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DECOUPLING IN THE DESIGN AND SYNTHESIS OF 
MULTIVARIABLE CONTROL SYSTEMS 

By Peter L. Falb* and William A. Wolovich 
Electronics Research Center 

SUMMARY 

Necessary and sufficient conditions for the "decoupling" of an m-input, 

m-output time-invariant linear system using state variable feedback are 

determined. Given a system which satisfies these conditions, i. e. , which can 

be decoupled by state variable feedback, the class CP of all feedback matrices 

which decouple the system is characterized. The characterization of CP is used 

to determine the number of closed loop poles which can be specified for the 

decoupled system and to develop a synthesis technique for the realization of 

desired closed loop pole configurations. Transfer matrix consequences of 

decoupling are  examined and practical implications discussed through numerical 

examples. 

1. INTRODUCTION 

The development of techniques for the design of multivariable control 

systems is of considerable practical importance. A particular design approach 

involves the use of feedback to achieve closed loop control system stability. In 

conjunction with this approach, it is often of interest to know whether or  not it is 

possible to  have inputs control outputs independently, i. e., a single input influencing 

a single output. This is, in heuristic terms, the problem of decoupling. 

* Division of Applied Mathematics, Brown University, Providence, Rhode Island, 
and NASA Electronics Research Center, Cambridge, Massachusetts. 
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The problem of decoupling a time-invariant linear system us!ng state 

variable feedback and the relation of this problem to control system design have 

been discussed by several authors (refs. 1, 2, 3). Morgan (ref. 1) considered 

the question of decoupling for systems, the state equations of which had a somewhat 

special form. His  chief result, which is a special case of the main theorem of 

this note, was the following: the time-invariant linear system 

can be decoupled if the matrix CB is non-singular. Rekasius (ref. 2) extended 

Morgan' s result and outlined an essentially trial-and-error procedure for 

specifying a certain number of the system' s poles while decoupling the system. 

Neither Morgan nor Rekasius gave a clear proof of sufficiency, and they did not 

consider the question of necessity. 

In this note, a necessary and sufficient condition for decoupling will be 

given; a characterization of the class of feedback matrices which decouple a 

system wi l l  be determined; the number of closed loop poles which can be specified 

while decoupling will also be determined; and a synthesis procedure for obtaining 

desired closed loop pole configurations will be developed. In line with these 

objectives, the remainder of the note is divided into the following sections: 

11. 

ID. 
IV. 

V. 

VI. 

VII. 

VIII 

Definitions 

The Main Theorem 

The Class of Decoupling Matrices 

A Synthesis Procedure 

Decoupling by Output Feedback 

A Practical Example 

Concluding Remarks 

In section 11, precise definitions of decoupling and state variable feedback a r e  

given. Then the basic necessary and sufficient condition for decoupling is proved 
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in section III. Using the main theorem, a description of all the decoupling matrices 

l 
I 

is presented (section IV). Next, the questions of synthesis and closed loop pole 

placement a re  examined (section V). In section VI, state variable feedback is 

replaced by output feedback and the relevant theory developed. The practical poten- 

tial of the methods is indicated in the discussion of a VSTOL stability augmentation 

system in section VU. Finally, various concluding comments a r e  made in 

section VIII. 

SYMBOLS 

n 

m 

system order (integer >, 1) 

dimension of input/output vector (integer 1 G m s n) 

state vector (n x 1) 

system matrix (n x n) 

matrix multiplier of the control vector (n x m) 

matrix multiplier of the state vector (m x n) 

control vector (m x 1) 

output vector (m x 1) 

feedback matrix multiplier of the state (m x n) 

matrix multiplier of the external input (m x m) 

external input vector (m x 1) 

a vector (1 x n), the i-t& row of C 
the zero (null) matrix 

a positive integer denoting the minimum j for which C . A B # 0 
the i-th - element of the output vector 1 
coefficients of the characteristic polynomial of (A+ - BF) 

the trace of the matrix ( . ) 
(m x n) matrix valued function of the external input - o 
(n x m) matrix used to define decoupling 

the decoupling matrix (m x m) 

j 
-1- - 
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det 

F*, A*, G* - - -  

E -i 
6 

M -k 

S 

9 

H 

- 

- 
i 

i 
s (E) 
E (E) 
- A** 

K - 

determinant (of a matrix) 

(m x n), (m x n), and (m x m) matrices used in the proof of the 
decoupling theorem 

(1 x n) row vector with 1 in the i-th - place and zeros elsewhere 

positive integer = max d. 

