State Equations. We start with stating assump-
tions that ensure that the DAEs under consideration are of tractability index 2.
Then, we introduce a decoupling of the equations that identifies the differential
and algebraic parts to read off necessary conditions for consistency and regularity
of the data.

We will consider a semi-explicit semi-linear DAE with distributed control of the
form:

Problem 8.1. Let T > 0 and let nv, np, nu ∈ N. Let M ∈ C(0, T ;Rnv,nv ) be
pointwise invertible, let A : (0, T ) × Rnv → Rnv,nv be a smooth function, let J1,
J2 ∈ C(0, T ;Rnp,nv ), and let B1 ∈ C(0, T ;Rnv,nu) and B2 ∈ C(0, T ;Rnp,nu). For
given α ∈ Rnv , u ∈ C(0, T ;Rnu) and right hand sides f and g in C(0, T ;Rnv ) and
C(0, T ;Rnp), respectively, find (v, p) ∈ C1(0, T ;Rnv )× C(0, T ;Rnp) that fulfills

M(t)v̇(t)−A(t, v(t))v(t)− J1(t)Tp(t)−B1(t)u(t) = f(t), (8.2a)

−J2(t)v(t)−B2(t)u(t) = g(t), (8.2b)

on (0, T ), and

v(0) = α. (8.2c)

In order to guarantee existence of solutions (v, p) ∈ C1(0, T ;Rnv )× C(0, T ;Rnp)
of (8.2), we make the following assumption:

Assumption 8.2. Consider Problem 8.1. We assume

(a) that S := J2M
−1JT

1 is pointwise invertible,
(b) sufficient regularity of the data and the input, namely g, B2u, M−1JT

1 S
−1,

and J2 are differentiable, and
(c) consistency of the data and the input, i.e. J2(0)v(0) = g(0)−B2(0)u(0).

As a direct application of Proposition 2.6 we can state:

Proposition 8.3. Consider Problem 8.1. If Assumption 8.2(a) holds, then,for any
input function u ∈ C(0, T ;Rnu), the DAE (8.2a,b) has tractability index iµ = 2.

Remark 8.4. If M is the mass matrix of a spatial discretization, then it is, typically,
symmetric and strictly positive definite as is (8.1) if {φi}nv

i=1 is a basis. Also, if one
considers stable discretization schemes, i.e. schemes such that J1 and J2 and Vk

and Qk fulfill Assumptions 4.8 and 4.13, then also Assumption 8.2(a) is fulfilled.
This is in particular the case for discrete LBB stable finite element schemes for the
Navier Stokes equations, cf. Remark 4.15.
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Remark 8.5. If also Assumption 8.2(a) holds, then one can define the differentiation
index which will be iν = 2, cf. Remark 2.9 and [155, Exa. 2].

The following Theorem 8.6 gives a solution representation by means of the in-
herent ODE and algebraic equations, cf. Lemma 3.30 for the abstract setting, that
will be used to ensure existence and uniqueness in the linear case of System (8.2).

Theorem 8.6. Consider Problem 8.1. Each solution (v, p) of (8.2) can be repre-
sented as (vP +Qv, p), where

Qv = −M−1JT

1 S
−1[B2u+ g], (8.3a)

p = −Q−[M−1[A(Qv + vP)[Qv + vP ] +B1u+ f ] + Q̇v], (8.3b)

and vP := Pv solves the ODE

˙vP −
[

d
dtP + PM−1A(Qv + vP)

]

[Qv + vP ]− PM−1[B1u+ f ] = 0,

vP(0) = Pv0. (8.3c)

with P := I −Q, Q := M−1JT

1 S
−1J2 and Q− := S−1J2.

Proof. We rewrite (8.2) as
[

M 0
0 0

] [

v̇
ṗ

]

−
[

A(v) JT

1

J2 0

] [

v
p

]

=

[

B1u+ f
B2u+ g

]

(8.4)

and we compute the sequence of operators from Definition 2.3 as given in the proof
of Proposition 2.6. In particular, with the projectors Q = M−1JT

1 S
−1J2, which

satisfies

Q2 = Q, J2Q = J2, QM−1JT

1 = M−1JT

1 , and Q−Q = Q−,
and P = I −Q, we define

E−1
2 =

[

PM−1 [I − PM−1A]M−1JT

1 S
−1

Q−M−1 −[I +Q−M−1AM−1JT

1 ]S−1

]

(8.5)

for any A = A(v). Scaling the state equations (8.4) by E−1
2 we get

[

P 0
Q− 0

] [

v̇
ṗ

]

−
[

[

PM−1AP 0
Q−M−1AP 0

]

+

[

Q 0
−Q− I

]

]

[

v
p

]

= E−1
2

[

M−1[B1u+ f ]
B2u+ g

]

.

(8.6)
Having applied the projectors Q1, Q0P1 and P0P1, cf. Definition 2.3, to (8.6)
we obtain the three subsystems

−
[

Q 0
−Q− 0

] [

v
p

]

= Q1E−1
2

[

B1u+ f
B2u+ g

]

=

[

M−1JT

1 S
−1[B2u+ g]

−S−1[B2u+ g]

]

, (8.7a)
[

0 0
Q− 0

] [

v̇
ṗ

]

−
[

0 0
Q−M−1AP I

] [

v
p

]

= Q0P1E−1
2

[

B1u+ f
B2u+ g

]

=

[

0
Q−M−1[B1u+ f −AM−1JT

1 S
−1[B2u+ g]]

]

(8.7b)

and
[

P 0
0 0

] [

v̇
ṗ

]

−
[

PM−1AP 0
0 0

] [

v
p

]

= P0P1E−1
2

[

B1u+ f
B2u+ g

]

=

[

PM−1[B1u+ f −AM−1JT

1 S
−1[B2u+ g]]

0

]

, (8.7c)
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respectively. Since Q1+P0P1+Q0P1 = I, Equations (8.7) contain all information
of (8.6) and vice versa. We decompose v = vP +Qv, where vP := Pv so that from
(8.7a) we can deduce that

Qv = −M−1JT

1 S
−1[B2u+ g] (8.8)

and that Qv is differentiable by assumption. With v̇ = Q̇v + ˙vP and Q− ˙vP = 0,
Equation (8.7b) gives

p = −Q−M−1[A(Qv + vP)[Qv + vP ] +B1u+ f ] +Q−Q̇v, (8.9)

while (8.7c) defines the inherent ODE for vP := Pv via

˙vP−
[

d
dtP+PM−1A(Qv+vP)

]

[Qv+vP ] = PM−1[B1u+f ], vP(0) = Pv0. (8.10)

�

Remark 8.7. Note the necessity of the consistency condition in Assumption 8.2(c),
since by (8.8) the condition

J2v(0) = J2[Qv(0) + Pv(0)] = J2Qv(0) = −B2u(0)− g(0),

must hold and note, that an initial condition for p would have to fulfill (8.9) at
t = 0.

Remark 8.8. In the setting of the Navier-Stokes Equation, the projector Q realizes
the discrete Helmholtz-decomposition that splits a vector field into a divergence
free part and a part that can be expressed as the gradient of a scalar potential, cf.
[49, Cor. 3.4]. If J2 is the discrete divergence operator, then the decomposition
v = Qv+Pv =: Qv+ vP delivers that J2vP = 0 and Qv is in the range of M−1JT

1 ,
which is the discrete gradient operator in many discretization schemes. The matrix
Q− is a generalized left inverse of M−1JT

1 and can be seen as the operator that
maps the potential field Qv = M−1JT

1 ρ onto its potential ρ. Accordingly, (8.3b) is
the discrete Pressure Poisson Equation, cf. [50].

Corollary 8.9. If B2 = 0, then the solutions of (8.2) do not depend on the time
derivative of the input. The condition B2 = 0 is also necessary for the existence of
solutions for all continuous inputs.

Proof. The first assertion of Corollary 8.9 follows from the representation of the
solution as given in Theorem 8.6. For the converse direction, one concludes that
the solution component d

dt (B2u) can only exist for all continuous u if B2 = 0. �

For the results of the next sections we will always require B2 = 0 which by
Corollary 8.9 is necessary and sufficient for the admissibility of inputs that are only
continuous. This is what in [9, 10] and [134] is also assumed and referred to as
causality.

8.2. Optimal Control of Semi-explicit DAEs. We define the semi-discrete op-
timal control problem:

Problem 8.10. Consider the setup of Problem 8.1. Let U := C(0, T ;Rnu) be the
space of input functions and letM : Rnv → R and K : (0, T )×Rnv×Rnp×Rnu → R

be differentiable functionals. Consider the problem of finding an input u ∈ U such
that the cost functional

J (v, p, u) =M(v(T )) +

∫

T

0

K(t, v(t), p(t), u(t)) dt. (8.11)

is minimal, where (v, p) and u are constrained via the DAE (8.2) for given right
hand sides f and g and a given initial value α.
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For Problem 8.10, one can formally derive the associated Euler-Lagrange Equa-
tions, cf. [91] and the formulation in infinite-dimensions given in Corollary 6.8:

Problem 8.11. Consider Problem 8.10 and assume that A is differentiable. Find
(v, p) ∈ C1(0, T ;Rnv )×C(0, T ;Rnp), (λ, µ) ∈ C1(0, T ;Rnv )×C(0, T ;Rnp) and u ∈ U
that fulfill the following equations:

Mv̇ −A(v)v − JT

1 p−B1u = f, (8.12a)

−J2v −B2u = g, (8.12b)

v(0) = α, (8.12c)

− d
dt (MTλ)−AT

;v(v)λ− JT

2 µ+KT

;v(v, p, u) = 0 (8.12d)

MTλ(T ) = −MT

;v(v(T )), (8.12e)

−J1λ+KT

;p(v, p, u) = 0, (8.12f)

M;p(v(T )) = 0, (8.12g)

K;u(v, p, u)−BT

1 λ−BT

2 µ = 0, (8.12h)

where the time dependencies are dropped.

Remark 8.12. Equation system (8.12) is commonly referred to as Euler-Lagrange
equations. If it possesses a solution, then it provides necessary optimality condi-
tions, cf. Theorem 5.5 for a general formulation and [9, 92, 113] for the finite-
dimensional linear case. Note, in particular, that the optimal control problem can
be solvable also if (8.12) is not well posed [92].

We will not investigate existence of solutions here, but for the special case of
linear-quadratic control.

8.3. Linear-quadratic Optimal Control. In this section, we formulate an opti-
mality system and determine necessary and sufficient conditions for optimal solu-
tions in terms of the original equations rather than for a strangeness-free reformu-
lation, cf. [27, 91].

We investigate a linearized version of (8.2), i.e. A(t, v) = A(t), and a quadratic
cost functional:

Problem 8.13. Consider Problem 8.10 with the cost functional J be given as

J (v, p, u) =
1

2

[

v
p

]T [

V1 V12

V21 V2

] [

v
p

]

∣

∣

∣

∣

∣

t=T

+
1

2

∫ T

0





v
p
u





T 



W1 W12 Svu

W21 W2 Spu

Suv Sup R









v
p
u



 dt,

(8.13)

with R invertible and symmetric positive semi-definite weighting matrices

[

V1 V12

V21 V2

]

and





W1 W12 Svu

W21 W2 Spu

Suv Sup R



 and the state equations given as

M(t)v̇(t)−A(t)v(t)− J1(t)Tp(t)−B1(t)u(t) = f(t),

−J2(t)v(t)−B2(t)u(t) = g(t),

on (0, T ), and

v(0) = α.
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In the setting of Problem 8.13 the formal Euler-Lagrange equations, cf. [91], are
given by

Mv̇ −Av − JT

1 p−B1u = g, v(0) = v0 (8.14a)

−J2v −B2u = g (8.14b)

− d
dt (MTλ1)−ATλ1 − JT

2 λ2 +W1v +W12p+ Svuu = 0,

MTλ1(T ) = −V1v

∣

∣

∣

∣

t=T

− V12p

∣

∣

∣

∣

t=T

, (8.14c)

−J1λ1 +W21v +W2p+ Spuu = 0, 0 = V21v

∣

∣

∣

∣

t=T

+ V2p

∣

∣

∣

∣

t=T

, (8.14d)

−BT

1 λ1 −BT

2 λ2 + Suvv + Supp+Ru = 0. (8.14e)

If system (8.14) possesses a solution, then it provides necessary and sufficient
conditions for an optimal input u, cf. Remark 8.12. In what follows, we will
establish conditions for existence of solutions of (8.14).

