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Virtual Screening (VS) is designed to prospectively help identifying potential hits, i.e.,

compounds capable of interacting with a given target and potentially modulate its

activity, out of large compound collections. Among the variety of methodologies, it is

crucial to select the protocol that is the most adapted to the query/target system under

study and that yields the most reliable output. To this aim, the performance of VS

methods is commonly evaluated and compared by computing their ability to retrieve

active compounds in benchmarking datasets. The benchmarking datasets contain a

subset of known active compounds together with a subset of decoys, i.e., assumed

non-active molecules. The composition of both the active and the decoy compounds

subsets is critical to limit the biases in the evaluation of the VS methods. In this review,

we focus on the selection of decoy compounds that has considerably changed over

the years, from randomly selected compounds to highly customized or experimentally

validated negative compounds. We first outline the evolution of decoys selection in

benchmarking databases as well as current benchmarking databases that tend to

minimize the introduction of biases, and secondly, we propose recommendations for

the selection and the design of benchmarking datasets.

Keywords: virtual screening, benchmarking databases, benchmarking, decoy, structure-based drug design,

ligand-based drug design

INTRODUCTION

Computer-aided drug design (CADD) is now a commonly integrated tool in drug discovery
processes (Sliwoski et al., 2014). It represents a way to predict ligands bioactivity in silico, and help
focusing the drug discovery efforts on a limited number of promising compounds, saving both time
and money in this very competitive field. Among these computational methods, Virtual Screening
(VS) is designed to prospectively help identifying potential hits, i.e., compounds able to interact
with the target and to modulate its activity, out of large compound collections (Tanrikulu et al.,
2013). VS approaches can be Ligand-Based (LBVS) when they rely only on the structure/properties
of known active compounds to retrieve promising molecules from compound collections (using
similarity search, QSAR or 2D/3D pharmacophore, etc.), or Structure-Based (SBVS) if the structural
information of the target is used (like in molecular docking studies).

The evaluation of VS methods is crucial prior to large library prospective screening to select
the appropriate methodology, and subsequently generate reliable outcome on real-life project.
Thus, software and workflows must be thoroughly evaluated retrospectively using benchmarking
datasets. Such datasets are composed of known active data together with inactive compounds
referred to as “decoys” (Irwin, 2008). Ideally, both active and inactive compounds should be
selected on the basis of experimental data. However, the documentation on inactive data is scarce,
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and putative inactive compounds are generally used instead.
Among the common metrics used to estimate the performance
of VS methods we find receiver operating characteristics (ROC)
curves, the area under the ROC curve (ROC AUC) (Triballeau
et al., 2005), Enrichment Curves (EC), Enrichment Factors (EF)
and predictiveness curves (Empereur-mot et al., 2015). While
conceptually different, they all share the same objective: assess the
ability of a given method to identify active compounds as such,
and discriminate them from the decoy compounds.

However, since the publication of the first benchmarking
database in the early 2000s, the composition in both active and
decoy compounds have been pointed out to crucially impact
VS methods evaluation; several biases have been shown to
incline VS assessment outcomes positively or negatively. The
difference between the two chemical spaces defined by the active
compounds on the one hand and the decoy compounds on
the other hand may lead to artificial overestimation of the
enrichment (Bissantz et al., 2000). On the contrary, the possible
presence of active compounds in the decoy compounds set
may introduce an artificial underestimation of the enrichment
(Verdonk et al., 2004; Good and Oprea, 2008) since decoys
are usually assumed to be inactive rather than proved to
be true inactive compounds (i.e., confirmed inactive through
experimental bioassays). New databases were designed to
minimize those biases (Rohrer and Baumann, 2009; Vogel et al.,
2011; Mysinger et al., 2012; Ibrahim et al., 2015a). Finally,
many studies pointed out that the VS performance depends
on the target and its structural properties (structural flexibility,
binding site physicochemical properties, etc.; Cummings et al.,
2005). Taking this into consideration, and despite the growing
number of protein families represented in databases, decoy
datasets generation tools were made publicly available in order
to allow any scientist to fine-tune target-dependant and reliable
benchmarking datasets (Mysinger et al., 2012; Ibrahim et al.,
2015a).

In this review, we first present how the notion of decoy
compounds evolved from randomly selected putative inactive
compounds to rationally selected putative inactive compounds
and finally true negative compounds. We develop the successive
benchmarking datasets that were published in the literature
and their basic to highly refined decoys selection workflows
together with the resulting positive or negative biases due to
their design. We then detail 5 benchmarking databases or decoy
sets generator tools along with their detailed decoy compounds
selection that represent the current state-of-the-art as of 2017:
their respective composition tend to minimize such biases.
Finally, we propose recommendations to select minimally biased
benchmarking datasets containing putative inactive compounds
as decoy compounds and introduce guidelines to design true
inactive compounds containing databases.

THE HISTORY OF DECOYS SELECTION

Randomly Selected Decoys
The first use of a benchmarking database to evaluate virtual
screening tools dates back to 2000, with the pioneering work of
Bissantz et al. (2000). The objective of their study was to evaluate
the ligands enrichment, i.e., the ability of docking programs

to associate active compounds with the best scores within a
compound collection. Three docking programs [Dock (Kuntz
et al., 1982), FlexX (Rarey et al., 1996), Gold (Jones et al., 1997)]
combined with 7 scoring functions [ChemScore (Eldridge et al.,
1997), Dock, FlexX, Fresno (Rognan et al., 1999), Gld, Pmf
(Muegge and Martin, 1999), Score (Wang et al., 1998)] were
evaluated on two different target proteins: Thymidine Kinase
(TK) and the ligand binding domain of the Estrogen Receptor
α subtype (ER α).

For each target, a dataset containing 10 known ligands
and 990 molecules assumed to be inactive (decoy compounds)
was created. The decoy compounds were selected following
a two-step scheme: (1) the Advanced Chemical Directory
(ACD v.2000-1, Molecular Design Limited, San Leandro) was
filtered to eliminate undesired compounds (chemical reagents,
inorganic compounds and molecules with unsuitable molecular
weights), (2) 990 molecules were randomly selected out of
the filtered dataset. The datasets were used to evaluate and
compare several docking and scoring schemes. The authors
eventually recommended a calibration of docking/consensus
scoring schemes on reduced data sets prior to large dataset
screens. Later on, Bissantz et al. (2003) applied the same protocol
to three human GPCRs to investigate whether their homology
models were suitable for virtual screening experiments.

A growing interest for virtual screening benchmarking
databases soon emerged from the community (Kellenberger et al.,
2004; Brozell et al., 2012; Neves et al., 2012; Repasky et al., 2012;
Spitzer and Jain, 2012). New databases were designed with an
increasing complexity in the decoys selection methodologies (see
section Benchmarking Databases). Nowadays, benchmarking
databases are widely used to evaluate various VS tools
(Kellenberger et al., 2004; Warren et al., 2006; McGaughey et al.,
2007; von Korff et al., 2009; Braga and Andrade, 2013; Ibrahim
et al., 2015a; Pei et al., 2015) and to support the identification
of hit/lead compounds using LBVS and SBVS (Allen et al., 2015;
Ruggeri et al., 2015).

Integration of Physicochemical Filters to
the Decoy Compounds Selection
In the early 2000s, Diller’s group incorporated filters in the decoys
selection to ensure that the discrimination they observed was
not solely based on the size of the decoy compounds (Diller
and Li, 2003). In addition to the 1,000 kinases inhibitors they
retrieved from the literature for 6 kinases (EGFr, VEGFr1,
PDGFrβ, FGFr1, SRC, and p38), 32,000 compounds were
randomly selected from a filtered version of the MDL Drug
Data Report (MDDR). The filters were designed to select decoy
compounds displaying similar polarity and molecular weight.
Similarly, in 2003, a benchmarking database derived from
the MDDR was constructed by McGovern et al. (McGovern
and Shoichet, 2003). Compounds with unwanted functional
groups were removed, leading to 95,000 compounds. The
targets of the MDDR for which at least 20 known ligands
were available constituted a target dataset (CA II, MMP-3,
NEP, PDF, and XO). The remaining compounds were used
as decoy compounds. The addition of rational filters was
a considerable step forward in the improvement of decoys
selection, but due to the commercial licensing of the MDDR,
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its use was limited (http://www.akosgmbh.de/accelrys/databases/
mddr.htm1).

The first benchmarking databases were composed as follows:
(1) true active compounds consisted in known ligands extracted
from the literature while (2) decoy compounds consisted in
putative inactive compounds randomly selected from large
databases possibly filtered to be compliant to specific criteria
(drug likeness, molecular weight, topological polar surface
area. . . ). Since the decoy compounds were pseudo-randomly
selected, they were assumed to be inactive on the defined targets.