(m x m) diagonal matrices used in the synthesis of decoupling 
controllers 

m x m diagonal matrix of differentiators 

the class of all feedback matrices which decouple 

(m x m) matrix multiplier of the output 

(n x m) matrix used in the derivation of 9 

(n x n) matrix used in  the derivation of 9 

(m x n) matrix used in the proof of the decoupling corollary 

1 

x n matrix involved with the synthesis question 

1 1 .  DEFINITIONS 

Consider the time-invariant linear system 

where 5 is an n vector called the state, 11 is an m vector called the control (or input), 

is an m vector called the output, and A, E, C are n x n, n x m, and mxnmatr ices ,  

respectively. It is assumed that m s n. If - F is an m x n matrix and G i s  a non- 

singular m x m matrix, then the substitution of 

u =  - -  F x t w  (2) 

where - w represents the new m vector control (Fig. l), into (1) shall be called 

linear state variable feedback. 
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Figure 1. Multivariable Feedback System 

Let dl, d2 .... d be given by m 

d. = min (1:C.A j B #  0 j = 0, 1, .. n-11, o r  
-1- - 2 1 

j di = n - 1  if C . A  B = 0 f o r a l l j  
-1-- - 

where C . denotes the i-th - row of - C. Then, a simple calculation shows that 
- 1  

di k = 0, 1, ..., k k C . ( A  t BF) = -1- C . A  9 
-1 

k-di (4) 

, k =  d i t l  ,...... n 
k di 

C i ( A +  E) = C . A  ( A t  E) 
-1- - 

for  i = 1, . . . , m. Application of the state variable feedback (2) and repeated 

differentiation together with (4) yield the relations 

yi = si& = C .(A t BF)x 
- 1 -  -- . 

di 
d . t  1 

1 
( d i t  1) 

= C . @ t B F )  x t C . ( A + = )  e 
-1 - - 'i -1 
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where y i' 
theorem, 

i = 1, . . . , m, is the i-th - component of x. In view of the Cayley-Hamilton 

n - 1  

k =  0 

where the pk( E) a re  scalars depending upon E .  Thus, - x can be eliminated from the 

final relation of (5) to give 

n - 1  

where tr( . ) denotes the trace of a matrix, - Q is the m x n matrix given by 

and Li{x, C+} is the n x m matrix given by 

- - -  Li{F, G} = 

c . @ t E ) n - 1 - P n - l ( F ) @ t E ) n - 2 - .  . . -p +l(F)@tFw) 

c . @tE)n-2-Pn-l(F)@tBF)n-3-. . . -p t2(F)@+Ew) 

BG 

BG 

-1 [ di I 
-1 [ di d! 

C -i 

0 - 

(9) 

i where 0 is a zero matrix consistent with the order of L {F, G} . If E .. denotes the 

m x m matrix with 1 a s  ij-g entry and zeros elsewhere, then E 52 is an m x n 
- 1J - - - -  

-ii- 
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matrix with i-th row identical to the i-th row of Q and with all other rows zero. 
i 

The matrix E .. D will be denoted by - Q . The following definition can now be made: 
- - 

-11- 

Definition.- The matrices --- F and G, -- with G nonsingular, decouple the system (1) - if 

n - 1  

k =  0 

for i = 1, . . . . , m and if - 

for i = 1, . . . , m. - 

Note that this is a precise definition which does not involve vague statements about 

inputs controlling outputs independently. 
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I 1 1 .  THE MAIN THEOREM 

With the definitions of section II, it is now possible to state and prove a 

theorem which gives a necessary and sufficient condition for decoupling. 

Theorem.- Let B* be the m x m matrix given by 

dl 

d2 

C I A  E 

C A B  -2- 

: dm 
C A  B -m- - 

Then there is a pair of matrices --- F and G which decouple the system (1) if and only if 

det - B* # 0 (13) 

i. e . ,  if and only if - B* is nonsingular. 