Remark 8.14. Since we consider state solutions (v, p) ∈ C1 × C and inputs u ∈ C
candidate solutions of (8.14) must not contain u̇ or ṗ. Thus, by Corollary 8.9 it is
necessary that

B2 = 0, W2 = 0 and Spu = ST

up = 0. (8.15)

Another necessary condition for the existence of solutions, is the consistency
of the initial values. The true optimality conditions, cf. [92], necessitate that

span

[

V11 V12

V21 V22

]

⊂ span

[

MT 0
0 0

]

, i.e. V22 and V12 = V T

21 must be zero. By

combining (8.14d) and the terminal condition for λ1, we find

−J1λ1(T ) = −W21v(T ) = J1M
−TV1v(T ).

We will ensure this condition by requiring

J1M
−TV1 = 0, and W21 = WT

12 = 0. (8.16)

The latter condition means that V1 acts only on the dynamical part of v as it is
given by (8.3c). Note that these conditions are equivalent to the assumptions that
were made in [9].

Remark 8.15. In theory, setting W2, W12 = WT

21 to zero, does not cause a loss of
generality, as p is an affine linear function of v and u, cf. Theorem 8.6. Thus, in the
cost functional, all terms in p can be replaced by terms in v and u. Furthermore,
the cross terms of v and u can be formally eliminated by an input shift, cf. Section
8.5. However, for applications, the exclusion of p from the cost functional is a
restriction.

We use the invertibility of R to express u via

u = R−1[BT

1 λ1 +BT

2 λ2 − Suvv − Supp]



95

and write (8.14) in matrix vector form






f

g

0
0







=







Mv̇

0

−
d

dt
(MTλ1)

0







−







B1R−1BT

1 B1R−1BT

2 A − B1R−1Suv JT

1 − B1R−1Sup

B2R−1BT

1 B2R−1BT

2 J2 − B2R−1Suv −B2R−1Sup

AT
− SvuR−1BT

1 JT

2 − SvuR−1BT

2 SvuR−1Suv − W1 SuvR−1Sup − W12

J1 − SpuR−1BT

1 −SpuR−1BT

2 SpuR−1Suv − W21 SupR−1Sup − W2













λ1

λ2

v

p







(8.17)

If (8.15) holds, the corresponding terms in (8.17) vanish:








Mv̇
0

− d
dt (MTλ1)

0









−









B1R
−1BT

1 0 A−B1R
−1Suv JT

1

0 0 J2 0
AT − SvuR

−1BT

1 JT

2 −W1 + SvuR
−1Suv −W12

J1 0 −W21 0

















λ1

λ2

v
p









=
[

fT gT 0 0
]T

. (8.18)

Remark 8.16. By inverting the mass matrices and permuting the rows and the
columns, System (8.18) can be brought into the form of (8.2). Then, with Assump-
tion 8.2(a) we have that the (8.18) is of tractability index 2. This follows from
Proposition 2.6 and from

[

0 J2

J1 −W21

] [

0 M
−MT 0

]−1 [

0 JT

1

JT

2 −W12

]

=

[

0 J2M
−1JT

1

−J1M
−TJT

2 −W21M
−1JT

1 − J1M
−TW12

]

being invertible by Assumption 8.2(a).

Assuming further that W21 = 0, cf. (8.16), we can write the system as u =
R−1BT

1 λ1,








Mv̇
0

− d
dt (MTλ1)

0









−









G 0 F JT

1

0 0 J2 0
FT JT

2 H 0
J1 0 0 0

















λ1

λ2

v
p









=









f
g
0
0









, (8.19a)

v(0) = v0 and MTλ1(T ) = −V1v(T ), (8.19b)

with F := A − B1R
−1Suv, symmetric matrices G := B1R

−1BT

1 and H := −W1 +
SvuR

−1Suv.

8.4. Existence and Representations of Optimal Solutions. In this section,
we introduce a Riccati-decoupling for the optimality system. Using the projectors
from Section 8.1, we determine differential and algebraic parts of the obtained
differential-algebraic matrix Riccati equation and prove well-posedness. As a side-
product we establish the unique solvability of the corresponding optimality system.

We have that if (8.15) holds, then the considered Euler-Lagrange equations are
in the form (8.2), cf. Remark 8.16. Therefore, one may apply Theorem 8.6 to
identify the inherent ODE (8.10), one may use the theory for ODEs to state the
existence of solutions to the obtained linear boundary value problem, cf. [8, Thm.
3.26]. However, the reformulation as used in Theorem 8.6 will not preserve the
symmetry of (8.19) and thus makes it more difficult to investigate whether the
boundary values admit the existence of a solution. We will use a reformulation
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that preserves the Hamiltonian structure such that the existence of a solution can
be obtained via a differential Riccati equation, cf. [35, 36, 37, 130].

Lemma 8.17. Consider the semi-explicit linear DAE of index 2
[

M 0
0 0

] [

v̇
ṗ

]

−
[

A JT

1

J2 0

] [

v
p

]

−
[

B1

0

]

u =

[

f
g

]

, v(0) = v0 (8.20)

and a cost functional

J (v, u) =
1

2
[v − v∗]TV1[v − v∗]

∣

∣

∣

∣

t=T

+
1

2

∫ T

0

[

v − v∗
u

]T [

W1 Svu

Suv R

] [

v − v∗
u

]

dt,

(8.21)
which does not act onto the algebraic variable p and with symmetric positive semi-
definite weighting matrices and R symmetric positive definite. Define the matrix
functions F := A−B1R

−1Suv, G := B1R
−1BT

1 and H := −W1 + SvuR
−1Suv.

1.) Each solution (v, p, λ1, λ2) of the associated Euler-Lagrange equations as
given by (8.19) has a representation (v, p) = (vP+Qv, p) and (MTλ1, λ2) =
(λP +QTMTλ1, λ2) given by the decoupled system

Qv = −M−1JT

1 S
−1g, (8.22a)

QTMTλ1 = 0, (8.22b)

λ2 = −S−TJ1M
−T

[

H[Qv + vP ] + FTM−TλP
]

, (8.22c)

p = −Q−[M−1[F [Qv + vP ] + f ]− d
dt (Qv)]−

−Q−M−1GM−T[λP +QTFM−TλP + JT

2 λ2], (8.22d)

and
[

0 I
−I 0

] [

λ̇P
v̇P

]

−
[

G0 F0

FT

0 H0

] [

λP
vP

]

=

[

PM−1[f − FM−1JT

1 S
−1g]

PTHM−1JT

1 S
−1g

]

,

vP(0) = Pv0 and λP(T ) = −PTV1v(T ), (8.22e)

where F0 := d
dtP + PM−1FP, G0 = GT

0 := PM−1GM−TPT, H0 = HT

0 :=

PTHP and P, Q, Q− and S as defined in Theorem 8.6.
2.) If in addition

J2v
0 = g(0) and J1M

−TV1 = 0, (8.23)

then the Euler-Lagrange equations (8.19) possess a unique solution.
3.) If in addition f and g are zero, then (8.19) can be decoupled via

[

λ1

λ2

]

=

[

X1 XT

2

X2 0

] [

M 0
0 0

] [

v
p

]

, (8.24)

where X1 = XT

1 and X2 fulfill the differential-algebraic Riccati equation

d
dtM

TX1M +MTX1F + FTX1M +MTX1GX1M +H+

+MTXT

2 J2 + JT

2 X2M = 0, (8.25a)

with the terminal condition

MTX1(T )M = −V1, (8.25b)

and the algebraic constraints

MTJ1X1 = 0 and J1X1M = 0. (8.25c)

Equations (8.25a-c) uniquely define a symmetric negative semi-definite X1.
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4.) If, however, f , g and v∗ are not identically zero, then the solution of (8.19)
decouples via

[

λ1

λ2

]

=

[

X1 XT

2

X2 0

] [

M 0
0 0

] [

v
p

]

+

[

w1

w2

]

, (8.26)

where X1 and X2 are given by a solution of (8.25) and (w1, w2) is the
unique solution of

− d
dt (

[

MTw1

0

]

)−
[

MTX1G+ FT JT

2

J1 0

] [

w1

w2

]

=

[

fλ1 +MT[X1f̃v +X2g]
0

]

, (8.27)

MTw1(T ) = V1v
∗(T ),

with f̃v := f +B1R
−1Suvv

∗ and fλ1
:= [W1 − SvuR

−1Suv]v∗.

Proof. ad 1.) We write the Euler-Lagrange system, cf. (8.19), as








0 0 I 0
0 0 0 0
−I 0 0 0
0 0 0 0









d

dt









MTλ1

λ2

v
p









−









M−1GM−T 0 M−1F M−1JT

1

0 0 J2 0
FTM−T JT

2 H 0
J1M

−T 0 0 0

















MTλ1

λ2

v
p









=
[

fTM−T gT 0 0
]T

,

v(0) = v0 and MTλ1(T ) = −V1v(T ).

In order to preserve the self-adjoint structure, cf. [94], only congruence transfor-
mations should be applied, i.e. a scaling of the equations must be accompanied by
the transpose inverse scaling of the variables. In accordance to (8.6) we congruently
transform the system by

S2 :=





E−1
2

I
I



 =









P [I − PM−1F ]M−1JT

1 S
−1 0 0

Q− −[I +Q−M−1FM−1JT

1 ]S−1 0 0
0 0 I 0
0 0 0 I









,

where E2 =

[

I +M−1FQ M−1JT

1

J2 0

]

as defined in Definition 2.3 with the inverse

given in (8.5), up to a scaling by M−1. The summand that comes from the time-
dependency in the variable transformation ST

2 is given by

S2









0 0 I 0
0 0 0 0
−I 0 0 0
0 0 0 0









ṠT

2 =









0 0 0 0
0 0 0 0

− d
dtPT −Q̇T− 0 0
0 0 0 0









.