Despite the use of the MDDR and the filtering of the decoy
compounds, these benchmarking databases displayed a major
drawback: the significant differences occurring between the
physicochemical properties of the active compounds and decoy
compounds led to obvious discrimination and then artificially
good enrichments (Verdonk et al., 2004; Huang et al., 2006).

In 2006, Irwin et al. proposed that the decoy compounds
should be similar to the known ligands regarding their
physicochemical properties to reduce the introduction of bias
while being structurally dissimilar to the known ligands to reduce
their probability to be active on the defined target. Following
these recommendations, they created the DUD database (Huang
et al., 2006) that was immediately considered as the gold standard
for the evaluation of VS methods.

The DUD database is composed of 2,950 ligands and 95,326
decoys for a total of 40 proteins from 6 classes (nuclear hormone
receptors, kinases, serine proteases, metalloenzymes, folate
enzymes and others). The decoy compounds were extracted
from the drug-like subset of the ZINC database (Irwin and
Shoichet, 2005). The 2D-similarity between known ligands and
decoy compounds was computed by calculating the Tanimoto
distance based on the CACTVS type 2 substructure keys and
5 physicochemical properties. For each active compound, the
36 molecules sharing the most similar properties while being
topologically dissimilar (Tanimoto < 0.9) were conserved. The
evaluation of the performance of DOCK (Meng et al., 1992;
Wei et al., 2002; Lorber and Shoichet, 2005; Huang et al., 2006)
confirmed that uncorrected databases such as the MDDR led
to over-optimistic enrichments compared to corrected databases
such as the DUD.

Benchmarking Database Biases
Despite the precautions taken to build the DUD database, several
remaining biases have been reported in the literature.

The “analogous bias” (Good and Oprea, 2008) lies in the
limited chemical space of active compounds that is restricted
to the chemical series that have been explored and referenced
in databases. The discrimination of the active compounds
from decoy compounds can be simplified since the decoy sets
would display a larger structural variability that could induce
an overestimation of the performance of VS methods. The
lack of diversity in the structures of known active compounds
limits the training and evaluation of LBVS methods to perform
scaffold-hopping, i.e., the identification of active hit compounds

1MDDR licensed by Molecular Design, Ltd., San Leandro, CA.

that structurally differ from reference molecules while retaining
similar activity.

The “complexity bias” (Stumpfe and Bajorath, 2011) or
“artificial enrichment bias”: active compounds and decoy
compounds often display differences in their respective
structural complexity since active compounds are often
optimized compounds extracted from large series in the
scientific and patent literature, which is not necessarily the
case for the structures of pseudo-randomly selected decoy
compounds.

The “false negative bias” (Vogel et al., 2011; Bauer et al.,
2013) lies in the presence of active compounds in the decoy
set. Unlike the analogous and complexity biases, it induces
an underestimation of the performance of the VS methods
that could be particularly dramatic for the evaluation of LBVS
methods (Irwin, 2008).

The need for less biased benchmarking databases to
objectively evaluate VS methods favored the emergence of new
strategies to eradicate or at least minimize those biases. Two
decoys selection strategies arose from benchmarking databases
improvement attempts: (1) the use of highly refined decoys
selection strategies and (2) the integration of true negative
compounds in the decoy set.

Highly Refined Putative Inactive
Compounds Selection
The reported biases pointed out that the composition of both
active compounds and decoy compounds sets has a huge impact
on the evaluation of the performance of VS methods (Verdonk
et al., 2004; Good and Oprea, 2008). Therefore, particular efforts
were performed in the selection strategies for active compounds
and decoy compounds.

To address analogous bias, a strategy consists in modifying
the receiver operating characteristics (ROC) curves (i.e., the
fraction of actives among the top fraction x of the data set)
(Triballeau et al., 2005) by weighting the rank of each active
compound with the size of its corresponding lead series (Clark
and Webster-Clark, 2008). This allows an equal contribution of
each active chemotype to the ROC curve (rather than each active
compound). Another widely used method is to fine-tune the
active compounds dataset prior to screen to ensure an intrinsic
structural diversity. To this aim, the MUV datasets (Rohrer
and Baumann, 2009) were designed using the Kennard Jones
algorithm to obtain an optimal spread of the active compounds
in the decoy compounds chemical space while ensuring a balance
between the active compounds self-similarity and separation
from the decoy compounds. Despite these observations, the most
used strategy in the literature still consists in clustering ligands
based on 2D descriptors and retain only cluster representatives
in the final dataset (Good and Oprea, 2008; Mysinger et al., 2012;
Bauer et al., 2013).

To reduce artificial enrichment, efforts were made to match as
much as possible the physicochemical properties of the decoys
to the physicochemical properties of the active compounds.
To this aim, the Maximum Unbiased Validation database
(MUV) (Rohrer and Baumann, 2009) was designed to ensure
embedding of active compounds in the decoy compounds
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chemical space based on an embedding confidence distance cut-
off calibrated on multiple drug-like compounds banks’ chemical
space. Active compounds that were poorly embedded in the
decoy set were discarded. A way to ensure the availability of
potential decoy compounds for any ligand is to generate decoys
that ignore synthetic feasibility (Wallach and Lilien, 2011).
Other databases select decoys that match active compounds
in a multiple physicochemical properties space. The DEKOIS
2.0 (Ibrahim et al., 2015a) proposed a workflow that used 8
physicochemical properties while the DUD-E added net charge
to the 5 physicochemical properties already considered in the
original DUD.

To address the risk of including false negatives in the decoy set,
a common strategy is to select decoy compounds topologically
different to any active compound. For this purpose, Bauer et al.
introduced the LADS score to guide decoys selection (Vogel
et al., 2011). In the DUD-E, potential false decoys are avoided by
applying a stringent FCFP_6 fingerprints Tanimoto-based filter.
It is important to note that since the evaluation of LBVS methods
requires that decoy compounds should not be discriminated
using basic 2D-based similarity tools, the use of 2D-based
dissimilarity filters to avoid false negatives in the decoy set
makes the concerned databases inappropriate for the evaluation
of the performance of LBVS methods. Therefore, Xia et al.
developed a method to select adequate decoys for both SBVS and
LBVS (Xia et al., 2014) by favoring physicochemical similarity
as well as topological similarity between active compounds and
decoy compounds that passed a primary topological dissimilarity
filter.

With these improvements, the notion of decoys remained
the same—putative inactive compounds—but their selection
critically evolved. Ever since, the main progress achieved in
the literature lies in the diversification of the protein targets
represented in benchmarking databases. The growing need for
datasets dedicated to a given target led to (1) an increasing
diversity of targets in benchmarking databases [the DUD-E
(Mysinger et al., 2012) contains datasets against 102 targets while
the previous DUD (Huang et al., 2006) contained datasets only
for 40 targets] and (2) highly specialized benchmarking databases
focused on a particular class of targets. Such specialized datasets
exist for GPCRs [GPCR ligand library (GLL)/Decoy Database
(GDD) (Gatica and Cavasotto, 2012)], histone deacetylases
[maximal unbiased benchmarking data sets for HDACs—
MUBD-HDACs (Xia et al., 2015)], or nuclear receptors [NRLiSt
BDB (Lagarde et al., 2014a)]. As a notice, DUD-E or DecoyFinder
(Cereto-Massagué et al., 2012) offer automated decoy set
generation tools based on the properties of active compounds,
enabling the community to easily design and tune their own
dataset for a particular target.

Toward True Negative Compounds
A common issue about decoys is the lack of data regarding their
potential bioactivity against the target. Most methods assume
that the absence of data means an absence of activity, which
may lead to include unknown active ligands into a decoy set.
To eliminate such false negatives from decoy sets, one solution
is to use referenced true negative compounds that can be

either true inactive or compounds displaying an undesirable
activity.

True inactive compounds, i.e., compounds that displayed
no experimental binding affinity against the target of interest,
can be used to identify binders. Inactive data is made available
in several public activity and/or affinity annotated compound
repositories and high throughput screening (HTS) initiatives
such as: ChEMBL (Bento et al., 2014), Drugbank (Wishart
et al., 2008) that provides annotations for approved drugs;
PDBBind (Wang et al., 2004, 2005), Binding MOAD (Benson
et al., 2008) and AffinDB (Block et al., 2006) that contain
binding affinity data for protein–ligand complexes available in
the Protein Data Bank (PDB) (Berman et al., 2000); PDSP
Ki database (Roth et al., 2000) that stores screening data
from the National Institute of Mental Health’s Psychoactive
Drug Screening Program; BRENDA (Placzek et al., 2017) that
provides binding constants for enzymes; IUPHAR (Southan
et al., 2016) that contains binding information for receptors
and ion channels; GLIDA (Okuno et al., 2006) and GPCRDB
(Munk et al., 2016) that contains binding data for G-protein-
coupled receptors; D3R datasets (Drug Design Data Resource2)
that have been provided by pharmaceutical companies and
academia and contain affinity data for 7 proteins together with
inactive compounds; ToxCastTM/Tox21 (Kavlock et al., 2012)
and PCBioAssay (Wang et al., 2017) that provide HTS data for
various targets.