Proof: Suppose first that - B* is nonsingular. Then it is claimed that the pair 

decouples (1). In view of (4), 

di 
t Ci& E* 

d.t 1 d i t  1 
C . (A -t- BF*) 1 -  - CiA 
-1 - 

a 



- - 
di But C .A B is simply ,the i-th row of B* , and so it follows that 

-1- - 
d . t  1 

-1 1 A* = -AT = - C . A  
-1- - - di 

C i &  BF* = -B*B* - 1- - 

where Bf and A* are the i-th - rows of - B* and A* - respectively. Thus 
-1 -1 

d. t k 
1 = o  -1 c .(& E*) - 

for any positive integer k. In a similar way, it follows that 

-1 - - di 
C. (A t BF*) BB*-l = B*B*-' 
- 1 -  - 

and hence that 

- Li{ E*, g*} 

- + I(F*)BTB*-' 
-1 - - 'd. 

1 

BTB*-' 
-1 - 

- 1  However, B*B* 

and so 

= -i E ' a row vector with 1 in the i-th - place and zeros elsewhere, 
-1- 

In other words, - F* and G* decouple (1). 

9 



Now suppose that there is a pair of matrices - -  F, G which decouple (1). Then 

it follows from (4) that 

di C . ( A  t BF) = B*G 
-1 - - -1- 

j for i = 1, . . . , m. Since CiA 
which would contradict the fact that - F and - G decouple (l), it is clear that ET # 0 for  

i = 1, . . , , m. As G is nonsingular, B*G # 0 for all i. Since (10) is satisfied, it 

follows that B*G is an m row vector of the form a x i  with ai  # 0 (otherwise there 

would be u!~), j # i  terms in tr( Li{& - G} E)). Thus, 

= 0 for all j would imply that tr( - - -  Li{F, G} 2) = 0 

-1- - - 

-1- 

3 

B*G = - -  

m 

1 a! 

2 a! 

0 - 

0 - 

Q! m 

(24) 

where 7r 

i =  1 

The theorem just proved shows that - B* is of paramount importance in the 

ai # 0. Hence, - B* is nonsingular since - G is. 

decoupling of (1) by state variable feedback. The basis for the choice of E* and G* 
in  the proof of the theorem is the following observation: Since (5) implies that 

which may also be written i n  the form 

y* = ( A *  t B*F)x t B*Gw - - - -  - -  

10 



(d i t  1) 
where L* is the m vector with components y. 

F =  F*, G =  G*, leads to 

, it is clear that the choice 
1 

- -  - -  

y* = - 0 

or,  equivalently, 

(d i t  1) 
= o  (28 ) Y i  i 

Caution: (28) does not represent the decoupled system since, in general, it involves 

the cancellation of zeros. The equations of the decoupled system a re  given by (10) 

o r  in state form as, 

where F, G a r e  a decoupling pair. - -  

It has now been established that the nonsingularity of - B* is a necessary and 

sufficient condition for the existence of a pair of matrices E, G which decouple (1). 

In the next section, the set of - all pairs - -  F, G which decouple (1) will be characterized 

under the assumption that - B* is nonsingular. This characterization leads to 

"answersfr to the following two questions: 

(a) The synthesis question; namely, how many closed loop poles 
can be specified for the decoupled system, how arbitrarily 
can they be specified, and how easily can an algorithm for 
specifying these poles be developed ? 

(b) The output feedback question; namely, when can feedback of 
the form u - -  = H 1 t -- G w decouple (l)? 

IV. THE CLASS OF DECOUPLING MATRICES 

Let - F be an m x n matrix, and let - G be a nonsingular m x m matrix. Under 

the assumption that (1) can be decoupled, necessary and sufficient conditions for 
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- -  F, G to be a decoupling pair are determined in this section. These conditions 

turn out to be independent of G so that it will make sense to speak of the class a 
of matrices E which "decouple" (1). 

Definition. - Let 9 (E) i 
be the n x m matrix given by 

I- - 

1 0 - 

i - for i = 1, . . . , m, where 0 is a zero matrix consistent with the order of 9 (E). 
Let P (9, for  i = 1, . . . , m, be the n x n matrix given by 

i 
-- - 

0 1 

. .. 1 I 0 

0 - I 1  I -  
I - 

where the p ( F ) are the coefficients of the characteristic polynomial of 

i.e.,  : 

t x, k -  

n -  1 
k 

( A  - -  t B F ) ~  = Pk(F)( j i  -t E) 
0 

i -- and I i s  an identity matrix consistent with the order of - -  P ( F). 