With this we get the scaled and transformed system

f̃ =









0 0 P 0
0 0 Q− 0
−PT −QT− 0 0

0 0 0 0



















˙̃λ1
˙̃λ2

v̇
ṗ











+









0 0 0 0
0 0 0 0

− d
dtPT −Q̇T− 0 0
0 0 0 0

















λ̃1

λ̃2

v
p









−









PM−1GM−TPT M−1GM−TQT− PM−1FP +Q 0
Q−M−1GM−T 0 Q−M−1FP −Q− I

PTFTM−TPT +QT PTFTM−TQT− −QT− H 0
0 I 0 0

















λ̃1

λ̃2

v
p









(8.29)
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with the transformed state and scaled right hand side








λ̃1

λ̃2

v
p









:= S−T

2









MTλ1

λ2

v
p









=









[I +QTFTM−T]MTλ1 + JT

2 λ2

J1λ1

v
p









and f̃ := S2

[

fTM−T gT 0 0
]T

, respectively. From the last line in (8.29) we
find that λ̃2 = 0 so that we can rewrite the equations for (λ̃1, v, p) as

[

P 0
Q− 0

] [

v̇
ṗ

]

−
[

PM−1GM−TPT 0
Q−M−1GM−T 0

] [

λ̃1

λ̃2

]

−
[

PM−1FP +Q 0
Q−M−1FP −Q− I

] [

v
p

]

=

E−1
2

[

M−1f
g

]

(8.30a)

and

− d
dt (PTλ̃1)− [PTFTM−TPT +QT]λ̃1 −Hv = 0. (8.30b)

Analogously to (8.7) we apply the projectors

Q1 =

[

Q 0
−Q− 0

]

, Q0P1 =

[

0 0
Q− I

]

and P0P1 =

[

P 0
0 0

]

to (8.30a) to obtain the three subsystems

−
[

Q 0
−Q− 0

] [

v
p

]

=

[

M−1JT

1 S
−1g

−S−1g

]

, (8.31a)

[

0 0
Q− 0

] [

v̇
ṗ

]

−
[

0 0
Q−M−1GM−T 0

] [

λ̃1

λ̃2

]

−
[

0 0
Q−M−1FP I

] [

v
p

]

=

[

0
Q−M−1[f − FM−1JT

1 S
−1g]

]

(8.31b)

and
[

P 0
0 0

] [

v̇
ṗ

]

−
[

PM−1GM−TPT 0
0 0

] [

λ̃1

λ̃2

]

−
[

PM−1FP 0
0 0

] [

v
p

]

=

[

PM−1[f − FM−1JT

1 S
−1g]

0

]

, (8.31c)

respectively. Using the projector property PT = PTPT to obtain the relation
d
dt (PTλ̃1) = ṖTPTλ̃1 + PT d

dt (PTλ̃1) = d
dt (PTλ̃1)−QT d

dt (PTλ̃1) + ṖTPTλ̃1

we split (8.30b) into the two subsystems

QT d
dt (PTλ̃1) −QTλ̃1 −QTHv = 0 (8.32a)

and

− d
dt (PTλ̃1)− d

dt (PT)PTλ̃1 − PTFTM−TPTλ̃1 − PTHv = 0. (8.32b)

If we then define vP := Pv and λ̃P := PTλ̃1 and decompose λ̃1 = λ̃P +QTλ̃1 and
v = vP +Qv we find that (8.31a-b) and (8.32a) define algebraic relations for

Qv = −M−1JT

1 S
−1g, (8.33a)

QTλ̃1 = −QT[HQv +HvP ] +QT ˙̃λP (8.33b)

and, with Q− ˙vP

p = −Q−[M−1F [Qv + vP ] +M−1f +M−1GM−Tλ̃1 − d
dt (Qv)], (8.33c)



99

while λ̃P and vP are defined by the coupled ODEs given by (8.32b) and (8.31c):

− ˙̃λP −
[

d
dtPT + PTFTM−TPT

]

λ̃P − PTHPvP = PTHM−1JT

1 S
−1g (8.34a)

and

v̇P − PM−1GM−TPTλ̃P −
[

d
dtP + PM−1FP

]

vP =

PM−1[f−FM−1JT

1 S
−1g]. (8.34b)

Note that we have used the projector property P = P2 to keep the symmetry in
(8.34) obvious.

In view of expressing the obtained relations in terms of the original variables
(λ1, λ2) we observe that

λ̃P = PTλ̃1 = PT[MTλ1 +QTFTλ1 + JT

2 λ2] = PTMTλ1 =: λP .

From λ̃2 = J1λ1 = 0 we confer

QTMTλ1 = JT

2 S
−TJ1λ1 = 0.

For λ2 we use QTλ̃1 = QT[I +QTFM−T]MTλ1 +QTJT

2 λ2 = QTFM−TλP +JT

2 λ2,
relation (8.33b), and the invertibility of ST = J1M

−1JT

2 to get

λ2 = −S−TJ1M
−T[H[Qv + vP ] + FM−TλP ].

Note that JT

1 M
−TPT = 0, so that λ̇P ∈ spanPT does not appear.

Similarly, one can express the equation for p in terms of (λ1, λ2) which completes
the derivation of Equations (8.22).

ad 2.)
First, we show that for any v0 and PTV1 symmetric positive semi-definite the

decoupled system (8.22) has a unique solution (vP ,Qv, p, λP ,QTMTλ1, λ2). Sec-
ond, we confer that under the consistency conditions (8.23) the solution of (8.22)
provides a solution of the Euler-Lagrange equations (8.19). Finally, by 1.) ev-
ery solution of (8.19) has a representation in (8.22), such that in summary the
Euler-Lagrange equations must possess a unique solution.

We first consider in (8.22e-f) the case with a zero right hand side. With the
Riccati ansatz λP = X0(t)vP(t) these equations can be rewritten as the differential
Riccati equation

Ẋ0 = −X0G0X0 −X0F0 − FT

0 X0 −H0, X0(T ) = −PTV1, (8.35)

which has a unique solution, cf. [2, Thm. 4.1.6], since PTV1, G0, and −H0 are
symmetric positive semi-definite. With this X0 we get vP and λP as the solution
of v̇P − [G0X0 + F0]vP = 0, vP(0) = Pv0 and λP = X0vP , respectively.

One can show that if there exists a solution to (8.22e-f) with a zero right hand
side, then it is unique. This is equivalent to the fact that the linear part of the affine
boundary conditions are stated such, that (8.22e-f) with PTV1 symmetric positive
semi-definite, has a unique solution, cf. [8, Thm. 3.26], for any continuous right
hand side.

By construction, a solution of (8.19) uniquely defines a solution to (8.22). The
converse is true if, and only if, the algebraic variables fulfill the initial and terminal
conditions, i.e.,

Qv(0) = QvP = M−1JT

1 S
−1J2vP and (8.36a)

QTMTλ1(T ) = −QTV1v(T ) = −JT

2 S
−TJ1M

−TV1v(T ). (8.36b)

By (8.22a) we have that Qv(0) = M−1JT

1 S
−1g(0) such that J2v(0) = g(0) is

necessary and sufficient for (8.36a). By (8.22b) we have that QTMTλ1 = 0 such
that J1M

−TV1 = 0 is sufficient but in general not necessary for (8.36b). Note,
however, that in this case we can infer that JT

1 M
−TV1 = 0, so that V1M

−1J1 = 0
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or V1Q = 0, which means that V1v = V1Pv, such that in (8.22f), PTV1 can be
replaced by PTV1P. Thus, condition (8.23) implies the symmetry in the terminal
condition that was sufficient for the existence of X0 in (8.35).

ad 3.)
With the ansatz

[

λ1

λ2

]

=

[

X1 XT

2

X2 0

] [

M 0
0 0

] [

v
p

]

(8.37)

we obtain that

d
dt (

[

MT 0
0 0

] [

λ1

λ2

]

) =

[

d
dtM

TX1M 0
0 0

] [

v
p

]

+

[

MTX1 MTXT

2

0 0

] [

M 0
0 0

] [

v̇
ṗ

]

.

(8.38)

In (8.38) we replace d
dt (

[

MT 0
0 0

] [

λ1

λ2

]

) and

[

M 0
0 0

] [

v̇
ṗ

]

via the relations given in

(8.19) and every occurrence of

[

λ1

λ2

]

by the ansatz (8.37) to obtain X

[

v
p

]

= 0,

where

X :=









d
dt (MTX1M) + FTX1M +MTX1F+

MTX1GX1M +H + JT

2 X2M +MTXT

2 J2 MTX1J
T

1

J1X1M 0









. (8.39)

Since X

[

v
p

]

= 0 must hold for every state trajectory, one requires X = 0 which

gives the equations for X1 and X2:
d
dtM

TX1M +MTX1F + FTX1M +MTX1GX1M +H+

+MTXT

2 J2 + JT

2 X2M = 0,

MTX1(T )M = −V1, (8.40a)

MTJ1X1 = 0 and J1X1M = 0. (8.40b)

The terminal condition in (8.40a) is defined via (8.19b) and (8.24):

MTλ1(T ) = MTX1(T )Mv(T ) = −V1v(T ) ⇒ MTX1(T )M = −V1.

To show that (8.40) has a solution, we consider Equation (8.40a) in the transformed
variables X := −MTX1M and Y := X2M :

−Ẋ − FTM−TX −XM−1F +XM−1G−TM−TX +H + JT

2 Y + Y TJ2 = 0,

X(T ) = V1. (8.41)

By means of the projector Q := M−1JT

1 [J2M
−1JT

1 ]−1J2 we write X = [QT +
PT]X[P + Q]. From (8.40b) we obtain that QTX = XQ = 0 and thus X is
completely defined via X0 := PTXP. Applying PT and P to (8.41) from the left
and the right, respectively, we get a standard differential Riccati equation

−Ẋ0 − FT

0 X0 −X0F0 +X0M
−1GM−TX0 + PTHP = 0,

X0(T ) = PTV1P, (8.42)

which has a unique and symmetric positive semi-definite solution, cf. [2, Thm.
4.1.6], since V1, G and −H are symmetric positive semi-definite. Again, the con-
sistency condition (8.23) ensures that X0(T ) also satisfies the initial condition
and the algebraic constraints in (8.40). Since QTX = 0 and XQ = 0, we have
X1 = −M−TXM−1 is unique and symmetric negative semi-definite.

Application of PT from the left and Q from the right to (8.41) gives

−X0Q̇ −X0M
−1FQ+ PTHQ = −PTY TJ2Q = −PTY TJ2,
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which is uniquely solvable for PTY T. The projected equation obtained via QT and
P is the transpose of the above equation and bears no additional information.

Finally, one can determine QTY T from the projection of (8.41) onto the range
of QT and Q which reads

QTHQ+QTY TJ2Q+QTJT

2 YQ = 0. (8.43)

With J2Q = J2, we find that (8.43) is of the form [YQ]TJ2 + JT

2 [YQ] = −QTHQ
that was investigated in [24]. WithQ− := M−1JT

1 [J2M
−1JT

1 ]−1 being a generalized
inverse to J2, we obtain the projectors P1 := Q−J2 = Q and P2 := J2Q− = I
and the existence of solutions to (8.43) follows by [24, Thm. 1], since QTHQ is
symmetric and [I − P1]TQTHQ[I − P1] = 0.

The general solution to (8.43) is given by

YQ =
1

2
[J1M

−TJT

2 ]−1J1M
−THQ+ ZJ2,

where Z is arbitrary with ZT = −Z. Thus existence of MTX1M and MTXT

2 =
Y T = PTY T +QTY T and therefore X1 and X2 is proved.

By construction, with X1 and X2 as determined above, the solution of
[

M 0
0 0

] [

v̇
ṗ

]

−
([

G 0
0 0

] [

X1 XT

2

X2 0

] [

M 0
0 0

]

+

[

F JT

1

J2 0

]) [

v
p

]

=

[

0
0

]

,

v(0) = v0,

and
[

λ1

λ2

]

=

[

X1 XT

2

X2 0

] [

M 0
0 0

] [

v
p

]

gives the solution of (8.19) with a zero right-hand side.
ad 4.) The result for the affine-linear case is obtained via the affine-linear ansatz

(8.26) using similar arguments as in the proof of 3.). Proceeding analogously to the
first steps for part 3.), but with the affine linear ansatz (8.26) instead of the linear
(8.24), we come to the expression

X

[

v
p

]

+ d
dt

([

MT 0
0 0

] [

w1

w2

])

−
[

MTX1G+ FT JT

2

J1 0

] [

w1

w2

]

=

[

fλ1
+MTX1f̃v +MTX2g

fλ2

]

,

MTw1(T ) = V1v
∗(T ), (8.45)

where X is as in (8.39). Again, the requirement X = 0 uniquely defines X1 and
X2 =: X̃2 + ZJ2M

−1 up to an arbitrary skew-symmetric matrix Z. We write
MTXT

2 g = MTX̃T

2 g−JT

2 Zfp and define w̃2 := w2−Zg. With this Equation (8.45)
gives a system for (w1, w̃2):

[

− d
dt (MTw1)

0

]

−
[

MTX1G+ FT JT

2

J1 0

] [

w1

w̃2

]

=

[

fλ1 +MTX1f̃v +MTX̃2g
fλ2

]

,

MTw1(T ) = −V1v
∗(T ),

(8.46)

which is of type (8.2). Since by (8.23) the terminal condition is consistent, system
(8.46) has a unique solution (w1, w̃2). In particular, w1 is independent of Zg, cf.
(8.8) and (8.10). For the solution w2 of (8.45) we have w2 = w̃2 + Zfp. Thus the
existence of the functions used for the ansatz (8.26) is shown.
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By construction, we have that the ansatz (8.26) leads to the solution of the
Euler-Lagrange equations (8.19) via the decoupled system

[

M 0
0 0

] [

v̇
ṗ

]

−
([

G 0
0 0

] [

X1 XT

2

X2 0

] [

M 0
0 0

]

+

[

F JT

1

J2 0

]) [

v
p

]

=

[

f +B1R
−1Suvv

∗ +Gw1

g

]

,

v(0) = v0,

and
[

λ1

λ2

]

=

[

X1 XT

2

X2 0

] [

M 0
0 0

] [

v
p

]

+

[

w1

w2

]

.