As an example, the DUD-Enhanced (Mysinger et al., 2012)
(DUD-E) integrates some experimentally validated inactive
compounds extracted from ChEMBL in the decoy set in addition
to putative inactive compounds: an arbitrary 1µM cutoff is
used to classify ligands in the active set while molecules with
no measurable activity at 30µM or higher concentration were
classified into the decoy set. Similarly, the Maximum Unbiased
Validation (MUV) (Rohrer and Baumann, 2009) datasets are
composed of both active and inactive compounds collected from
the PubChem BioAssay annotated database.

Unwanted compounds, i.e., compounds that display
unwanted activity or binding, can also be used as negatives. For
instance, a recent study used ligands of the NRLiSt BDB (Lagarde
et al., 2014a) either as active compounds or decoy compounds,
depending on their activity for each nuclear receptor; antagonist
(or agonist) ligands of a given nuclear receptor were used as
decoys to evaluate agonistic (or antagonistic) pharmacophores
(Lagarde et al., 2016, 2017). This strategy has shown successful
results in the past: Guasch et al. (2012) focused on PPAR γ

partial agonists to avoid side effects accompanying full receptor
activation and built an anti-pharmacophore model with known
full agonist compounds to remove all potential full agonist
compounds from their initial set of 89,165 natural products and
natural product derivatives. The authors screened the remaining
compounds on a partial agonist pharmacophore model and
identified 135 compounds as potential PPARγ partial agonists
with good ADME properties among which 8 compounds with
new chemical scaffolds for PPARγ partial agonistic activity. After

2Available at: drugdesigndata.org
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biological tests, 5 compounds were confirmed to be PPAR γ

partial agonists.

SELECTED DATABASES

Maximum Unbiased Validation (MUV)
The MUV was designed to propose unbiased datasets in regard
to both artificial enrichment and analogous bias by proposing
a new approach gleaned from spatial statistics (Rohrer and
Baumann, 2009). The authors ensured homogeneity in actives-
actives similarity and actives-decoys dispersion in order to
reach a random-like distribution of active compounds and
decoy compounds in a physicochemical descriptors chemical
space. This implies that the molecular properties contained
no information about the bioactivities of active and decoy
compounds. Datasets were designed for 18 targets with a total
of 30 actives and 15,000 decoys for each target.

Initial Compounds Database
Potential active and decoy compounds were extracted from HTS
experiments available in PCBioAssay (June 2008) (PubChem
BioAssay3). In these assays, a primary screen was performed
in a large number of compounds (>50,000) and was followed
by a low throughput confirmatory screen. Compounds with an
experimental EC50 in the confirmatory screen were selected as
potential active compounds while inactive compounds from the
primary screen were selected as potential decoys.

Actives Selection
A two-step process was applied to rationally select final
active compounds for the MUV data sets. (1) Potential active
compounds were filtered to eliminate artifacts caused by
organic chemicals aggregation in aqueous buffers (“Hill slope
filter”), as well as off-targets, cytotoxic effects or interference
with optical detection methods [“frequency of hits filter”
and “autofluorescence (Simeonov et al., 2008) and luciferase
inhibition (Auld et al., 2008) filters”]. (2) A “chemical space
embedding filter” was applied to ensure that actives located in
regions of the chemical space devoid of decoys were eliminated
from the dataset (Figure 1). Subsets of 30 actives with the
maximum spread per target were generated using a Kennard-
Jones algorithm. Selected active compounds were exchanged with
remaining potential active compounds until all datasets were
adjusted to a common level of spread.

Decoys Selection
To carefully match active and decoys physicochemical properties,
Rohrer et al. proposed that the level of self-similarity within the
active compounds set [measured using the “nearest neighbor
function” G (t)] should be equal to the degree of separation
between the active compounds set and the decoy compounds
set [evaluated with the “empty space function” F (t)] (Figure 1).
Following guideline, the data clumping should be null, ensuring
a random-like distribution of decoy and active compounds in
the overall chemical space. The distances were computed based
on 1D molecular properties (counts of all atoms, heavy atoms,
boron, bromine, carbon, chlorine, fluorine, iodine, nitrogen,

3Available online at: http://pubchem.ncbi.nlm.nih.gov/sources#assay

oxygen, phosphorus, and sulfur atoms in each molecule as well
as the number of H-bond acceptors, H-bond donors, the logP,
the number of chiral centers, and the number of ring systems).
The level of separation between the decoy compounds and the
active compounds was adjusted to the same level of spread so that
the data clumping is null. In total, 500 decoys were selected per
selected active, resulting in 15,000 decoys per dataset.

The minimization of analog bias and artificial enrichment
makes the MUV datasets fitted for LBVS. The availability of
structures in the PDB (2008) for seven of the MUV targets makes
it suitable for SBVS as well (Löwer et al., 2011). Thus, the MUV
constituted the first dataset that enabled comparative evaluations
of SB and LBVS methods and protocols.

Demanding Evaluation Kits for Objective in

Silico Screening (DEKOIS)
In 2011, Vogel et al. proposed a new generator of decoy
compounds sets called Demanding Evaluation Kits for Objective
In Silico Screening (DEKOIS) (Vogel et al., 2011). The authors
designed their tool to avoid the introduction of well-known and
described biases into the decoy sets, i.e., analog bias and artificial
enrichment. A first step in their workflow is subsequently to
closely match physicochemical properties of both ligand and
decoys to limit the analog bias. Then, to deal with the risk of
including false negative compounds in the decoy compounds set,
a new concept is applied to the decoys selection process: the latent
actives in the decoy set (LADS). Finally, the structural diversity
of the active and decoy compounds structures into the sets is
evaluated and maximized, and the embedding of the actives into
the decoys chemical is assessed. The whole workflow was further
improved in 2013 to produce the current version of this tool,
DEKOIS 2.0 (Bauer et al., 2013), and 81 ready-to-use (active
and decoys) benchmarking datasets for 11 target classes are
currently available through the DEKOIS website (www.dekois.
com/, accessed 10/23/2017).

Initial Compounds Database
Decoy compounds from the DEKOIS 2.0 benchmarking datasets
are selected from a subset of the ZINC database of 15 million
molecules. Eight physicochemical properties are evaluated:
molecular weight, octanol–water partition coefficient, hydrogen
bonds acceptor and/or donor, number of rotatable bonds,
positive and negative charges, and the number of aromatic rings.
For each physicochemical property, bins are defined, and all
possible combinations of bins are used to split the database
compounds into cells. The initial bins are defined so that each
bin is equally populated, and each final cell is characterized
by a set of 8 physicochemical properties. Each user-provided
active compound is associated with the closest cell (in terms
of physicochemical properties), and 1,500 decoys are randomly
preselected from this parent cell, or from the direct neighbor cells
if the parent cell is not populated enough to provide 1,500 decoy
compounds (Figure 1).

Decoys Selection
The two criteria for the refinement steps are the structural
diversity and the low rate of latent active in decoy set (LADS).
A physicochemical similarity score (PSS) and a LADS score are
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FIGURE 1 | Decoys selection in MUV and DEKOIS 2.0. (A) For each active of the MUV, a distance to the 500th nearest neighbor from 100 random samples from

multiple drug-like compounds collections was computed. The 90th percentile was recorded as the confidence distance for a good embedding (dconf ). Active

compounds were accepted only if the 500th nearest neighbor from the decoy compounds (ddecoys) set was within the dconf . (B) Selected active compounds

datasets from the MUV were adjusted to the same level of spread (6G ≈ constant), and decoy compounds sets were, in turn, adjusted to this level of spread (6F ≈

6G). (C) The chemical space of both active and decoy compounds was divided into cells characterized by a set of 8 physicochemical properties. Each user-provided

compound is associated with its property matching cell, and 1,500 decoys are selected from the same cell, or direct neighboring cells if the parent cell is not

populated enough.

computed, normalized and combined to select the final 30 decoys
associated with each active ligand:

(1) The PSS score is the arithmetic mean of the normalized
distance between a decoy and the reference ligand, for each
physicochemical property.

(2) The avoidance of LADS relies on the fingerprints bit strings
shared by the active compounds: the fingerprint bit strings
of each preselected decoy compound is matched to the
fingerprint bit strings of all active compounds using the
following:

LADS score =

∑n
i=1

(

Ni(HeavyAtoms) · fi(FCFP6fragment)

)

NFCPC6fragments
,

with n the number of fingerprint bit strings shared by the
decoy and the active set, fi the frequency of fragment i in the
active set,Ni the number of heavy atoms into fragment i, and
N the total number of FCPC_6 fragments into the decoy.