1 2  



i i i 
Since (E) is nonsingular, it follows that the rank of .E (E) Q (I?) is the 

i same as the rank of Q (I?). Note also that 

where - Li{ E, 5) is defined by (9). Thus, 

rank [ gi{ I?, G} ] = rank [Qi(F)] (33) 

for i = 1, . . . , m, since - G is nonsingular. In view of the definition of decoupling, 

the following theorem can be established: 

Theorem. - If the pair I?, - G decouples (l), then the rank of Q ( - F )  is one for all i; 

conversely, if the rank of 9 (3)  is one for all i -- and if B* is nonsingular, then the 

pair -9 F - B* - I, decouples the system (1). 

i 

i 

Proof: Suppose first that - -  F, G decouples (1). Then 

for all i where - 52 is the m x n matrix given by 

I I I 
I 1 I (n- 1) 

_w I _w I * * *  I W  
I I I 
I I I 

(35) 

i 
Since J z  is arbitrary, the i-th column of - L {E, G} is a non-zero vector, while every 

i 
other column of - Li (I?, G} is the zero vector. It follows that - L { - -  F, G} has rank one 

and hence, by (33), that rank 

13 



Now suppose that rank Q (E) = 1 for all i and that E* is nonsingular. F i  1 
Since 

di B = C . A d i B = B i  * # 0 
-1- - - c. (A, + BF) - 

-1 

by the definition of d. where B* is the i-th row of B*, it follows that 
1 '  -1 - 1  

i 
9 ( E )  = 

and hence that 

I I I I 
I I I 

I llyl I I 
I I I I 
I I I I 
I 
I 

i I  I 
1"2 I I 

I I I I 

I 1 .  I I 
I I 

I 
I 

I 
I 
I I I 

I 1  I 

I I I 
I l o  I I 

has only a non-zero i-th column. Thus, 

(37) 

and so the pa i r  - -  F, B*-l decouples (1). 

14 



Corollary. - If the pair - -  F, G decouples (l), then there is a diagonal matrix & 
such that - -  G = AB*-’ 

Proof. - If - -  F, G decouples (l), then 9 (E) is given by (37) and 
i 

F ) G  = - -  

- 1  I I I 
I I A’; I I 
I I 11 I 
I I I I 
I I i i  I I 

I I I I 
I I I I 

I P Q i I  I 

I I I I 
I I i  I I 
I I A  I I 
I I I I 

I I 
I l o  I -  I I 
I 

r .  

and the corollary is 1’  i 
where A # 0. It follows that g*G = diag 

established. 

A , . . . , 

Corollary. - If the pair - -  F, G decouples (l), then there is a diagonal matrix TJ 

such that 

where A** and A* are given by -- -- 

d 

3- 

, A_* = A**A - -  

15 



Proof. - The corollary is an immediate consequence of the relations 

d. t 1 
BFB 1 - di 

d . t  1 
1 = C . A  B t C . A  

-1- - -1- 
C . ( A  t BF) 
- 1 -  - 

di 
d . t  1 

1 
C . (A t BF) = YiCi(A t BF) E - 1 -  - 

(43) 

(44) 

In summary, thus far it has been shown that the nonsingularity of E* is a 

necessary and sufficient condition for the existence of a decoupling pair E, G. 
Furthermore, the set  of all pairs E, G which decouple (1) consists of matrices E 
such that rank [gi(l?)l = 1 for all i and G such that - -  G = AB*-' where is diagonal 

L 
and nonsingular. 

EXAMPLE: Let 

J 

In order to clarify these points, an example will now be presented. 

1 0  

2 0  

1 3  

7 

1 

B = -1 I 0 - :], - c =  

0 

0 0  

0 1  

(45) 

Thus, - B* is nonsingular, and the system can be decoupled. The set 

decouple the system (45) can now be obtained by determining all 2 x 3 matrices E 
of all - F which 

16 



such that rank r i d ’  Q ( F )  I = 1. In this example, this implies that the elements of + 
L .J 

must be of the form: 

f12 

-f12- 1 

V. A SYNTHES I S  PROCEDURE 

(47 1 

The theorem presented in section IV does provide a procedure for determining 

a, the class of all feedback matrices E which decouple (1). However, the direct 

application of the condition, rank Q ( F ) = 1 for all i, results only in constraints 

being placed upon certain of the m n parameters of E. What is still required is a 

procedure for specifying closed loop system poles while simultaneously decoupling 

(1) using an appropriate - F E +. In this light, a synthesis procedure will now be 

presented for directly obtaining a feedback matrix E E +, the parameters of which 

are determined so as to yield desired closed loop pole structure. 