�

Remark 8.18. The solution of (8.25) is unique up to an additive term ZJ2M
−1 in

X2, with an arbitrary matrix Z, that fulfills ZT = −Z. However, this does not
contradict the unique solvability of the Euler-Lagrange equations, since λ1 and λ2

as defined via (8.24) are independent of any choice of Z.

In view of optimal control, the above results can be summarized as follows. To
obtain an optimal input u for (8.20) with respect to a cost functional of type (8.21)
it is sufficient to have a solution of the associated Euler-Lagrange equations (8.19),
cf. [113]. By Lemma 8.17 it follows that for the considered state equations and cost
functionals this solution exists, that it is unique, that it can be obtained via the
separation ansatz (8.24), and that an optimal u is obtained via expression (8.19c).
For the inhomogeneous and for the trajectory tracking case, one can use an affine
linear Riccati-ansatz, cf. [93]. Thus, we can state the following theorem:

Theorem 8.19. Let T > 0 and consider the time interval (0, T ], let nu, nv, np ∈ N,
nv > np, M ∈ C(0, T ;Rnv,nv ) pointwise invertible, A ∈ C(0, T ;Rnv,nv ), and let J1,
J2 ∈ C(0, T ;Rnp,nv ), such that J2M

−1JT

1 is invertible and such that M−1JT

1 S
−1J2

is differentiable. Let W1,V1 ∈ Rnv,nv be symmetric positive semi-definite, Suv =
ST

vu ∈ Rnu,nv an arbitrary matrix, and let R ∈ Rnu,nu symmetric positive definite.
For a given v∗ ∈ C1(0, T ;Rnv ) consider the linear-quadratic optimal control prob-

lem of finding u ∈ C(0, T ;Rnu) such that

1

2

[

v − v∗
]T

V1

[

v − v∗
]

∣

∣

∣

∣

∣

t=T

+
1

2

∫ T

0

[

v − v∗
u

]T [

W1 Svu

Suv R

] [

v − v∗
u

]

dt,

is minimal, where v on (0, T ] satisfies the state equations
[

M 0
0 0

] [

v̇
ṗ

]

−
[

A JT

1

J2 0

] [

v
p

]

−
[

B1

0

]

u =

[

f
g

]

, v(0) = v0.

If f ∈ C(0, T ;Rnv ), g ∈ C1(0, T ;Rnp) and if

J2v
0 = g(0) and J1M

−TV1 = 0,

then the optimal control problem is solvable and an optimal input u is given via the
feedback-law

u = R−1[BT

1 [X1Mv + w1]− Suv(v − v∗)],
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where X1 = XT

1 , negative semi-definite, and w1 are the unique solutions of

d
dtM

TX1M + FTX1M +MTX1F +MTX1GX1M +H+

+JT

2 X2M +MTXT

2 J2 = 0,

MTX1(T )M = −V1,

J1X1M = 0,

and

− d
dt (MTw1)− [MTX1G+ FT]w1 − JT

2 w2 = fλ1
+MTX1f̃v +MTX2g,

MTw1(T ) = V1v
∗(T ),

J1w1 = 0,

respectively, where F := A − B1R
−1Suv, G := B1R

−1BT

1 and H := −W1 +
SvuR

−1Suv and with f̃v := f +B1R
−1Suvv

∗ and fλ1 := [W1 − SvuR
−1Suv]v∗.

Theorem 8.19 gives – in particular – sufficient optimality conditions in terms of
the original variables and coefficients. Necessity of these conditions is not guaran-
teed in general, as an inconsistent V1 renders them ill-posed, although for well-posed
state equations a solution of the optimal control problem always exists, cf. the true
optimality system defined in [93].

For practical applications, the following modification that closes the gap be-
tween sufficiency and necessity of the optimality conditions in Theorem 8.19 may
be considered.

Remark 8.20. By Theorem 8.6 one has that if v solves (8.20), then it can be ex-
pressed as v = Pv− c, with c := M−1JT

1 S
−1g independent of u and v and that the

terminal point penalization in the cost functional (8.21) can be replaced like

1

2
vT(T )V1v(t) ← 1

2
[Pv(t)− c(t)]TV1[Pv(T )− c(T )].

With this equivalent formulation, the terminal condition on MTλ1 in (8.19b) com-
ing from the variation of the cost functional with respect to v reads MTλ1(T ) =
−PTV1[Pv(T )− c(T )]. Then the end condition for the gain matrix X1 is given via
PTV1P and for the affine part w1 via MTw1(T ) = PTV1[v∗(T ) +M−1JT

1 S
−1g(T ).

Both conditions are consistent as J1M
−TPT = 0. With this modification, in The-

orem 8.19, the restriction J1M
−TV1 = 0 is obsolete and the given optimality con-

ditions are equivalent to the true optimality conditions.

8.5. Crossterms and the Algebraic Variable in the Cost Functional. As
mentioned in Remark 8.15, in the linear case, one can theoretically reformulate any
cost functional of type (8.13) as an equivalent cost weighting without the algebraic
variable p and without cross terms in the integral part.

To illustrate this, we assume that the right hand sides f and g in the state
equations (8.2) are zero. If f and g are not zero, the same approach will lead to
a linear in v and u term in the cost functional, which then appears in the right
hand side of the adjoint equation as does W1v

∗ in the affine linear formulation in
Theorem 8.19. If they are zero, then, by Theorem 8.6, we have

p = −Q−M−1Av −Q−M−1B1u
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and the trajectory weighting





v
p
u





T 



W1 W12 Svu

W21 W2 Spu

Suv Sup R









v
p
u



 in Problem 8.13 can be

reformulated as

[

v
u

]T [

W̃1 S̃vu

S̃uv R̃

] [

v
u

]

with

[

W̃1 S̃vu

S̃uv R̃

]

:=





I 0
−Q−M−1A −Q−M−1B1

0 I





T 



W1 W12 Svu

W21 W2 Spu

Suv Sup R









I 0
−Q−M−1A −Q−M−1B1

0 I



 .

If then R̃ =

[

−Q−M−1B1

I

]T [

W2 Spu

Sup R

] [

−Q−M−1B1

I

]

was invertible, this

would give the situation of that was considered in Section 8.3.
Then, due to the linearity of the problem, one could also formally eliminate the

crossterms given by S̃uv in the cost functional by shifting the input and considering
ũ = u + R̃−1S̃T

uvv. This gives an equivalent formulation of the optimal control
problem Problem 8.13 without endpoint penalization: Find u ∈ U , such that

J (v, p, ũ) =
1

2

∫

T

0

vT[W̃ − S̃uvR̃
−1S̃T

uv]v + ũTR̃ũ dt→ min (8.48a)

subject to
[

M 0
0 0

] [

v̇
ṗ

]

−
[

A−B1R̃
−1S̃T

uv JT

1

J2 0

] [

v
p

]

−
[

B1

0

]

ũ =

[

0
0

]

, (8.48b)

v(0) = v0,

where ũ = u+ R̃−1S̃T

uvv.
However, the presence of a cross term Sup, may make R̃ indefinite, such that the

theory of Section 8.3 is not applicable.

Remark 8.21. As illustrated above, if R is invertible, in the setting of linear-
quadratic systems as Problem 8.13, one can always eliminate cross terms Suv by
shifting the input as ũ← u+R−1ST

uvv.
The elimination of the linking of p and u by a shift of the input is not simply

possible in general. In the shifted system with ũ = u+R−1ST

upp, the state equations
read

[

M 0
0 0

] [

v̇
ṗ

]

−
[

A JT

1 −B1R
−1ST

up

J2 0

] [

v
p

]

−
[

B1

0

]

ũ =

[

0
0

]

, v(0) = v0.

This shows, that if one shifts u via p, a different approach is necessary, since the
index of the state equations may change, cf. Proposition 8.3 and Assumption 8.2(a).
In particular, if JT

1 −B1R
−1ST

up is not of full rank, the state equations (8.48b) are
not uniquely solvable.

8.6. Optimal Control Including the Algebraic Variables. In this section,
we consider linear-quadratic optimal control problems that explicitly includes the
variable p in the cost functional. This will need additional regularity of p, cf. Re-
mark 8.14. We will not discuss solvability but investigate the differential algebraich
structure of the associated formal Euler-Lagrange equations.
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Consider Problem 8.13 with a cost functional of type

J (v, p, u) =
1

2

[

v − v∗
p− p∗

]T [

V1 V12

V21 V2

] [

v − v∗
p− p∗

]

∣

∣

∣

∣

∣

t=T

+

1

2

∫ T

0

[

v − v∗
p− p∗

]T [

W1 W12

W21 W2

] [

v − v∗
p− p∗

]

+ uTRu dt,

subject to (8.2), with weighting matrices

[

V1 V12

V21 V2

]

,

[

W1 W12

W21 W2

]

being positive

semi definite and R invertible. We do not include cross terms, because the coupling
of u to v only means a shift in the input, while the coupling of u and p causes
changes in the system structure, cf. Remark 8.21. The formal Euler-Lagrange
equations, cf. [91], read

Mv̇ −Av − JT

1 p−B1u = f, v|t=0 = v0 (8.49a)

−J2v = g (8.49b)

− d
dt (MTλ1)−ATλ1 − JT

2 λ2 +W1[v − v∗] +W12[p− p∗] = 0, (8.49c)

MTλ1(T ) = −V1[v − v∗]
∣

∣

∣

∣

t=T

− V12[p− p∗]
∣

∣

∣

∣

t=T

, (8.49d)

−J1λ1 +W21[v − v∗] +W2[p− p∗] = 0, (8.49e)

V21[v − v∗]
∣

∣

∣

∣

t=T

+ V2[p− p∗]
∣

∣

∣

∣

t=T

= 0, (8.49f)

−BT

1 λ1 +Ru = 0. (8.49g)

Unlike in Section 8.3 we now consider arbitrary smooth data. Nevertheless, for
the existence of solutions, the initial and terminal conditions have to be consistent
with the algebraic constraints. We assume that the target state is consistent at the
endpoint, i.e. −J2v

∗(T ) = g(T ) to conclude that

v(T )− v∗(T ) ∈ PRnv , Q[v(T )− v∗(T )] = 0 and p(T )− p∗(T ) ∈ Rnp , (8.50)

using the projectors P and Q that were defined in Theorem 8.6. We will not
consider the possibility of cancelling a term that contains v − v∗ by a term that
contains p− p∗.

Thus, combining the terminal condition (8.49d) and the algebraic constraints
(8.49e) on λ1 we obtain consistency conditions for the p related coefficients via
[

J1M
−1V12 + W2

]

[p(T ) − p∗(T )] = 0 or, eqivalently, V12 = −JT

2 S
−TW2 + PTZ1,

with an arbitrary Z1 ∈ Rnv,np . By symmetry and (8.49f) we further need

V21[v(T )− v∗(T )] = V T

12[v(T )− v∗(T )] = ZT

1 P[v(T )− v∗(T )] = 0

which can only hold for ZT

1 P = 0. Thus the one obtains the necessary condition

V T

21 = V21 = −JT

2 S
−TW2. (8.51)

From (8.49f) we also conclude that necessarily

V2 = 0. (8.52)

Regarding v, the conditions (8.49d) and (8.49e) give
[

J1M
−1V1 + W21

]

[v(T ) −
v∗(T )] = 0 or, equivalently, V1P = −JT

2 S
−TW21P + PTZ2P, as, by assumption,

v(T )−v∗(T ) takes on values only in the subspace PRnv . This means that for given
W21, the only condition on V1 is

QTV1P = −JT

2 S
−TW21P, (8.53)

while PTV1P and V1Q can be chosen arbitrarily.
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Remark 8.22. If W2 6= 0 and g(T ) 6= 0, then the regulator problem, i.e. v∗ = 0,
may not be solvable in this setting. This follows from V21v(T ) = −W2S

−1J2v(T ) =
W2S

−1g(T ) which is not necessarily 0 and thus possibly violates (8.49f).