The weighting of the LADS score by the frequency of the
bit string and the size of the corresponding fragment was

added in the second version of DEKOIS (Bauer et al., 2013)
to ensure that large bioactive substructures and substructures
frequently found exert a greater influence on LADS score
compared to smaller and rare functional groups.

(3) The LADS and PSS scores are normalized and combined
into a consensus score to sort decoy compounds. The
subsequently best 100 decoys are selected. Finally, the
fingerprints are used to select the 30 most dissimilar decoys
for each active.

Using this enhanced protocol, Bauer et al. showed an
improvement of the “deviation from optimal embedding
score” (DOE score) (Vogel et al., 2011; Bauer et al., 2013) for
DEKOIS 2.0 compared to DEKOIS, and found a good (<0.2)
DOE score for 89% out of the 81 targets considered.

Dud-Enhanced (DUD-E)
Despite the extensive use of the DUD, several studies pointed
out that some scaffolds were over-represented in the active
sets, that the charge was not considered in property-matching
for ligand selection, and that true ligands could be found
in the decoy sets (Good and Oprea, 2008; Hawkins et al.,
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FIGURE 2 | Example of Bemis-Murcko atomic frameworks clustering of Protein kinase C beta type (KPCB) ligands from the DUD-E.

2008; Irwin, 2008; Mysinger and Shoichet, 2010). Shoichet
et al. proposed the DUD-E (DUD-Enhanced) to address these
weaknesses in both the active and the decoy sets design in
the DUD, and extended the number of represented protein
families in the database. The DUD-E contains 102 proteins that
span diverse target classes. To address analogous bias, ligands
were clustered by their Bemis-Murcko atomic frameworks
(Bemis and Murcko, 1996) (Figure 2), and a topological
dissimilarity filter was applied to avoid active compounds in the
decoy sets.

Initial Compounds Database
Active compounds assigned to each target of the DUD-E were
collected from the ChEMBL09 database if their activity/affinity
(Ki, Kd, IC50, EC50, or associated logP) was ≤1µM (Gaulton
et al., 2012). Additionally, 9,219 experimental decoys displaying
no measurable affinity up to 30µM were included in the
decoy sets.

Active Set Preparation
Active compounds were clustered based on their Bemis-Murcko
atomic frameworks. When more than 100 frameworks were
represented, the highest energy ligand from each cluster
is considered, while when less than 100 frameworks are
represented, the numbered of considered ligands was raised to
obtain more than 100 molecules. Even if this selection protocol
could have been optimized for sets with low frameworks
diversity, it ensures sufficient diversity and quantity of
compounds for the other sets.

Decoys Selection
The decoy compounds were extracted from the ZINC
database (Irwin and Shoichet, 2005) and selected by
narrowing or widening windows around 6 physicochemical
properties: molecular weight, octanol-water partition

coefficient, rotatable bonds, hydrogen bonds acceptors,
hydrogen bonds donors, and the net charge. To avoid active
compounds in the decoy sets, a topological dissimilarity
filter was applied. Molecules were sorted according to
their Tanimoto distance to any ligands using CACTVS
fingerprints, and the 25% most dissimilar decoy molecules
were retained. Finally, up to 50 decoys were randomly selected
for each ligand and pooled with the 9,219 experimental
decoys.

An automated tool was made available online to generate
decoys from user-supplied ligands using the same protocol
(http://decoys.docking.org). The possibility to generate decoy
sets for any target has been revealed successful and is now widely
used by the scientific community (Lacroix et al., 2016; Nunes
et al., 2016; Allen et al., 2017; Meirson et al., 2017).

Despite the success of the DUD-E, some weaknesses should be
corrected in the DUD-E benchmarking database. The 102 targets
are defined as a UniProt gene prefix (such as DRD3) and not a
full gene_species (such as DRD3_HUMAN or P35462), which
can bias the actives selection when the binding site composition
differs between species. Additionally, only one single structure
was considered for each protein while many docking studies
pointed out that the structure selection is crucial for screening
and docking, particularly for proteins that accommodate ligands
with different binding modes (May and Zacharias, 2005; Ben
Nasr et al., 2013; Lionta et al., 2014). A recent study has shown
that the ligand pharmacological profile should be considered
for both the active set design and the structure selection
(Lagarde et al., 2017). For instance, nuclear receptors (NR)
can be inhibited by antagonists or activated by agonists that
differ in their structure and properties: agonists should be
considered in the active set if the screening is performed on an
agonist-bound structure while antagonists should be used in the
active set if the screening is performed on an antagonist-bound
structure.
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Nuclear Receptors Ligands and Structures
Benchmarking Database (NRLiSt BDB)
The NRLiSt BDB (Nuclear Receptors Ligands and Structures
Benchmarking DataBase) was created to address the lack
of annotation information and pharmacological profile
consideration in existing NR databases.

Ligands Preparation
The NRLiSt BDB is composed of 9,905 active molecules targeting
27 nuclear receptors (NRs). Active compounds are divided into
2 datasets per target according to their agonist or antagonist
profile. All active compounds were extracted from the ChEMBL
database and included in the NRLiSt after a manual inspection of
the corresponding ligands bioactivity data in the original papers.
All inverse-agonists, modulators, agonists/antagonists, weak to
partial agonists, weak to partial antagonists and ligands with
unknown pharmacological profile were discarded.

In addition 339 human holo structures extracted from the
PDB are provided, among which 266 are agonists-bound, 17
are antagonists-bound and 56 are others-bound. Valid active
compounds extracted from literature were clustered using
chemical fingerprints, and a Tanimoto cut-off of 0.5.

Decoys Selection
In total 458,981 decoys generated with the DUD-E online tool
were provided, with a mean ratio of 1/51 for each dataset.

In further studies, Lagarde et al. integrated the anti-
pharmacological profile ligands in the decoy set to orient the
screening toward the desired pharmacological profile (Lagarde
et al., 2014b). For instance, antagonists were considered as the
decoy compounds set for agonists screening research, while
agonists were considered as the decoy compounds set for
antagonists screening research. In agreement, the corresponding
agonist- and antagonist-bound structures were used for SBVS,
when available. Results showed that the enrichment is better
when the pharmacological profile is considered prior to screening
and should therefore be systematically considered to avoid
artificially bad ligands enrichment.

Maximal Unbiased Benchmarking Data
Sets for HDACs (MUBD-HDACs)
So far, most of the decoy datasets [such as DUD-E (Mysinger
et al., 2012) andDEKOIS (Vogel et al., 2011; Bauer et al., 2013)] or
decoys generator [such as DecoyFinder (Cereto-Massagué et al.,
2012) or the DUD-E generator server] are designed for SBVS
purpose. Few databases [i.e., MUV (Rohrer and Baumann, 2009),
NRLiSt BDB] are intended to propose benchmarking datasets
for LBVS. Xia et al. thus proposed a workflow to fulfill this
need, and built up decoy datasets for LBVS targeting the histone
deacetylases protein family (HDACs).

Ligands Preparation
Active compounds were retrieved from the ChEMBL18 database
(Gaulton et al., 2012), among molecules annotated with
quantitative data (i.e., IC50), manually checked, and filtered
(exclusion of salts, molecules with more than 20 rotatable bonds
or with a MW of 600 or more). Finally, ligands displaying

a Tanimoto coefficient greater than 0.75 based on MACCS
fingerprints were removed to exclude analog molecules, and
6 physicochemical properties (MW, logP, HBAs, HBDs, RBs
and net Formal Charge–nFC) were computed for all HDACs
inhibitors (HDACIs).

Decoys Selection
The “All-Purchasable Molecules” subset of the ZINC database
was used as the initial set of molecules before a two-step
filtering:

(1) Compounds outside of the bounds of the HDACIs
physicochemical properties were removed, as well as
molecules with a Tanimoto coefficient (“similarity in
structure” or sims) greater than 0.75 to any active compounds
to circumvent the introduction of potential active structures
(false negatives) into the decoy set.

(2) To retain only 39 decoys per HDACI, compounds were
further filtered to ensure similar physicochemical properties
and a random spatial distribution of the decoys around
the ligands. A specific metric was assigned to each step,
specifically the simp (“similarity in properties”) and the
simsdiff (“sims difference”). The simp is the Euclidian
distance of the physicochemical properties between a target
compound and a reference compound. The simsdiff between
a potential decoy and a query ligand is the average difference
between (a) the topological similarity sims between the
potential decoy and the remaining ligands and (b) the
topological similarity sims between the query ligands and
the remaining ligands. First, a cut-off is applied on the simp
to ensure properties similarity between ligands and decoy
compounds and second, the 39 lowest simsdiff decoys for
each ligand are selected.