[ i - l  

In particular, suppose that M k = 0, 1, 6 are  given m x m matrices, then 
-k’ 

the choice 

- -  F = l3*-’[ -k- M CAk-A*] , = (48) 

will, by (26), lead to 

6 
k 

-k- M CA - x t g  

k =  0 

(49) 

17 



If 6 = max d. and the M a re  suitably chosen, i. e., 
1 -k 

1 2  [ k ,  k ,  ....., mm] f o r i =  1 , 2 ,  ..., m ,  M = diag. m m k -k 

then (30) may be written in the form 

6 

k =  0 

o r  

(di) 
(51) 

i ..... t m y t wi d. i 
i (1) t (d i t  1) i 

'i = moYi -I- mlYi 
1 

m 
for i = 1, 2, . . . . , m, which indicates that - F and - G decouple (1) and that m t 2 

i =  1 
of the closed loop poles can be varied by varying the M 

following example: 

EXAMPLE: Let 

di 

In this light, consider the - k' 

A =  - 

0 1  0 0 0 0  

0 0  1 0 0 0  

0 0 - 1 0 0 0  

0 0  0 0 1 0  

0 0  0 0 0 1  

0 0  0 0 0 0  

0 1  

1 0  

0 0  

0 0  

0 0  

1 0  - 

- I 0 1 0 0 0 0  

0 0 0 0 0 0  

, g =  

1 0  

0 0  

0 0  

0 1  

0 0  

0 0  - 

(53) 

18 



Since B* is nonsingular, the system can be decoupled. Setting, for example, 

- M o =  -1 M = M  -2 =I: 11 (54) 
L -1 

l one obtains, using (29), the decoupled system 

2 3 2  Note that in this case det(s1 - A  - -  - BF) = s ( s  t l)(s - s - s - l), where the poles 
2 representing s(s3 - s - s - 1) have been specified by the choice of the M Other 

choices of the M would lead to other closed loop pole configurations. Therefore, 

i f  E* is nonsingular, m t 

specified (d. t 1 at a time) while simultaneously decoupling the system using the 

synthesis procedure. The synthesis question is, therefore, partially resolved, 

although some points still require clarification. In particular, it will be shown that 

m -t Z d. can never exceed n, the number of system poles, and that it is sometimes 

possible to specify more than m t 2 d. while simultaneously decoupling the system. 

-k' 

-k m 
d. of the system' s closed loop poles can be arbitrarily 

1 1  

1 

m 

1 1  m 

1 '  
m \  

Lemma. - Let K be the xn matrix given by --- 

. 
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m m 
and hence m t T: d. s n .  

1 ’  

Proof: Let k . denote the i-th row of K and r arbitrary scalars such that 
i’ - -1 

V 

r k  = O  c i-i 
1 

where 

m 

di v =  m t  

1 

(57) 

In order to establish the lemma, one need only show that (57) implies that each 

r. = 0. However, this follows directly from (57) by successive post multiplication 

by - -  B, AB, . . . , 4 - B, and from the fact that - B* is nonsingular. 6 
1 

Now let p denote the number of closed loop poles which can be specified while 

decoupling, and let f denote the number of free parameters (entries) in a decoupling 

matrix - F (for example, f = 3 in (47). Then the lemma and (51) combine to give 

m m 

m t x d i s p s n ,  m t x d i s f  

1 1 

(59) 

m 

1 ’  m 
Moreover, if  m t Z d. = n, then all n of the closed-loop poles can be arbitrarily 

positioned while simultaneously decoupling the system. Also, if f = m t Z di, then 
1 m  

(51) gives direct physical significance to the free parameters in F. If f > m t Z di 
m 1 

(or n), then i t  may be possible to specify more than m t Z d. of the closed loop 

poles. In this situation, it is often advantageous to calculate - -  C(sI-&-BF) E* 
with f entries in - F remaining arbitrary. The following examples illustrate these 

ideas and some of the difficulties involved in their application. 

1 ’  -1 -1 

20 



EXAMPLE: Let 

A =  - 

Then 

0 1 0 0  0 0  

O 0 0 0 0  

0 0 0 1  0 1  

= I  - 

C B  -2- 

, c'= 
0 0  

0 1  1 :I 
m 

and m t I: d. = 4 = n. Thus, all the closed loop poles can be specified by using the 
- 1  
1 

synthesis procedure. 