Using relation (8.49g) to express u in terms of λ1 and assuming that (8.51),
(8.52), and (8.53) hold, we find that the matrices

E =









0 −MT 0 0
M 0 0 0
0 0 0 0
0 0 0 0









and A =









−W1 FT + ṀT −W12 JT

2

F G JT

1 0
−W21 J1 −W2 0
J2 0 0 0









, (8.54)

with F := A and G := B1R
−1BT

1 , represent system (8.49) without the boundary
conditions (8.49d) and (8.49f) via

E ẋ−Ax = f, (8.55)

for the state vector and right hand side

x =









v
λ1

p
λ2









and f =









fλ1

f
fλ2

g









:=









W1v
∗ +W12p

∗

f
W21v

∗ +W2p
∗

g









,

respectively. Since ET = −E and AT = A+ Ė hold, by [94, Def. 3.9] the pair (E ,A)
of matrix functions is self-adjoint. Thus (8.55) can be reduced to the canonical
form developed in [94] to state the determine the differentiation index of (8.49). In
view determining the index, we state the following technical lemma.

Lemma 8.23. Let M ∈ Rnv,nv be invertible and A, B ∈ Rnp,nv such that AM−1BT

is invertible. Then for all QA, QB ∈ Rnv,nv−np , where the columns of QA, QB form
a basis of kerA, kerB, respectively, the matrix QT

BMQA is invertible.

Proof of Lemma 8.23. We have, AM−1BT is invertible or kerA∩ imM−1BT = {0}
implying that

[

QA,M
−1BT

]

is invertible. Also, BM−TAT is invertible, what gives
kerBM−T ∩AT = {0} and, thus,

[

MTQB , A
T
]

is invertible. Consequently

[

MTQB , A
T
]T [

QA,M
−1BT

]

=

[

QT

BMQA 0
0 AM−1BT

]

and in particular QT

BMQA is invertible. �

Now we can determine the differentiation index of (8.49), which, by Remark 2.9,
in this case, coincides with the tractability index.

Lemma 8.24. Consider Equation (8.49). Let M be pointwise symmetric positive
definite and let J2M

−1JT

1 be invertible. If W21 = WT

12 and W1, W2, and G are
symmetric positive semi-definite and if conditions (8.51), (8.52), and (8.53) hold
and if the coefficients are sufficiently smooth, then (8.49) is of differentiation index
νd = 3.

Proof. We write (8.49) as E ẋ−Ax = f , cf. (8.55). Since J1 and J2 are of full rank,

there are orthogonal matrices Qi =

[

Q1
i

Q2
i

]

such that Ji

[

Q1T

i Q2T

i

]

=
[

RJi
0
]

,

with RJi
invertible, i = 1, 2. With this, a congruence transformation with Q :=

diag(Q2, Q1, I, I) of system (8.55) reads

Ê ˙̂x− Âx̂ = f̂ ,
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where

Ê :=















0 0 −Q1

2MT Q1T

1 −Q1

2MTQ2T

1 0 0

0 0 −Q2

2MTQ1T

1 −Q2

2MTQ2T

1 0 0

Q1

1MQ1T

2 Q1

1MQ2T

2 0 0 0 0

Q2

1MQ1T

2 Q2

1MQ2T

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















, x̂ :=















Q1

2v

Q2

2v

Q1

1λ1

Q2

1λ1

p

λ2















,

Â :=















−Q1

2W1Q1T

2 −Q1

2W1Q2T

2 Q1

2F T

M Q1T

1 Q1

2F T

M Q2T

1 −Q1

2W12 RT

J1

−Q2

2W1Q1T

2 −Q2

2W1Q2T

2 Q2

2F T

M Q1T

1 Q2

2F T

M Q2T

1 −Q2

2W12 0

Q1

1F Q1T

2 Q1

1F Q2T

2 Q1

1GQ1T

1 Q1

1GQ2T

1 RT

J1
0

Q2

1F Q1T

2 Q2

1F Q2T

2 Q2

1GQ1T

1 Q2

1GQ2T

1 0 0

−W21Q1T

2 −W21Q2T

2 RJ1 0 −W2 0
RJ2 0 0 0 0 0















+QEQ̇,

(8.56)

and where FM := F + Ṁ and f̂ := Qf , cf. [94]. Note that congruence transforma-
tions preserve the structure, i.e. (Ê , Â) is again self-adjoint. Since RJ2 is invertible,
Q2

1v is readily determined. Also λ2 is decoupled from the solution of the remaining
variables so we can proceed with investigating the subsystem with the coefficients

Ê22 :=









0 −Q2
2M

TQ1T

1 −Q2
2M

TQ2T

1 0
Q1

1MQ2T

2 0 0 0
Q2

1MQ2T

2 0 0 0
0 0 0 0









, and

Â22 :=









−Q2
2W1Q

2T

2 Q2
2(FT + ṀT)Q1T

1 Q2
2(FT + ṀT)Q2T

1 −Q2
2W12

Q1
1FQ

2T

2 Q1
1GQ

1T

1 Q1
1GQ

2T

1 RT

J1

Q2
1FQ

2T

2 Q2
1GQ

1T

1 Q2
1GQ

2T

1 0
−W21Q

2T

2 RJ1
0 −W2









+[QEQ̇T]22,
(8.57)

where [QEQ̇]22 is the corresponding submatrix of QEQ̇. Since by Lemma 8.23 the
matrix Q2

1MQ2T

2 and its transpose are invertible, a congruence transformation via

U =









I 0 0 0
0 I −Q1

1MQ2T

2 (Q2
1MQ2T

2 )−1 0
0 0 I 0
0 0 0 I









can be applied to (8.57) to obtain the

equivalent subsystem with coefficients as follows:

ˆ̂E22 :=









0 0 −Q2
2M

TQ2T

1 0
0 0 0 0

Q2
1MQ2T

2 0 0 0
0 0 0 0









, and

ˆ̂A22 :=









∗ ∗ ∗ ∗
∗ Ĝ ∗ RT

J1

∗ ∗ ∗ ∗
∗ RJ1

∗ −W2









+ U [QEQ̇T]22U̇
T. (8.58)

with some possibly nonzero entries ∗ and

Ĝ :=
[

Q1
1 −Q1

1MQ2T

2 (Q2
1MQ2T

2 )−1Q2
1

]

G

[

Q1T

1

−Q2T

1 [Q1
1MQ2T

2 (Q2
1MQ2T

2 )−1]T

]

.
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Since U [QEQ̇T]22U̇
T has the same pattern of zero entries as E22, the part of ˆ̂A22,

that lies in the left nullspace of ˆ̂E22, is given by

[

Ĝ RT

J1

RJ1 −W2

]

. Considering that

Ĝ and RJ1
are invertible, by symmetry and positive definiteness of Ĝ and W2 we

find that ˆ̂E22 is invertible. Thus, subsystem (8.57) is strangeness-free. Since the
transformation by U does not affect the overall structure of system (8.56), one can
read off the differentiation index of (8.56) as follows, cf. [94, Cor. 4.4]. By the last
line Q1

2v is defined in terms of the right hand side f . Due to the nonzero entries
in the first column of Ê , the first derivative ḟ appears in solution of the index-1
subsystem (Ê22, Â22). Finally, because of nonzero entries in the first row of Ê the
second derivative f̈ enters the definition of the λ2. Thus, (8.56) has differentiation
index νd = 3, since a general solution will depend on the second time derivative of
the right-hand side Qf . As the differentiation index is invariant under equivalence
transformations, cf. [90, Thm. 3.38], also (8.55) has iν = 3. �
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9. Numerical Algorithms and Application Example

In this section we provide algorithms for solving the finite-dimensional linear-
quadratic optimal control system, cf. Section 8.3, using the results stated with
Lemma 8.17. We illustrate the algorithms using the implicit Euler scheme for the
time integration. In practice, one rather calls on schemes of higher order to integrate
the state equations [50]. For the time integration of large-scale differential Riccati
equations, Rosenbrock schemes are the method of choice [117].

9.1. Linear-Quadratic Setup and Algorithms. For illustration we consider an
equation system as it comes from a semi-discretization and linearization of the
Navier-Stokes Equation, cf. (8.1).

Mv̇ + [A+N(t)]v − JTp = f +B1u, v(0) = v0 ∈ Rnv , (9.1a)

Jv = g, (9.1b)

y = Cv. (9.1c)

Here, A is the discrete Laplacian, N is the convection matrix and time dependent.
The matrices B, and C represent the input and the output operators. We assume,
that we have used a stable space discretization, so that equations (9.1a-b) fulfill
Assumption 8.2. In particular the boundary conditions, are resolved in the right
hand side.

In what follows, we will make use of the projector

P := I −M−1JT

1 S
−1J2

as it was defined in Theorem 8.6.

9.1.1. Cost Functional. Given a target output y∗ with y∗ ∈ Y . For all t ∈ (0, T ), we
assume that y∗(t) ∈ CPRnv and for formal considerations – in the implementation
we will never use it – we define v∗(t) = Pv∗(t) := C−y∗(t). We consider cost
functionals of type

J (v, u) =
1

2
vT

∆(T )V v∆(T ) +
1

2

∫ T

0

vT

∆Wv∆ + γuTMUu dt, (9.2)

with a scalar parameter γ and

V := PTCTMY CP, W := CTMY C. (9.3)

9.1.2. The linear part – the Riccati DAE. For the derivation we assume γ = 1.
Then, cf. Theorem 8.19, an optimal input fulfills

u = M−1
U BT

1 [X1Mv + w1], (9.4)

where X1 solves

MTẊ1M −MTX1[A+N(t)]− [A+N(t)]TX1M +MTX1B̃B̃
TX1M − C̃TC̃

−MTXT

2 J − JT

2 X2M = 0,

MTX1(T )M = −PTCTMY CP,
(9.5a)

MTX1J
T = 0 and JX1M = 0,

(9.5b)

with

B̃ := B1M
−1/2
U and C̃ := M

1/2
Y C. (9.6)
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9.1.3. The affine part. Having computed the feedback matrices X1 and X2, we can
compute the affine correction w1 or the so called feedforward term as the solution
of

− d
dt

[

MTw1

0

]

−
[

MTX1B̃B̃
T − [A+N(t)]T −JT

J 0

] [

w1

w2

]

=

[

C̃TC̃v∗ +MT[X1f +X2g]
0

]

,

(9.7)

MTw1(T ) = PTC̃TC̃v∗(T ),

cf. (8.27). Note that here f̃v = f – since there are no cross terms in the cost
functional – and that by assumption and by definition we have y∗(t) = Cv∗(t) =
CPv∗(t).

9.1.4. Time Integration and Newton Iteration for the Differential-algebraic Riccati
Equation. Given linear state equations and a quadratic cost functional, we need
to integrate system (9.5). For the time discretization, we will apply an implicit
time-stepping algorithm. This gives an algebraic Riccati equation at every time
instance. Application of the standard Newton scheme, then leads to a Lyapunov
equation to be solved in every Newton iteration. For the solution of the inner
Lyapunov equation, we employ a low-rank ADI iteration [19, 127, 153]. The main
feature of low-rank ADI is that a solution X is approximated by means of a factor
Z ∈ Rnv,nc , with nc ≪ nv, such that X ≈ ZZT. This makes the computation of
solution to the Riccati equations accessible for large-scale problems, since typically
X is dense.