Last, for each ligand, the PDB (Berman et al., 2000) structures
of the targeted HDAC isoform were prepared and provided for
SBVS data sets. Unlike DUD-E (Mysinger et al., 2012), only
Homo sapiens 3D-data were considered.

The MUBD-HDAC datasets for HDAC2 and HDAC8
isoforms were compared to DUD-E (Mysinger et al., 2012)
and DEKOIS 2.0 (Ibrahim et al., 2015a) datasets, in terms of
structural diversity [Bemis-Murcko atomic frameworks (Bemis
and Murcko, 1996)], property matching and ligand enrichment
in SB- and LB-VS approaches. The MUBD-HDAC displayed
similar to better results in terms of structural diversity and
property matching and was more challenging as measured
by ligand enrichment using GOLD (Jones et al., 1997) or
fingerprints similarity search, in agreement with a higher
structural similarity. Finally, the MUBD-HDACs sets displayed
small to great improvement in terms of nearer ligands bias (i.e.,
ligands that are more similar structurally to a ligand than to any
decoy), compared to DUD-E and DEKOIS 2.0, respectively. This
bias is known to produce artificially positive LBVS evaluation
outcomes (Cleves and Jain, 2008) and thus, should be minimized.

Of note, a similar work was done (Xia et al., 2014) on GPCRs
using the GLL/GDD database (Gatica and Cavasotto, 2012) as
ligands set, and also resulted in reduced artificial enrichment and
analog bias compared to the original GLL/GDD sets.
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DISCUSSION AND RECOMMENDATIONS

Ideal Benchmarking Database
The ideal VS benchmarking datasets composition should
mimic real-life cases, where a small number of diverse
active ligands is embedded into a much larger fraction of
inactive compounds. Moreover, both sets of molecules are
usually indistinguishable using simple descriptors like their
physicochemical properties and share common fragments or
functional chemical groups; such features should therefore be
transposed to benchmarking datasets design, so that the putative
inactive compounds constitute good “decoy” compounds in line
with the active compounds and ensure a robust evaluation of
the VS methods(Good and Oprea, 2008; Lagarde et al., 2015; Xia
et al., 2015).

Comparison of Decoys Selection Methods
for SBVS
Among the recent tools to help create benchmarking sets (MUV,
DEKOIS, DUD-E, andMUBD), themain difference resides in the
strategy used to achieve their respective objectives: the DUD-E
and DEKOIS data sets are designed for evaluating SBVS methods
while MUV and MUBD are conceived for benchmarking LBVS
approaches. Following this basic distinction, the respective
algorithms to generate decoy datasets differ significantly. In
the former case, the topological dissimilarity between ligand
compounds and decoy compounds is maximized to avoid
inclusion of active compounds into decoy datasets. In the latter
case, the proper embedding of decoy compounds into the ligands
chemical space is of primary importance.

For the DUD-E, the final decoys were randomly selected from
the 25% most topologically dissimilar molecules compared to
the ligands to ensure unbiased selection of decoy compounds.
However, several studies pointed out that bias are still present
into DUD-E data sets. For instance, Chaput et al. recently
evidenced that the performance of four VS programs (Glide,
Gold, FlexX and Surflex) is biased (over-estimated) using the
DUD-E. Good performance (as measure by BEDROC curves)
could be achieved for all programs when original DUD-E datasets
were used, while only Glide was considered successful when
chemical library biases (i.e., datasets whose decoys and active
compounds differ for nine physicochemical properties) were
removed. While the DUD-E was successfully used for numerous
studies, this observation clearly showed that there is still place for
improvements.

Boeckler’s group proposed a similar workflow in DEKOIS and
DEKOIS 2.0. A physicochemical similarity over eight properties
(and represented by the physicochemical similarity score PSS)
is used and the topological dissimilarity between the active
compounds and the future decoy compounds is computed as
in the DUD-E. However, two main differences have to be
noted: (1) the topological dissimilarity was computed using
the more elaborated weighted LADS score rather than a 2D
fingerprint based Tanimoto coefficient filter and (2) the LADS
score was combined with the PSS prior to final selection of
the decoys. Therefore, the final decoys selection was balanced
by both parameters (physicochemical similarity and topological

dissimilarity) rather than using successive arbitrary (even if
widely used) thresholds, and was successfully used by Hamza
et al. (2014) for drug repurposing. This balance may come
at a cost, as evidenced by Xia et al.: DEKOIS datasets for
HDAC2 and HDAC8 were shown to be less efficient in terms
of property matching between the active compounds and the
decoy compounds (Xia et al., 2015). However, the DUD-E and
DEKOIS sets perform similarly in enrichment using Gold and
DEKOIS perform significantly worse than DUD-E using 2D
based similarity search approaches.

Comparison of Decoys Selection Methods
for LBVS
Both DUD-E and DEKOIS databases share the same overall
decoy selection procedure by combining topological dissimilarity
and physicochemical properties similarity. While adapted to
SBVS, this approach may hinder the objective evaluation of
LBVS that is very sensitive to topological difference between
active and decoy compounds. The MUV datasets (Rohrer and
Baumann, 2009) was designed to overcome this specific weakness
of the benchmarking datasets. The authors introduced the
notion that decoy compounds and active compounds should
be homogeneously spread in the chemical space rather than
decoy compounds should be topologically dissimilar to the active
compounds (as in the DUD-E for instance). The authors tested 18
datasets and claimed that MUV benchmarking datasets displayed
neither analogous bias nor artificial enrichment. Furthermore,
they noticed that their data sets were SBVS compliant and
compared advantageously to the biased DUD sets, leading to a
potential broader use of their sets. MUV sets were applied to the
evaluation of VS tools (Tiikkainen et al., 2009; Abdo et al., 2010),
the training of new QSAR models (Marchese Robinson et al.,
2017) or molecular graph convolutions (Kearnes et al., 2016).

As highlighted by Xia et al. “MUV is restricted by the sufficient
experimental decoys (chemical space of decoys)” (Xia et al.,
2015). Indeed, MUV relies on the availability of experimental
data and is restricted to well-studied targets. The authors
subsequently proposed the Maximum Unbiased Benchmarking
Data sets (MUBD, see section Benchmarking Databases) that
was applied to GPCRs (Xia et al., 2014), HDACs (Xia et al.,
2015; Hu et al., 2017) and Toll-like receptor 8 (Pei et al., 2015).
The MUBD-DecoyMaker algorithm relies on both a minimal
and required topological dissimilarity (sims) between decoy and
active compounds, but makes use of an additional criterion that
minimizes the simsdiff parameter, i.e., ensures that decoy and
active compounds are as similar as possible.

One should note that this additional step (the decoy-
actives similarity check) yield datasets also suitable for SBVS;
they seemed even more challenging in SBVS (for HDAC2
and HDAC8) as they provided datasets with higher structural
similarity (Xia et al., 2015). Thus, these approaches are
particularly appealing as they provide benchmarking datasets
that (1) are adapted to LB and SB-VS approaches, (2)
subsequently allow comparative evaluations of the performance
of LB and SB-VS approaches, and (3) may be more challenging
for SBVS.
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Fine-Tuned Benchmarking Datasets
The quality of an evaluation lies in the consistency between
the retrospectively screened benchmarking datasets and the
prospectively screened compound collections as well as the target
binding site properties (Ben Nasr et al., 2013). The recent trend
to publish protein family-specific datasets or user-provided active
compounds dependent decoys generation tools paves the way for
a valuable and systematic use of benchmarking datasets prior to
prospective VS of large compound collections.

In SBVS, tuned datasets should be used to identify the
protocol, conformational sampling, and/or scoring methods that
induces the best enrichment in active compounds (Allen et al.,
2015, 2017; Lacroix et al., 2016; Li et al., 2016; Nunes et al.,
2016; Meirson et al., 2017). For instance, Allen et al. (2015, 2017)
evaluated different scoring schemes using DUD-E generated
decoys and successfully identified dual EFGR/BRD4 inhibitors.
In LBVS, the choice of the dataset is crucial to build a reliable
model that can be used to distinguish active compounds from
decoy compounds. For example, Ruggeri et al. (2015) used
DUD-E generated decoys to define and optimize pharmacophore
models that led to the identification of 2 dual competitive
inhibitors of P. Falciparum M1 (PfA-M1) and M17 (PfA-M17)
aminopeptidases.

Of note, when using automatic decoy datasets generation
tools, the provided active compounds should be carefully selected
to avoid the previously detailed biases.