- F =  
fll 

0 
- 

f12 

0 

13 

0 O I  24 

Moreover, application of the theorem (section IV) shows that (62) represents the 

most general form for  a decoupling - F so  that f = 4 = n. The general form of the 

decoupled transfer matrix is 

r 
(S - f24) 

(s-f24) s - f  s 2 -f12s-fll) 
( 3  13 

0 

0 

3 2 s - f  s - f  s-f  

24 ( 3  13 

13 1 2  11 
2 

(S- f  ) s - f  s 

21 



EXAMPLE: Let 

Thus, - B* is nonsingular, and the system (64) can be decoupled. It can be shown 

that the elements of 9 must be such that 

f12 

-1 ^I 23 

m 
so that f = n = 3 > 2 = m t 

given by 

d.. Moreover, the closed-loop transfer matrix is 
1 '  

s t l)(s - f23 - 1) i; 0 1 
s2 - (f t 3)s - (fll t 2) 

(67) 
1 2  J - - -  C(SI - A - - ~ ~ ) - l g g * - l =  l o  

r) . .  
(s - f - l)(s" - (f t 3)s - (f t 2)) 

23 1 2  11 

so that all of the closed loop poles can be specified. Note that application of the 

synthesis procedure in this case would allow one to specify only two of the three 

closed loop poles. 

22 



VI. DECOUPLING BY OUTPUT FEEDBACK 

Since output feedback is only a special case of state variable feedback, i. e. : 

with - HC replacing - F, it follows immediately that (1) can be decoupled using output 

feedback if, and only if, (a) B* is nonsingular and (b) there is an m x m matrix H 

such that rank Q (HC) 

suitable test of whether or  not a system can be decoupled using output feedback. 

- - 
= 1 for i = 1, . . . , m. These conditions provide a [ i - l  

EXAMPLE: Let 

Then 

- B* = [-: :] 
- l  -1 l], 1 .=[' 0 0 1  O O] 

0 0  

is nonsingular so that the system defined by (69) can be decoupled. However, it is 

- not possible to decouple this system using output feedback. To see this, observe 

that the theorem and (39) imply that an - F which decouples must be of the form 

F = - 
f12 

-f -1 12 13 
-f 

23 



* 

and that - HC must be of the form 

HC = - 

L 

0 

0 h22 ”’’ 
Equations (71) and (72) lead to the contradictory requirement that f12 = 0 and 

= - 1. This example illustrates the point that decoupling by state variable 
f12 
feedback need not imply decoupling by output feedback. 

It should be noted that although a system may be decoupled using output 

feedback, some of the flexibility of specifying closed loop poles, as with state 

variable feedback, will in general be lost. For example, consider the system 

described by (60), with the most general - H given by 

h22 O l  

3 Since det(s1-A-BHC) = { d - l - h  )(s - 
22 - -  - 

(73) 

), output feedback will not be adequate 
11 

to stabilize the system, although state variable feedback does provide a higher 

degree of flexibility (63). 

EXAMPLE: Consider the system described by (64). It has been shown (67) that 

state variable feedback can be used to decouple the system while simultaneously 

specifying all three closed loop poles. Application of the theorem (section IV) and 

(39) imply that any 2 x 2 matrix - H of the form 

H - 
h22 O I  

(74) 
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. 

will define an output feedback which decouples this system. From (74), it follows 

that det (s I -A - BHC )(s - 1 - h )(s - (hll t 3)s - (h 22 11 
can be stabilized using output feedback (e. g., h22 = - 1, hll = - 5), although the 

poles are not completely arbitrary. 

2 
t 2)) and hence that the system - - -  

EXAMPLE: Let 

-1 0 

Then 

(75) 

- B * = C B =  - [: :] (76) 

m 

1 1  
and m t d. = 2 < 3 = n. It can be shown using the theorem that any decoupling F - 
is of the form 

22 
- 1 - f  

so that f = 4. However, the closed loop transfer matrix is given by 

(s-1)(8-f21-l)(s-f12-f13 - 

(77) 
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so that p = 2; i. e., only two of the closed loop poles can be specified. It can also 

be shown for this example that output feedback leads to the transfer matrix 

- 1) (s - h12 - 1) 

0 

O 1  

(s  - I) (s -hZ1 - 4 
(s-1) s - h 1 2 - 1  S-hZ1- ( )( 

(79) 

so that output and state variable feedback a r e  equivalent. A s  previous examples 

illustrate, this is  not true in general. 