Since, the discretization and the linearization preserve the structure, also the
Lyapunov equations appear as generalized or constrained Lyapunov equations. We
will give a thorough derivation of the ADI algorithm in Section 9.2.

We illustrate the algorithm using implicit Euler. For other schemes see [20, 117].
Let τ be the time step length. By Xp, Xc, Xn we denote the numerically computed
value of X1 at the previous, current, next time instance t− τ , t, t+ τ .

We start with Xc := −M−TPTC̃TC̃PM−1.
We approximate the current time derivative term by 1

τM
T[Xc −Xp]M , so that

the new value Xp is obtained as the solution of

−1

τ
MTXpM −MTXp[A+Np]− [A+Np]TXpM+

MTXpB̃B̃TXpM −MTY cTJ − JTY cM = −1

τ
MTXcM + C̃TC̃ (9.8)

and

MTXpJT = 0 and JXpM = 0.

We rewrite (9.8) as

−MTXpF p−[F p]TXpM+τMTXpB̃B̃TXpM−L(Y c) = −MTXcM+τC̃TC̃, (9.9)

with

F p := 1
2M + τ [A+Np] and L(Y ) := τ [MTY TJ + JTYM ].

To be in line with standard literature e.g. [20, Eqn. (8)] we make another change
of variables and coefficients:

X ← −Xp, F ← −F p, B ← √τB̃, W ←
[

MT
√
−Xc,

√
τC̃T

]

(9.10)
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With this, having multiplied the equations by −1, Equation (9.9) reads

MTXF + FTXM −MTXBBTXM + L(Y ) = −WWT

JXM = 0, MTXJT = 0. (9.11)

Applying a Newton scheme to (9.11), for the current Newton iterate XN , we find
the updated XN+1 by solving the following equations:

MTXN+1FN + [FN ]TXN+1M + L(Y c
N+1) = −WWT −MTXNBB

TXNM,

MTXN+1J
T = 0, and JXN+1M = 0,

(9.12a)

where the coefficient FN is defined as

FN := F − [MTXNBB
T]T = F −BBTXNM. (9.13)

Thus, the solution of the implicit time update (9.8) by means of a Newton
iteration, requires the solution of a sequence of constrained Lyapunov equations as
given in (9.12).

The solution of these Lyapunov equations by means of an iteration for factors
Z, such that X ≈ ZZH , is described in Section 9.2. In particular, given XN =
ZN [ZN ]H , we can directly apply Algorithm 9.1 with

F ← FN and W ←
[

W MTXNB
]

. (9.14)

to compute ZN+1, approximating the solution XN+1 ≈ ZN+1[ZN+1]H of (9.12).
The relation to the actual quantities are given via the substitution rule (9.10).

9.1.5. Implicit Euler for the Feedforward. In the case of that the right hand sides
and the target output is different from zero, the optimal control takes the form of
a state feedback plus a feedforward term, cf. 9.4.

The feedforward variable w1 is defined via Equation 9.7. We approximate
− d

dt (MTw1) by −MT wc
1−wp

1

τ . With this, given Xp, starting from

wc
1 = M−TPTC̃TC̃Pv∗(T ) = M−TPTCTMY y

∗(T ),

we can advance wc
1 to wp

1 by solving
[

MT + τ [A+Np]T + τMTXpB̃B̃T −τJT

J 0

] [

wp
1

wp
2

]

=

[

MTwc
1 + τ

[

CTMY y
∗p −MT[Xpf̃p

v + Y pgp]
]

0

]

. (9.15)

Note that Xp ≈ −Xp
1 , cf. (9.10).

9.1.6. The Closed Loop System. Implementing the control law (9.4) in the con-
trolled state equations (9.1) one obtains the closed loop system

Mv̇ + [A+N(t)−B1M
−1
U BT

1X1(t)M ]v − JTp = f +B1M
−1BT

1w1,

v(0) = v0 ∈ Rnv , (9.16a)

Jv = g, (9.16b)

y = Cv. (9.16c)

Starting with vc = v0, we advance vc and yc = Cvc via the solution of

[

M + τ [A+Nn] + τB̃B̃TXnM −τJT

J 0

] [

vn

pn

]

=

[

Mvc + τfn + τB̃B̃Twn

gn

]



112

and

yn = Cvn.

Note that Xn ≈ −Xn
1 , cf. (9.10).

9.1.7. Particular Implementation Issues. We mention some distinct features of the
implementation. The general point is that in the low-rank ADI iteration, one cannot
access the full matrix X = ZZH directly.

Boundary Conditions. In the numerical approximation, we resolve the Dirichlet
boundaries as follows:

Let A be the Laplacian and that contains all degrees of freedom of V. Let Ii, Ib

be the inner and the boundary nodes. Let bvals be the values at the boundary.
We resolve the boundary values, by excluding the boundary nodes equations from
the system and moving the known boundary variables to the right hand side. In
the implementation this is realized like:

auxv = numpy.zeros ((NV ,1))

auxv[Ib ,:] = bcvals

fbc = A[Ii ,:][: ,:]* auxv

Ac = A[Ii ,:][: , Ii]

And the right hand side to the condensed system becomes:

fvbc = fv[Ii ,:] - fbc

For the convection matrixN that changes with time, we conduct the same procedure
at every time step.

9.1.8. Solution of the Feedback System via the Sherman-Morrison Formula. In gen-
eral, one cannot use the feedback matrix X = ZZT it self, as this will be a dense
matrix. In iterative solves, one can simply use the factorization. For direct solves,
one can resort to the Sherman-Morrison Formula.

The above algorithms require the repeated solves of systems with the same or
similar coefficient matrices that write like

[

F p − τXp
N B̃B̃

T τJT

J 0

]

=

[

F p τJT

J 0

]

−
[

τXp
N B̃
0

]

[

B̃T 0
]

:= F − UV

cf. (9.12). Its inverse is given via

(F − UV )
−1

= F−1 + F−1U
(

I − V F−1U
)−1

V F−1

= F−1[I + U(I − V F−1U)−1V F−1].

We assume that the inverse of F is available. To apply the inverse of F +UV to
a vector Z, we compute the correction Z̃ = I + U(I − V F−1U)−1F−1Z and then
F−1Z̃.

9.1.9. Compression of the columns of Z. If at the current time instance tc the
number of columns of Zc is nz

c, then at the next time instance nz
n = Nadi(nz+nu+

ny), cf. the relations (9.10) and (9.14), where Nadi is the number of ADI iteration
that were used to approximate the solution of the inner Lyapunov equations. Thus,
e.g. for a fixed number of inner ADI iterations, the number of columns of Z grows
exponentially with the time steps.

Calling on the assumption, that Xc can be approximated by low rank factors, we
use a truncated singular value decomposition of Z_itc to compress it to a matrix
Z_itc_red with k columns.
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nny = Z_itc.shape [1]

U, s, V = numpy. linalg .svd(Z, full_matrices =False)

S = scipy. sparse . dia_matrix ((s,0), (nny ,nny )). tocsr ()

Sred = S[:k, :][: , :k]

Z_itc_red = np.dot(U[:, :k], Sred)

Note that the right singular vectors can be left out of the definition of the reduced
Z_itc_red since they do not affect the product of Z_itc_red with its transpose.

9.1.10. Norm of the Newton updates. To monitor the convergence of the Newton
scheme for (9.11) we check the norm of the Newton updates via ‖ZN+1Z

H
N+1 −

ZNZ
H
N ‖F .

For large scale problems, one cannot setup ZZH , but one can compute the
Frobenius norm of the difference in the factored matrices via

‖Z1Z
H
1 − Z2Z

H
2 ‖2

F = tr([Z1Z
H
1 − Z2Z

H
2 ]H [Z1Z

H
1 − Z2Z

H
2 ]) (9.17)

= tr([ZH
1 Z1]2)− 2 tr(ZH

1 Z2Z
H
2 Z1) + tr([ZH

2 Z2]2)

which can be evaluated with setting up matrices only of the size of the number of
columns of Z1 or Z2. The above formula can be derived using the linearity of the
trace and that tr(ZH

1 Z2) = tr(Z2Z
H
1 ).

Nevertheless, the computation of the norm of the update is a bottleneck in terms
of CPU time and memory requirements. For this reason, in the first Newton steps
we approximate the norm of the Newton update, cf. (9.17), by difference of the
application to a random vector v:

‖Z1Z
H
1 v − Z2Z

H
2 v‖2

2

.

9.2. Solution of Constrained Lyapunov Equations. In this section, we inves-
tigate the iterative solution of constrained Lyapunov equations of type

FTXM +MTXF − JT

2 YM −MTY TJ2 = −WWH , (9.18a)

J1XM = 0, and MTXJT

1 = 0, (9.18b)

that are the outcome of the application of an implicit time-stepping and a Newton
scheme in the course of the numerical integration the differential-algebraic Riccati
equation.

The variant of Smith’s method, see e.g. [111], proposed in this section for solving
generalized Lyapunov equations of type (9.18) is designed to achieve consistency
with the algebraic constraints for every iterate on the way to the actual solution of
the differential-algebraic Riccati equation.

We want to point out that the algorithm derived here is identical with the single-
shift ADI iteration developed in [64]. In view of model reduction via balanced
truncation the authors of [64] consider a class of projected Lyapunov equations
that define the observability and controllability Gramians for linear time-invariant
semi-explicit index-2 systems with observation and control. For an efficient nu-
merical solution in [64] the projected equations are interpreted as saddle-point
systems. Here, the same saddle-point systems arise within the iterative solution
of the Cayley- or Stein-transformed generalized Lyapunov equations. We will use
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the interpretation as projected Lyapunov equations to state the convergence of the
numerical scheme.

The algorithm for the solution of the projected Lyapunov equations, has also been
applied for the solution of projected algebraic Riccati equations for the stabilization
of incompressible flows [14, 15].

The presented derivation assumes that all coefficients and iterants are real and
only the shift parameter µ is complex. However, if one uses complex shifts, the iter-
ants will become complex as well, see [17] for implementation variants with complex
arithmetics. All derivations of the following section remain valid for complex valued
coefficients with the transpose, e.g. AT, replaced by AT, where the overline denotes
the complex-conjugate.

9.2.1. Smith’s Method and Low-Rank Factor Iteration. With M :=

[

M 0
0 I

]

and

for a complex parameter µ we rewrite equations (9.18) as

M
−T

[

FT + µMT −JT

2

J1 0

] [

X 0
Y 0

]

=M
−T

[

−WWH 0
0 0

]

M
−1

−
[

X Y T

0 0

] [

F − µM JT

1

−J2 0

]

M
−1. (9.19)

Assuming that FT + µMT and J1[FT + µMT]−1JT

2 are invertible and that X is
symmetric we find by inverting and transposing that (9.19) is equivalent to

[

X Y T

0 0

]

=

M
−T

(

[

−WWH 0
0 0

]

−
[

FT − µMT −JT

2

J1 0

] [

X 0
Y 0

]

M
)

[

F + µM JT

1

−J2 0

]−1

.