Integration of True Inactive Compounds
Despite the open-data initiatives that should ease the access
to data in the near future, the low documentation about
negative data (inactive and/or non-binding) is still an open
issue. The inclusion of experimental data in a dataset requires
great attention since (1) publicly available databases may
present annotation errors that should be manually corrected
(Lagarde et al., 2014a), and (2) diversity in the type of
value and experimental conditions make some data barely
comparable. The selection and the use of negative compounds
(inactive and/or non-binding) in the evaluation/development
of methods is a delicate step that strongly influences the
quality of the resulting model. In agreement with Lagarde
et al. (2014a) and Kaserer et al. (2015), we recommend
that:

(1) Interaction data should be extracted from receptor binding
or enzymatic activity assays on isolated or recombinant
protein; cell-based assays should be avoided because of the
many factors that can influence the outcome of the assay
(non-specific binding. . . ).

(2) Low binders or high IC50/EC50 should not be included in
the active set and could be either classified as “inactive,” as
negative data or discarded.

(3) Experimental bias should be minimized by (a) considering
the measured affinity/activity confidence based on the
number of documented repeated assays and/or convergent
values in different studies and (b) filtering compounds
which measured activity/affinity may be an artifact caused by
organic chemicals aggregation in aqueous buffers, off-targets

effects, cytotoxic effects or interference with optical detection
methods (auto-fluorescence and luciferase inhibition).

(4) The origin of the protein used in the assay should be
considered, favoring 100% identity with the reference.

(5) Attention should be paid to the ligand binding-site,
particularly for proteins that possess more than one binding
site, and for multiple conformation binding sites.

One should note that the integration of inactive/non-binding
compounds comes with new basics for datasets design. This
case is particularly challenging since the inactive/non-binding
compounds are usually extracted from the same chemical
series as the active compounds. In this case, small fragments
modification can induce important bioactivity loss or gain,
thus, clustering active compounds to guarantee diversity and
minimize analogous bias would have no meaning. Since the
final objective of using such data is to harshly evaluate ability
of VS methods to discriminate active from inactive compounds
based on small signals, the proximity between active and
inactive compounds within a chemotype should be conserved,
as well as the similarity within the active compounds of
a chemotype. However the over representation of a given
chemotype could hinder the evaluation of VSmethod bymasking
the enrichment of low populated chemotypes. We suggest
that a work should be made to equally represent chemotypes
and/or to weight the resulting ROC curve (Ibrahim et al.,
2015b).

CONCLUSION

Benchmarking databases are widely used to evaluate virtual
screening methods. They are particularly important to compare
performance of virtual screening methods and therefore
to select appropriate protocol prior to large compounds
collections screening, and to estimate the reliability of the
results of a screening. The characterization of the weaknesses
of the first published databases helped designing improved
benchmarking datasets with minimized bias. The rational
selection of decoy compounds is particularly important to
avoid artificial enrichment in the evaluation of the different
methods. The diversification of public datasets gathering both
active and decoy compounds for a given protein family, and
the publication of online decoys generation tools contributed
to the democratization of the use of benchmarking studies to
help identifying protocols adapted for the query/target system
under study. Nowadays, experimental data are being integrated
in the decoy compounds set to look for a specific activity or to
identify methods fitted for highly similar binders/non binders
discrimination. Experimentally validated decoys selection
requires careful attention to minimize experimental biases that
may arise.

AUTHOR CONTRIBUTIONS

All authors listed have made substantial, direct and
intellectual contribution to the work, and approved it for
publication.

Frontiers in Pharmacology | www.frontiersin.org 12 January 2018 | Volume 9 | Article 11

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Réau et al. Decoys Selection in Benchmarking Datasets

REFERENCES

Abdo, A., Chen, B., Mueller, C., Salim, N., and Willett, P. (2010). Ligand-based

virtual screening using Bayesian networks. J. Chem. Inf. Model. 50, 1012–1020.

doi: 10.1021/ci100090p

Allen, B. K., Mehta, S., Ember, S. W., Schonbrunn, E., Ayad, N., and Schürer,

S. C. (2015). Large-scale computational screening identifies first in class

multitarget inhibitor of EGFR kinase and BRD4. Sci. Rep. 5:srep16924.

doi: 10.1038/srep16924

Allen, B. K., Mehta, S., Ember, S. W. J., Zhu, J.-Y., Schönbrunn, E., Ayad,

N. G., et al. (2017). Identification of a novel class of BRD4 inhibitors by

computational screening and binding simulations. ACS Omega 2, 4760–4771.

doi: 10.1021/acsomega.7b00553

Auld, D. S., Southall, N. T., Jadhav, A., Johnson, R. L., Diller, D. J., Simeonov,

A., et al. (2008). Characterization of chemical libraries for luciferase inhibitory

activity. J. Med. Chem. 51, 2372–2386. doi: 10.1021/jm701302v

Bauer, M. R., Ibrahim, T. M., Vogel, S. M., and Boeckler, F. M. (2013). Evaluation

and optimization of virtual screening workflows with DEKOIS 2.0 – a public

library of challenging docking benchmark sets. J. Chem. Inf. Model. 53,

1447–1462. doi: 10.1021/ci400115b

Bemis, G. W., and Murcko, M. A. (1996). The properties of known drugs. 1.

Molecular frameworks. J. Med. Chem. 39, 2887–2893. doi: 10.1021/jm9602928

Ben Nasr, N., Guillemain, H., Lagarde, N., Zagury, J.-F., and Montes, M.

(2013). Multiple structures for virtual ligand screening: defining binding site

properties-based criteria to optimize the selection of the query. J. Chem. Inf.

Model. 53, 293–311. doi: 10.1021/ci3004557

Benson, M. L., Smith, R. D., Khazanov, N. A., Dimcheff, B., Beaver, J., Dresslar, P.,

et al. (2008). Binding MOAD, a high-quality protein-ligand database. Nucleic

Acids Res. 36, D674–D678. doi: 10.1093/nar/gkm911

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., et al.

(2014). The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42,

D1083–D1090. doi: 10.1093/nar/gkt1031

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig,

H., et al. (2000). The protein data bank. Nucleic Acids Res. 28, 235–242.

doi: 10.1093/nar/28.1.235

Bissantz, C., Bernard, P., Hibert, M., and Rognan, D. (2003). Protein-based

virtual screening of chemical databases. II. Are homology models of G-Protein

Coupled Receptors suitable targets? Proteins 50, 5–25. doi: 10.1002/prot.10237

Bissantz, C., Folkers, G., and Rognan, D. (2000). Protein-based virtual screening of

chemical databases. 1. Evaluation of different docking/scoring combinations. J.

Med. Chem. 43, 4759–4767. doi: 10.1021/jm001044l

Block, P., Sotriffer, C. A., Dramburg, I., and Klebe, G. (2006). AffinDB: a freely

accessible database of affinities for protein–ligand complexes from the PDB.

Nucleic Acids Res. 34, D522–D526. doi: 10.1093/nar/gkj039

Braga, R. C., and Andrade, C. H. (2013). Assessing the performance of 3D

pharmacophore models in virtual screening: how good are they? Curr. Top.

Med. Chem. 13, 1127–1138. doi: 10.2174/1568026611313090010

Brozell, S. R., Mukherjee, S., Balius, T. E., Roe, D. R., Case, D. A., and Rizzo, R. C.

(2012). Evaluation of DOCK 6 as a pose generation and database enrichment

tool. J. Comput. Aided Mol. Des. 26, 749–773. doi: 10.1007/s10822-012-9565-y

Cereto-Massagué, A., Guasch, L., Valls, C., Mulero, M., Pujadas, G., and Garcia-

Vallvé, S. (2012). DecoyFinder: an easy-to-use python GUI application

for building target-specific decoy sets. Bioinformatics 28, 1661–1662.

doi: 10.1093/bioinformatics/bts249

Clark, R. D., and Webster-Clark, D. J. (2008). Managing bias in ROC curves. J.

Comput. Aided Mol. Des. 22, 141–146. doi: 10.1007/s10822-008-9181-z

Cleves, A. E., and Jain, A. N. (2008). Effects of inductive bias on computational

evaluations of ligand-based modeling and on drug discovery. J. Comput. Aided

Mol. Des. 22, 147–159. doi: 10.1007/s10822-007-9150-y

Cummings, M. D., DesJarlais, R. L., Gibbs, A. C., Mohan, V., and Jaeger, E. P.

(2005). Comparison of automated docking programs as virtual screening tools.

J. Med. Chem. 48, 962–976. doi: 10.1021/jm049798d

Diller, D. J., and Li, R. (2003). Kinases, homology models, and high throughput

docking. J. Med. Chem. 46, 4638–4647. doi: 10.1021/jm020503a

Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997).

Empirical scoring functions: I. The development of a fast empirical scoring

function to estimate the binding affinity of ligands in receptor complexes. J.