V I  1. A PRACTICAL EXAMPLE 

An area in which decoupling techniques may be of interest is the design of 

flight control and stability augmentation systems. Consider, for example, the 

following linearized longitudinal equations of motion for a lift-fan V/STOL vehicle 

in  a hovering condition (ref. 4). 

* 

. .  
u 

B 

FJ 

w 

AX 

Ai 

'u xe 
0 0  

M O  

0 0  

1 0  

0 0  

U 

0 0  

1 0 

M M  

Z 

e ' w  

'e w 

0 0  

0 1  

- 
0 

0 

0 

0 

0 

0 
- 

+ 

0 0 

0 0 0 

0 

cv X 

Mcv Mmf 

'e C 
Z 0 

0 0 0 

0 0 0 
- 

* 
similar to the XV-5A 



where the quantities are: 

u - incremental longitudinal (x) velocity change 

8 - incremental pitch angle 

e' - pitch rate 

w - incremental vertical (z) velocity change 

Ax - incremental position e r ror  

Az - incremental altitude e r ro r  

- incremental collective fan input 
6 V  

- incremental nose fan input 

- incremental fan stagger input 

nf 

The relevant outputs in this example are  e, Ax, and Az, and the subscripted 

capitals (e. g. , X ) are the relevant stability derivatives. 
U 

The output matrix C is thus defined, i. e. : - 

0 0 0 0  

In this example 
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3 
and is nonsingular since it is assumed that Z 

and hence all six of the closed-loop poles can be arbitrarily specified while simul- 

taneously decoupling this system. It can be shown using the theorem that a decoupling 

- F has 6 (i. e.,  f = 6) free parameters. Thus, the synthesis procedure (section V) 

can be directly applied to give physical significance to these free parameters. For 

example, suppose that independent pitch, translation, and altitude control are 

desired, i. e. : 

M X # 0. Therefore, m t Z d. = 6, 
1 ’  cs enf cv 

0 1 .  ; = m e  t m e  t o 1  
1 1 

(83) 
0 1 A S  = m A x t  m A k t  w 
2 2 2 

0 1 A ~ = m A z t m A % t w  
3 3 3 

According to the synthesis procedure, - F can be set equal to B*-l - 
It can be shown that for this decoupling - F 

A t B F =  - -  
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2 

m 

0 

0 

0 

1 

0 

0 0 0 

0 1 0 

l o  0 

1 m 1 m 

1 
3 

0 O m  

0 0 0 

0 0 1 

0 

2 
m 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 
m 

0 

0 



-1 If - G is now set equal to E* , the closed-loop transfer matrix is: 

2 1  - m  s-m;)(s 2 1  -m3s-mo) 0 , 

0, (s 2 1  - m l s - m o ) ( s 2 - m j s - m ~ ) ,  

0 , (s2- m t s  - mo) 1 (s2- m i s  - 

2 1  - m s -m0)k2 - m1 - m0)k2 - m3s - m (85)  

2 3 '  

1 

0 ,  

1 1 2 2  

- c(s I-A-BF)-~BB*-~ = 

i 
J 

If the m. are suitably chosen, then, in effect, the pilot will be faced with the task of 

controlling three highly stable second-order systems. This example serves only to 

indicate a potential practical area of application for the ideas presented in this paper. 

The above examples illustrate the techniques developed for synthesizing 

decoupling controllers for multivariable systems. 

V I  1 1 .  CONCLUDING REMARKS 

The problem of decoupling a time-invariant linear system using state variable 

feedback has been considered. Necessary and sufficient conditions for "decoup1ingvf 

have been determined in terms of the nonsingularity of a matrix - B*. The class of 

all feedback matrices which decouple a system has been characterized, and a 

synthesis technique for the realization of desired closed loop pole configurations 

has been developed. In essence, the major theoretical questions relating to 

decoupling via state variable feedback have been resolved for time-invariant linear 

systems. 

A number of interesting potential areas of future research ar ise  from the 

results obtained here. In particular, the question of extending the theory to the 
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time-varying situation is of considerable interest. Some preliminary results 

relating to stabilization have already been obtained. 

VSTOL stability augmentation systems via decoupling techniques is a potential 

practical area of application as was mentioned in section VII. Practical imple- 

mentation of the techniques presented in this note has begun, but much remains to 

be done before the theory is transformed into a practical design technique. 

* 
The design of aircraft and 
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