(9.20)

Expression (9.20) plugged into the backward shifted equations

M
−T

[

FT + µ̄MT −JT

2

J1 0

] [

X 0
Y 0

]

=M
−T

[

−WWH 0
0 0

]

M
−1

−
[

X Y T

0 0

] [

F − µ̄M JT

1

−J2 0

]

M
−1 (9.21)

gives after a premultiplication by

[

FT + µ̄MT −JT

2

J1 0

]−1

M
T , of which we assume

that it exists,
[

X 0
Y 0

]

=

[

FT + µ̄MT −JT

2

J1 0

]−1 ([

−WWH 0
0 0

]

M
−1−

−
(

[

−WWH 0
0 0

]

−
[

FT − µMT −JT

2

J1 0

] [

X 0
Y 0

]

M
)

×

×
[

F + µM JT

1

−J2 0

]−1 [

F − µ̄M JT

1

−J2 0

]

M
−1

)

. (9.22)

With the Schur complement Sµ̄ := J1[FT + µ̄MT]−1JT

2 and Sµ defined analogu-
ously we have the formulas for the inverse matrices

[

FT + µ̄MT −JT

2

J1 0

]−1

= (9.23a)

[[

I − [FT + µ̄MT]−1JT

2 S
−1
µ̄ J1

]

[FT + µ̄MT]−1 [FT + µ̄MT]−1JT

2 S
−1
µ̄

−S−1
µ̄ J1[FT + µ̄MT]−1 S−1

µ̄

]
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and
[

F + µM JT

1

−J2 0

]−1

= (9.23b)

[[

I − [F + µM ]−1JT

1 S
−T

µ J2

]

[F + µM ]−1 −[F + µM ]−1JT

1 S
−T

µ

S−T

µ J2[F + µM ]−1 S−T

µ

]

Since

Il
µ : =

[

FT + µ̄MT −JT

2

J1 0

]−1 [

FT − µMT −JT

2

J1 0

]

=

[

∗ 0
∗ ∗

]

(9.24a)

and

Ir
µ : =

[

F + µM JT

1

−J2 0

]−1 [

F − µ̄M JT

1

−J2 0

]

=

[

∗ 0
∗ ∗

]

(9.24b)

have a zero block in the upper-right position the matrix equation (9.22) yields one
expression for X independent of Y , one equation for Y and two tautologies 0 = 0.

We consider the expression for X and examine the term containing WWH and
the term containing X separately.

Using the formulas for the inverses given in (9.23a-b) we can write the contribu-
tion of WWH to the equation for X in (9.22) as

−
[

I − [FT + µ̄MT]−1JT

2 S
−1
µ̄ J1

]

[FT + µ̄MT]−1WWH
[

M−1 − [Ir
µ]11M

−1
]

, (9.25)

where

[Ir
µ]11 :=

[

I − [F + µM ]−1JT

1 S
−T

µ J2

]

[F + µM ]−1[F − µ̄M ] + [F + µM ]−1JT

1 S
−T

µ J2

(9.26)
is the left-upper block of Ir

µ as defined in (9.24a). With

[F+µM ]−1[F−µ̄M ] = [F+µM ]−1[F+µM−µM−µ̄M ] = I−2 Re(µ)[F+µI]−1M
(9.27)

we find that

I − [Ir
µ]11 = 2 Re(µ)

[

I − [F + µM ]−1JT

1 S
−T

µ J2

]

[F + µM ]−1M (9.28)

and that (9.25) is the same as

− 2 Re(µ)[F−1
µ̄ ]11WWH [F−1

µ̄ ]H11, (9.29)

where [F−1
µ̄ ]11 is the upper-left block of the matrix given in (9.23a) and the super-

script ∗ denotes the transpose and complex conjugate.
With this, we can extract an implicit relation for X from (9.22):

X = [Il
µ]11X[Ir

µ]11 − 2 Re(µ)[F−1
µ̄ ]11WWH [F−1

µ̄ ]H11. (9.30)

Through (9.23a) and (9.24a) we obtain an explicit expression for [Il
µ]11 and using

(9.27) we can directly confirm that

[Il
µ]11 =

[

I − [FT + µ̄MT]−1JT

2 S
−1
µ̄ J1

]

[FT + µ̄MT]−1[FT − µMT]−1+

+ [FT + µ̄MT]−1JT

2 S
−1
µ̄ J1

=
[

I − [FT + µ̄MT]−1JT

2 S
−1
µ̄ J1

][

I − 2 Re(µ)[FT + µ̄MT]−1MT
]

+

+ [FT + µ̄MT]−1JT

2 S
−1
µ̄ J1

= I − 2 Re(µ)
[

I − [FT + µ̄M ]−1JT

2 S
−1
µ̄ J1

]

[FT + µ̄M ]−1MT

=

[

I − 2 Re(µ)M [F + µM ]−1
[

I − JT

1 S
−T

µ J2[F + µM ]−1
]

]H

=
[

M [Ir
µ]11M

−1
]H
,
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where the last equality follows from Equation (9.28). We write [Iµ]11 := M [Ir
µ]11M

−1

so that (9.30) becomes

X = [Iµ]11X[Iµ]H11 − 2 Re(µ)[F−1
µ̄ ]11WWH [F−1

µ̄ ]H11, (9.31)

which is a Stein or discrete-time Lyapunov equation for X.
A formal solution to (9.31) is given via

X = −2 Re(µ)
∞

∑

k=0

[Iµ]k11[F−1
µ̄ ]11WWH [F−1

µ̄ ]H11[Iµ]∗k11 (9.32)

The series in (9.32), truncated after the n-th summand, can be written as

Xn = UnU
H
n , where Un :=

√

−2 Re(µ)(W̃ , [Iµ]11W̃ , . . . , [Iµ]n−1
11 W̃ ) (9.33)

and W̃ := [F−1
µ̄ ]11W .

If the series in (9.32) converges, then [Iµ]n11 → 0 as n → ∞ and Xn as defined
in (9.33) can serve as an approximate solution to (9.18), cf. [127].

Instead of computing the matrix inverses for the definition of [F−1
µ̄ ]11 and [Iµ]11

one rather computes the products W̃ = [F−1
µ̄ ]11 and [Iµ]11W̃ directly as solutions

of linear equation systems.
The definition of [F−1

µ̄ ]11 as the upper-left block of the matrix inverse defined in
(9.23a) implicates the following lemma:

Lemma 9.1. Consider [F−1
µ̄ ]11 as in Equation (9.29). Then, for a given matrix

W of suitable size, Z := [F−1
µ̄ ]11W is the solution of

[

FT + µ̄MT −JT

2

J1 0

] [

Z
∗

]

=

[

W
0

]

and in particular J1W̃ = J1Z = 0.

For the products [Iµ]k11W̃ one can conclude from the definition of Iµ in (9.24a):

Lemma 9.2. If for Z̃ it holds J1Z̃ = 0, then Z := [Iµ]11Z̃ is given as the solution
of

[

FT + µ̄MT −JT

2

J1 0

] [

Z
∗

]

=

[

[FT − µMT]Z̃
0

]

(9.34)

and in particular J1Z = 0.

Proof. By definition of [Iµ]11 one has
[

Z
∗

]

= Iµ

[

Z̃
0

]

=

[

FT + µ̄MT −JT

2

J1 0

]−1 [

FT − µMT −JT

2

J1 0

] [

Z̃
0

]

,

which is equivalent to
[

FT + µ̄MT −JT

2

J1 0

] [

Z
∗

]

=

[

FT − µMT −JT

2

J1 0

] [

Z̃
0

]

,

which coincides with (9.34) if J1Z̃ = 0. �

Thus, we can formulate an algorithm without explicitly calling on the inverse
matrices (9.23):

Remark 9.3. Algorithm 9.1 can be extended to varying shift parameters, see, e.g.
[15]. The use of multivariate shifts can speed up convergence and, simultaneously,
reduce memory consumption, in particular, for (sub)optimally chosen shift param-
eters.
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Algorithm 9.1 : For a shift parameter µ, Re(µ) < 0, coefficient matrices F , J1,
J2 and a right-hand side WWH , compute an approximate solution to (9.18) via
relation (9.33).

Step 1:

U ← Z, where Z solves

[

FT + µ̄MT −JT

2

J1 0

] [

Z
∗

]

=

[

W
0

]

.

Step 2: (repeat until convergence)
a.)

Z̃ ← [FT − µMT]Z

b.)

U ← [U,Z], where Z solves

[

FT + µ̄MT −JT

2

J1 0

] [

Z
∗

]

=

[

Z̃
0

]

Step 3:

U ←
√

−2 Re(µ)U

Remark 9.4. If J1 = J2, then Algorithm 9.1 coincides with Algorithm 5.6 in [64]
and one can carry over the convergence results derived in [64]. For general J1 6= J2

one cannot expect convergence of the approximations Xn as defined in (9.33). For
possibly differing J1 and J2, as they occur in discretizations of flow equations,
convergence has to be investigated separately.

9.3. Distributed Control of a Driven Cavity. As the example problem, we
consider a two dimensional driven cavity with Reynolds number 100 on the unit
square Ω = [0, 1]2.

We consider the evolution of the flow for t within t0 = 0 and T = 1, taking the
steady state solution of the Stokes problem as the intial value.

Then we linearize the dynamics about the solution, so that the state equations
are of the form (9.1), i.e. linear with time-varying coefficients.

The control setup is similar to [62] but with different input and output spaces.
For nu ∈ N, we set the input space U := C(0, T ;U × U), where U is spanned by

nu linear hat functions equally distributed on the unit interval [0, 1].
We define the domain of control to be Ωc = [0.4, 0.6] × [0.2, 0.3], cf. Figure 3,

and the input operator B : U → C(0, T ; C(Ω;R2)) via

B1u(t;x1, x2) =











[

u1(t; θ(x1))

u2(t, θ(x1))

]

, if (x1, x2) ∈ Ωc,

0, elsewhere,

(9.35)

with the affine linear function θc mapping [0.4, 0.6] onto [0, 1].
For a parameter ny we define the output space Y similar to U . As the domain

of observation, we use Ωo = [0.45, 0.55] × [0.5, 0.7], cf. Figure 3, and for a v ∈
C(0, T ; C(Ω;R2)), we define the observation operator C : v → y ∈ Y via

Cv(t)(η) =

[

y1(t; η)
y1(t; η)

]

=

∫ 0.55

0.45

[

v1(t;x1, θo(η))
v2(t;x1, θo(η))

]

dx1, (9.36)

where θo is an affine linear mapping adjusting [0, 1] to [0.5, 0.7].
In the presented example we have chosen nu = ny = 4, meaning that the x and

y components of both input and output signal are described by 4 nodal values each.
The weighting matrices in the cost functional where defined via the mass matrices

of Y and U , see (9.3). The scalar parameter γ controlling the control effort was set
to γ = 1e− 7.
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Figure 3. The computational domain of the driven cavity with
the domains of control Ωc and observation Ωo.

For the spatial discretization we used a regular triangulation with 2500 cells of
the unit square and Taylor-Hood finite elements [141] with 5202 velocity and 676
pressure nodes.

For the time discretization we used the implicit Euler scheme. The time interval
[0, 1] was discretized with 41 points. To account for the fast changes of the states at
the beginning and at the end of the interval, the time points were clustered towards
the margins.

The approximate solution to the differential-algebraic Riccati equation was ob-
tained as described in Section 9.1. The inner Lyapunov equations were solved via
a multishift ADI-iteration, cf. Remark 9.3, using real shifts µ ∈ {−10,−5,−3,−1}
and a direct sparse solver. The inner ADI-iteration was stopped when the relative
norm of the update of the factor dropped below 10−5. The inner Newton iteration
was continued until the relative norm of the update dropped below 4 · 10−8. To
compress the factors Zc of every time iteration, we computed a truncated singular
value decomposition cutting off all singular values smaller than 5 · 10−5.

Once the feedback matrix Xc
1 is available at every time instance, for a given

target signal y∗ ∈ C(0, 1;Y ), one can compute the feedthrough wc
1 for all time

instances and, subsequently, the corresponding optimal states.
We illustrate the applicability of the algorithm in Figure 4 for target states

y∗ =

[

yx

yy

]

, with the spatial components yx, yy ∈ {0, 0.1,−0.1} constant in space

and time.
The plots in Figure 4 show that the derived algorithms are well applicable in

distributed control of flows. When the control is active, the states immediately ap-
proach the targets. The plots also show a strong effect of the endpoint penalization
in the final phase. In particular for large deviations of the uncontrolled state, the
terminal forcing to the target leads to fast changes.