Comput. Aided Mol. Des. 11, 425–445. doi: 10.1023/A:1007996124545

Empereur-mot, C., Guillemain, H., Latouche, A., Zagury, J.-F., Viallon, V.,

and Montes, M. (2015). Predictiveness curves in virtual screening. J.

Cheminformatics 7:52. doi: 10.1186/s13321-015-0100-8

Gatica, E. A., and Cavasotto, C. N. (2012). Ligand and decoy sets for docking to G

protein-coupled receptors. J. Chem. Inf. Model. 52, 1–6. doi: 10.1021/ci200412p

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., et al.

(2012). ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic

Acids Res. 40, D1100–D1107. doi: 10.1093/nar/gkr777

Good, A. C., and Oprea, T. I. (2008). Optimization of CAMD techniques 3. Virtual

screening enrichment studies: a help or hindrance in tool selection? J. Comput.

Aided Mol. Des. 22, 169–178. doi: 10.1007/s10822-007-9167-2

Guasch, L., Sala, E., Castell-Auví, A., Cedó, L., Liedl, K. R., Wolber, G., et al.

(2012). Identification of PPARgamma partial agonists of natural origin (I):

development of a virtual screening procedure and in vitro validation. PLoS ONE

7:e50816. doi: 10.1371/journal.pone.0050816

Hamza, A., Wagner, J. M., Wei, N.-N., Kwiatkowski, S., Zhan, C.-G., Watt, D. S.,

et al. (2014). Application of the 4D fingerprint method with a robust scoring

function for scaffold-hopping and drug repurposing strategies. J. Chem. Inf.

Model. 54, 2834–2845. doi: 10.1021/ci5003872

Hawkins, P. C., Warren, G. L., Skillman, A. G., and Nicholls, A. (2008). How to

do an evaluation: pitfalls and traps. J. Comput. Aided Mol. Des. 22, 179–190.

doi: 10.1007/s10822-007-9166-3

Hu, H., Xia, J., Wang, D., Wang, X. S., and Wu, S. (2017). A thoroughly validated

virtual screening strategy for discovery of novel HDAC3 inhibitors. Int. J. Mol.

Sci. 18, 137. doi: 10.3390/ijms18010137

Huang, N., Shoichet, B. K., and Irwin, J. J. (2006). Benchmarking sets for molecular

docking. J. Med. Chem. 49, 6789–6801. doi: 10.1021/jm0608356

Ibrahim, T. M., Bauer, M. R., and Boeckler, F. M. (2015a). Applying

DEKOIS 2.0 in structure-based virtual screening to probe the impact of

preparation procedures and score normalization. J. Cheminformatics 7:21.

doi: 10.1186/s13321-015-0074-6

Ibrahim, T. M., Bauer, M. R., Dörr, A., Veyisoglu, E., and Boeckler, F. M. (2015b).

pROC-Chemotype plots enhance the interpretability of benchmarking results

in structure-based virtual screening. J. Chem. Inf. Model. 55, 2297–2307.

doi: 10.1021/acs.jcim.5b00475

Irwin, J. J. (2008). Community benchmarks for virtual screening. J. Comput. Aided

Mol. Des. 22, 193–199. doi: 10.1007/s10822-008-9189-4

Irwin, J. J., and Shoichet, B. K. (2005). ZINC–a free database of commercially

available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182.

doi: 10.1021/ci049714+

Jain, A. N., and Nicholls, A. (2008). Recommendations for evaluation

of computational methods. J. Comput. Aided Mol. Des. 22, 133–139.

doi: 10.1007/s10822-008-9196-5

Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997). Development

and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267,

727–748. doi: 10.1006/jmbi.1996.0897

Kaserer, T., Beck, K. R., Akram, M., Odermatt, A., and Schuster, D. (2015).

Pharmacophore models and pharmacophore-based virtual screening: concepts

and applications exemplified on hydroxysteroid dehydrogenases. Mol. Basel

Switz. 20, 22799–22832. doi: 10.3390/molecules201219880

Kavlock, R., Chandler, K., Houck, K., Hunter, S., Judson, R., Kleinstreuer, N.,

et al. (2012). Update on EPA’s ToxCast program: providing high throughput

decision support tools for chemical risk management. Chem. Res. Toxicol. 25,

1287–1302. doi: 10.1021/tx3000939

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. (2016). Molecular

graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des.

30, 595–608. doi: 10.1007/s10822-016-9938-8

Kellenberger, E., Rodrigo, J., Muller, P., and Rognan, D. (2004). Comparative

evaluation of eight docking tools for docking and virtual screening accuracy.

Proteins 57, 225–242. doi: 10.1002/prot.20149

Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. E. (1982).

A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161,

269–288. doi: 10.1016/0022-2836(82)90153-X

Lacroix, C., Fish, I., Torosyan, H., Parathaman, P., Irwin, J. J., Shoichet, B. K.,

et al. (2016). Identification of novel smoothened ligands using structure-based

docking. PLoS ONE 11:e0160365. doi: 10.1371/journal.pone.0160365

Lagarde, N., Ben Nasr, N., Jérémie, A., Guillemain, H., Laville, V., Labib,

T., et al. (2014a). NRLiSt BDB, the manually curated nuclear receptors

Frontiers in Pharmacology | www.frontiersin.org 13 January 2018 | Volume 9 | Article 11

https://doi.org/10.1021/ci100090p
https://doi.org/10.1038/srep16924
https://doi.org/10.1021/acsomega.7b00553
https://doi.org/10.1021/jm701302v
https://doi.org/10.1021/ci400115b
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/ci3004557
https://doi.org/10.1093/nar/gkm911
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1002/prot.10237
https://doi.org/10.1021/jm001044l
https://doi.org/10.1093/nar/gkj039
https://doi.org/10.2174/1568026611313090010
https://doi.org/10.1007/s10822-012-9565-y
https://doi.org/10.1093/bioinformatics/bts249
https://doi.org/10.1007/s10822-008-9181-z
https://doi.org/10.1007/s10822-007-9150-y
https://doi.org/10.1021/jm049798d
https://doi.org/10.1021/jm020503a
https://doi.org/10.1023/A:1007996124545
https://doi.org/10.1186/s13321-015-0100-8
https://doi.org/10.1021/ci200412p
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1007/s10822-007-9167-2
https://doi.org/10.1371/journal.pone.0050816
https://doi.org/10.1021/ci5003872
https://doi.org/10.1007/s10822-007-9166-3
https://doi.org/10.3390/ijms18010137
https://doi.org/10.1021/jm0608356
https://doi.org/10.1186/s13321-015-0074-6
https://doi.org/10.1021/acs.jcim.5b00475
https://doi.org/10.1007/s10822-008-9189-4
https://doi.org/10.1021/ci049714$+$
https://doi.org/10.1007/s10822-008-9196-5
https://doi.org/10.1006/jmbi.1996.0897
https://doi.org/10.3390/molecules201219880
https://doi.org/10.1021/tx3000939
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1002/prot.20149
https://doi.org/10.1016/0022-2836(82)90153-X
https://doi.org/10.1371/journal.pone.0160365
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Réau et al. Decoys Selection in Benchmarking Datasets

ligands and structures benchmarking database. J. Med. Chem. 57, 3117–3125.

doi: 10.1021/jm500132p

Lagarde, N., Delahaye, S., Jérémie, A., Ben Nasr, N., Guillemain, H., Empereur-

Mot, C., et al. (2017). Discriminating agonist from antagonist ligands of the

nuclear receptors using different chemoinformatics approaches. Mol. Inform.

36:1700020. doi: 10.1002/minf.201700020

Lagarde, N., Delahaye, S., Zagury, J.-F., and Montes, M. (2016). Discriminating

agonist and antagonist ligands of the nuclear receptors using 3D-

pharmacophores. J. Cheminformatics 8:43. doi: 10.1186/s13321-016-

0154-2

Lagarde, N., Zagury, J.-F., and Montes, M. (2014b). Importance of the

pharmacological profile of the bound ligand in enrichment on nuclear

receptors: toward the use of experimentally validated decoy ligands. J. Chem.

Inf. Model. 54, 2915–2944. doi: 10.1021/ci500305c

Lagarde, N., Zagury, J.-F., and Montes, M. (2015). Benchmarking data sets for

the evaluation of virtual ligand screening methods: review and perspectives. J.