The implementation [61] was done in Python. For the spatial discretization we
used the Python interface dolfin to FeNiCS [110]. The major computational work,
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Figure 4. Time evolution of the measured signals y ∈ C(0, T ;Y )
for different target signals y∗. The red lines show the x-component
(left) and y-components (right) each given as 4 nodal values in Y .
The blue lines denote the values of the different target signals. The
middle row shows the signal for the uncontrolled system.

the precomputation of the factors of the feedback matrices for every time instance,
took about 16000 seconds or 4.5 hours on a laptop with 8 GB RAM and an Intel
Core i3-3110M processor with 2.4 GHz.
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10. Discussion and Outlook

In the chapters on the infinite-dimensional differential-algebraic equations, we
have derived a decoupling that separates differential and algebraic equations and
proved that the taken assumptions hold for reasonable cases of a weak formula-
tion of the Navier-Stokes Equations. The provided decoupling is compliant with
the same approach for finite-dimensional approximations. With the decoupling at
hand, we have read off consistency and smoothness conditions, i.e. necessary con-
ditions for the existence of solutions. We have shown, that under common stability
assumptions on the semi-discretization and under uniform monotonicity assumption
on the nonlinearity in the equation, the finite-dimensional approximations converge
weakly to a solution of the continuous problem. The convergence holds both for
the native and for the decoupled formulations. This, in particular, gave an answer
to the question on what is the Pressure Poisson Equation in infinite dimensions.

Since the derived decoupling happens in space, the extension of the theory to
second order systems, that may be quantified as index-3 systems, is straight forward.
As an example consider the dynamic elasticity problem

v̈(t)−A(v̇(t), v(t))− J ′λ(t) = f(t) in (W 1,2(Ω))′, a.e. in (0, T ), (10.1)

Jv(t) = g(t) in W 1/2,2(∂Ω), a.e. in (0, T ), (10.2)

as it was considered in [6]. The solution v is considered in W 1,2(Ω) and the operator
J : W 1,2(Ω)→ W 1/2,2(∂Ω) is associated with the trace operator. It is well known,
cf. [6], that J fulfills an LBB-condition and, thus, admits a splitting of the solution
space. However, the extension to J̄ defined on L2(Ω), i.e. the definition of the
trace for functions in L2(Ω), has been investigated only for domains with a C∞

boundary [107, Ch. 9]. A topic of future work is to derive the splitting for the trace
operator. This will also enable us to apply the setting to boundary control setups,
if the control is included via a multiplier.

In the chapters on optimal control in the infinite-dimensional setup, we have
shown that the decoupling for the state equations is also applicable for the ad-
joint equations. Carrying over the convergence results of the state equations to
the adjoint, we have shown existence of solutions to the formal adjoint equation.
This is of particular importance, since the formal adjoint can not be used in the
statement of necessary optimality conditions, if it does not have a solution. For
particular choices of the linearization point in the definition of the adjoint equation,
we have laid out that the formal optimality system for the semi-discrete equations
coincide with a semi-discretization of the formal optimality system. However, for
the convergence of the adjoint state of the semi-discretization to the adjoint state
of a continuous solutions, the provided results require strong convergence of the
approximations of the state variables. So, the question on the mutual convergence
of the semi discrete states and it adjoints is not answered. Also, the convergence of
the input that is optimal for the semi-discrete equations to an input that is optimal
for the continuous problem, as it was proven in the linear evolution case in [106],
has not been established yet.

The chapter on linearization schemes for the solution of the nonlinear optimal-
ity system has provided two variants of a Newton scheme. As a corollary of the
results on convergence of the Newton iterates, we have stated the existence of a
unique solution to a class of linear-quadratic optimal control problems with ab-
stract differential-algebraic constraints and with endpoint penalization. The taken
way to state convergence of the Newton scheme via uniform positivity in the region
of interest comes with a certain robustness against perturbations. Nevertheless, an
immediate extension towards applicability of the results for numerical approxima-
tions will base on the considerations of inexact Newton schemes [75]. In view of
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incorporating also constraints on the control, one will have to examine nonsmooth
Newton methods, cf. [31] for the Navier-Stokes setup.

Eventually, every numerical approximation will carry out a discretization and a
linearization. For this reason, we have particularly focussed on the finite-dimensional
linear-quadratic optimal control problem. The results from the abstract settings
immediately apply here. Moreover, the explicit availability of the operators al-
low for explicit representations of the decoupling projectors. Using the particular
structure, we have proven existence of solutions to formal optimality conditions by
means of a differential algebraic Riccati ansatz.

We have used the linear-quadratic case, to also state necessary smoothness con-
ditions on the data and inputs that come with the differential-algebraic structure
and that are influenced by the choice of the cost functional.

As a general result for semi-linear, semi-explicit state equations, we have found
that the action of the control in the algebraic constraint requires differentiability
of the input and also constraints the value of the input at time t = 0, see Remark
8.7 and Corollary 8.9.

Adjusting the cost functional, may well influence the index of the equations, and,
thus, the necessary smoothness constraints. In Remark 8.16, we have given sufficient
conditions for tractability index iµ = 2 that, basically, exclude the algebraic variable
p from the cost functional.

Also we have discussed, how one can formally reformulate the cost functional,
so that p is included also in the index-2 case. This reformulation, however, may
be infeasible, as it needs the explicit computation of projections. In particular we
have shown, that a direct inclusion of p in the cost functional leads to an optimality
system of index 3. For problems of higher index, the generally applicable reduction
to strangeness-free formulations [27], are probably the way to go. However, it may
be worth investigating particularly structured optimal control problems, as it was
done here for an index-2 case, in view of efficient numerical algorithms.

Another crucial point is the incorporation of constraints for the control as well
as lower regularity. This has been investigated in [134] for a large class of optimal
control problems of type (8.13) subject to semi-explicit DAEs of type

Mv̇ − f(t, v, p, u) = 0, v(0) = v0, (10.3a)

g(t, v, p, u) = 0, (10.3b)

and in particular the finite-dimensional cases that are considered here. The formu-
lation of a maximum principle in [134] bases on an equivalent index 1 representation
of the state equations that can be formally obtained for the semi-explicit case. In
the index 2 case it is given via

Mv̇ − f(t, v, p, u) = 0, v(0) = v0, (10.4a)

G(t, v, p, u) = 0, (10.4b)

where the function G(t, v, p, u) := ġ + gM−1f allows for an implicit function rep-
resentation of p = F (v, u). The maximum principle in [134] states that a solution
(v, p, u) of the associated optimal control problem with a cost-functional as in (8.13)
and pointwise constraints on u is a maximizer for a specifically chosen Hamilton
function, i.e. (v, p, u) solves

max
(p,u)∈D(t,v)

H(t, p, u; v, λ) = max
(p,u)∈D(t,v)

λT
1 f(t, v, p, u)−K(t, v, p, u), (10.5)

where
D(t, v) :=

{

(p, u) : u is admissible and G(t, v, p, u) = 0
}

,

and where λ1 solves the adjoint equation of the reduced system (10.4). In order to
compare it to our result, we assume for the moment that u is unconstrained and
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that the first variation, cf. [149], of f and K with respect to u exists. With the
implicit function theorem we write p = F (v, u) and the constrained maximization
problem in (10.5) becomes unconstrained:

max
u
H(t, F (v, u), u; v, λ) = max

u
λT

1 f̃(t, v, u)− K̃(t, v, u),

with the reduced functions f̃ and K̃. Now a candidate solution may be obtained
by setting the first variation to zero, i.e. to find an u such that

λT
1 f̃u − K̃T

u = 0. (10.6)

Thus, Equation (10.6) replaces the specification of the maximum in (10.5) and
together with the state equations (10.4) and its adjoint equations it gives the Euler-
Lagrange equations, cf. (8.12). This means that under the assumptions that were
necessary for the derivation of our results, namely that the cost functional does not
depend on p, the maximum principle may also provide a system for the computation
of an optimal input, however, on the base of an index-1 formulation.

The numerical example of Section 9 has shown applicability of the derived Ric-
cati decoupling in optimal control of flows. Beside the statement in the original
variables and coefficients, its main advantage is the availability of low-rank ADI it-
erations. This avoids the high requirement of memory of other common approaches
to boundary value problems of type (8.14) as there are finite differences, colloca-
tion, and shooting methods cf. [8]. In terms of speed and memory consumption,
there is space for improvement of the presented implementation in terms of com-
puting optimized shifts and residual evaluations, adapting the recent results of [18]
to the generalized setup. However, especially for large time horizons and unsteady
targets, the memory requirement for storing the factors at every time instance will
inevitably grow. A remedy might be the application of checkpointing schemes, see
e.g. [154], that store only snapshots from which needed values are computed on
demand.

In view of real-world applications, there are two remaining major issues to re-
solve. Firstly, the uniqueness of the input to state response is tied to the existence
of unique solutions to the Navier-Stokes equations which, in the interesting three
dimensional case, is guaranteed only for very particular setups. Secondly, the as-
sumption of bounded input operators in Problem 6.1 and also in the finite dimen-
sional equations is only met distributed control which has but a few applications
[71]. In practice, however, flows are acted upon typically via the boundary [85, 86].
To make the presented theory applicable to practical applications, one needs to
adopt recent theoretical and numerical results [15, 129] that show the successful
modelling of boundary feedback control via terms of distributed control.
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annihilator, 12, 27

approximation scheme, 42

behavior formulation, 10

Bochner integrable, 15

Carathéodory mapping, 17

causality, 92

closure, 13

compact, 13, 17

complemented subspace, 12, 21, 26, 61

conjugated exponent, 14

consistency

– of the initial value, 32, 58, 59, 71, 90

constrained optimization, 61

continuous problem, 43

convergence, 12

weak –, 12

– of bounded sequences, 13

cross terms, 67, 103, 105

differential part, 7

differential-algebraic equation, 7

differentiation index, 9, 106

discretization level, 43

dual operator, 11, 22, 79, 85

dual product, 11

as continuous extension, 16

dual space, 11

embedding

compact–, 16

continuous –, 16, 16, 34

Euler-Lagrange Equations, 93

Euler-Lagrange equations, 93

evolution setting, 19

evolution triple, see Gelfand triple

external approximation, 47, 58

convergence of –, 47, 48

stability of –, 47, 48

feedforward term, 110

Fréchet derivative, 18

chain rule, 18

Galerkin scheme, 41

mixed –, 41, 47

Gelfand triple, 16, 20, 23, 35

discrete –, 43, 46

Helmholtz-decomposition, 92

inherent ODE, 91

isometric isomorphism, 16

LBB condition, 26, 44

discrete –, 44, 45, 90

linear-quadratic optimal control, 71, 86

low-rank ADI iteration, 110

Navier-Stokes Equation, 3, 34

– in the weak formulation, 20

– uniqueness of solutions, 65

Nemyckij map, 17

Newton scheme, 82, 111

nonconforming scheme, 41

operator

– extension, 22, 45

completely continuous –, 17

continuous –, 17

demicontinuous –, 17, 75

hemicontinuous –, 17

linear bounded –, 11

linear continuous –, 11

pseudomonotone, 75

vk-uniform –, 75

pseudomonotone –, 17

vk-uniform –, 51, 51, 56, 75

semi-coercive –, 33

vk-uniform –, 51, 75

strongly continuous –, 17, 52, 75

totally continuous –, 17

weakly continuous –, 17

optimal control problem, 67

discrete –, 78

optimal control system, 62

orthogonal complement, 12, 27

orthogonal projector, 12

PDE constrained optimization, 62

Pressure Poisson Equation, 3, 32, 92

projection, 12

reflexive, 12, 14, 15

regular boundary, 13

regularity of the inhomogeneity, 25, 30, 47,
70

Riccati equation

algebraic –, 110

differential –, 99

differential-algebraic –, 96

Riesz isomorphism, 23

Riesz representation, 12, 15

right inverse, 26, 29, 49, 51

Schauder basis, 42

semi-discretization, 7, 41, 72, 89

semi-explicit, 19

semi-linear, 19

separable, 13, 14, 15

strangeness-free system, 11

submersion, 62, 82

tangent space, 61, 64

tractability index, 8, 106

weak derivative, 14, 21
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