Chem. Inf. Model. 55, 1297–1307. doi: 10.1021/acs.jcim.5b00090

Li, J., Wang, H., Li, J., Bao, J., and Wu, C. (2016). Discovery of a potential HER2

inhibitor from natural products for the treatment of HER2-positive breast

cancer. Int. J. Mol. Sci. 17:1055. doi: 10.3390/ijms17071055

Lionta, E., Spyrou, G., Vassilatis, D. K., and Cournia, Z. (2014). Structure-

based virtual screening for drug discovery: principles, applications

and recent advances. Curr. Top. Med. Chem. 14, 1923–1938.

doi: 10.2174/1568026614666140929124445

Lorber, D. M., and Shoichet, B. K. (2005). hierarchical docking of databases

of multiple ligand conformations. Curr. Top. Med. Chem. 5, 739–749.

doi: 10.2174/1568026054637683

Löwer, M., Geppert, T., Schneider, P., Hoy, B., Wessler, S., and Schneider, G.

(2011). Inhibitors of helicobacter pylori protease HtrA found by ‘virtual

ligand’ screening combat bacterial invasion of epithelia. PLoS ONE 6:e17986.

doi: 10.1371/journal.pone.0017986

Marchese Robinson, R. L., Palczewska, A., Palczewski, J., and Kidley, N. (2017).

Comparison of the predictive performance and interpretability of random

forest and linear models on benchmark data sets. J. Chem. Inf. Model. 57,

1773–1792. doi: 10.1021/acs.jcim.6b00753

May, A., and Zacharias, M. (2005). Accounting for global protein deformability

during protein-protein and protein-ligand docking. Biochim. Biophys. Acta

1754, 225–231. doi: 10.1016/j.bbapap.2005.07.045

McGaughey, G. B., Sheridan, R. P., Bayly, C. I., Culberson, J. C., Kreatsoulas,

C., Lindsley, S., et al. (2007). Comparison of topological, shape, and

docking methods in virtual screening. J. Chem. Inf. Model. 47, 1504–1519.

doi: 10.1021/ci700052x

McGovern, S. L., and Shoichet, B. K. (2003). Information decay in molecular

docking screens against holo, apo, and modeled conformations of enzymes. J.

Med. Chem. 46, 2895–2907. doi: 10.1021/jm0300330

Meirson, T., Samson, A. O., and Gil-Henn, H. (2017). An in silico high-

throughput screen identifies potential selective inhibitors for the non-

receptor tyrosine kinase Pyk2. Drug Des. Devel. Ther. 11, 1535–1557.

doi: 10.2147/DDDT.S136150

Meng, E. C., Shoichet, B. K., and Kuntz, I. D. (1992). Automated docking

with grid-based energy evaluation. J. Comput. Chem. 13, 505–524.

doi: 10.1002/jcc.540130412

Meyer, K. (2007). WOMBAT—A tool for mixed model analyses in quantitative

genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B 8,

815–821. doi: 10.1631/jzus.2007.B0815

Muegge, I., and Martin, Y. C. (1999). A general and fast scoring function for

protein-ligand interactions: a simplified potential approach. J. Med. Chem. 42,

791–804. doi: 10.1021/jm980536j

Munk, C., Isberg, V., Mordalski, S., Harpsøe, K., Rataj, K., Hauser, A. S., et al.

(2016). GPCRdb: the G protein-coupled receptor database – an introduction.

Br. J. Pharmacol. 173, 2195–2207. doi: 10.1111/bph.13509

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory

of useful decoys, enhanced (DUD-E): better ligands and decoys for better

benchmarking. J. Med. Chem. 55, 6582–6594. doi: 10.1021/jm300687e

Mysinger, M. M., and Shoichet, B. K. (2010). Rapid context-dependent ligand

desolvation in molecular docking. J. Chem. Inf. Model. 50, 1561–1573.

doi: 10.1021/ci100214a

Neves, M. A., Totrov, M., and Abagyan, R. (2012). Docking and scoring with ICM:

the benchmarking results and strategies for improvement. J. Comput. Aided

Mol. Des. 26, 675–686. doi: 10.1007/s10822-012-9547-0

Nunes, R. R., Costa, M. D., Santos, B. D., Fonseca, A. L., Ferreira, L. S.,

Chagas, R. C., et al. (2016). Successful application of virtual screening and

molecular dynamics simulations against antimalarial molecular targets. Mem.

Inst. Oswaldo Cruz 111, 721–730. doi: 10.1590/0074-02760160207

Okuno, Y., Yang, J., Taneishi, K., Yabuuchi, H., and Tsujimoto, G. (2006). GLIDA:

GPCR-ligand database for chemical genomic drug discovery.Nucleic Acids Res.

34, D673–D677. doi: 10.1093/nar/gkj028

Pei, F., Jin, H., Zhou, X., Xia, J., Sun, L., Liu, Z., et al. (2015). Enrichment assessment

of multiple virtual screening strategies for Toll-like receptor 8 agonists based

on a maximal unbiased benchmarking data set. Chem. Biol. Drug Des. 86,

1226–1241. doi: 10.1111/cbdd.12590

Placzek, S., Schomburg, I., Chang, A., Jeske, L., Ulbrich, M., Tillack, J., et al. (2017).

BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic Acids

Res. 45, D380–D388. doi: 10.1093/nar/gkw952

Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996). A fast flexible

docking method using an incremental construction algorithm. J. Mol. Biol. 261,

470–489. doi: 10.1006/jmbi.1996.0477

Repasky, M. P., Murphy, R. B., Banks, J. L., Greenwood, J. R., Tubert-Brohman, I.,

Bhat, S., et al. (2012). Docking performance of the glide program as evaluated

on the Astex and DUD datasets: a complete set of glide SP results and selected

results for a new scoring function integrating WaterMap and glide. J. Comput.

Aided Mol. Des. 26, 787–799. doi: 10.1007/s10822-012-9575-9

Rognan, D., Lauemoller, S. L., Holm, A., Buus, S., and Tschinke, V. (1999).

Predicting binding affinities of protein ligands from three-dimensional models:

application to peptide binding to class I major histocompatibility proteins. J.

Med. Chem. 42, 4650–4658. doi: 10.1021/jm9910775

Rohrer, S. G., and Baumann, K. (2009). Maximum unbiased validation (MUV)

data sets for virtual screening based on PubChem bioactivity data. J. Chem. Inf.

Model. 49, 169–184. doi: 10.1021/ci8002649

Roth, B. L., Lopez, E., Patel, S., and Kroeze, W. K. (2000). The multiplicity of

serotonin receptors: Uselessly diversemolecules or an embarrassment of riches?

Neuroscientist 6, 252–262. doi: 10.1177/107385840000600408

Ruggeri, C., Drinkwater, N., Sivaraman, K. K., Bamert, R. S., McGowan, S., and

Paiardini, A. (2015). Identification and validation of a potent dual inhibitor of

the P. falciparum M1 and M17 aminopeptidases using virtual screening. PLoS

ONE 10:e0138957. doi: 10.1371/journal.pone.0138957

Simeonov, A., Jadhav, A., Thomas, C. J., Wang, Y., Huang, R., Southall, N. T., et al.

(2008). Fluorescence spectroscopic profiling of compound libraries. J. Med.

Chem. 51, 2363–2371. doi: 10.1021/jm701301m

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W. (2014).

Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395.

doi: 10.1124/pr.112.007336

Southan, C., Sharman, J. L., Benson, H. E., Faccenda, E., Pawson, A. J., Alexander,

S. P., et al. (2016). The IUPHAR/BPS guide to PHARMACOLOGY in 2016:

towards curated quantitative interactions between 1300 protein targets and

6000 ligands. Nucleic Acids Res. 44, D1054–D1068. doi: 10.1093/nar/gkv1037

Spitzer, R., and Jain, A. N. (2012). Surflex-dock: docking benchmarks

and real-world application. J. Comput. Aided Mol. Des. 26, 687–699.

doi: 10.1007/s10822-011-9533-y

Stumpfe, D., and Bajorath, J. (2011). “Applied virtual screening: strategies,

recommendations, and caveats,” inVirtual Screening: Principles, Challenges, and

Practical Guidelines, ed C. Sotriffer (Weinheim: Wiley-VCH Verlag GmbH and

Co. KGaA), 291–318. doi: 10.1002/9783527633326.ch11

Tanrikulu, Y., Krüger, B., and Proschak, E. (2013). The holistic integration

of virtual screening in drug discovery. Drug Discov. Today 18, 358–364.

doi: 10.1016/j.drudis.2013.01.007

Tiikkainen, P., Markt, P., Wolber, G., Kirchmair, J., Distinto, S., Poso, A., et al.

(2009). Critical comparison of virtual screening methods against theMUV data

set. J. Chem. Inf. Model. 49, 2168–2178. doi: 10.1021/ci900249b

Triballeau, N., Acher, F., Brabet, I., Pin, J.-P., and Bertrand, H.-O. (2005).

Virtual screening workflow development guided by the “receiver operating

characteristic” curve approach. Application to high-throughput docking on

metabotropic glutamate receptor subtype 4. J. Med. Chem. 48, 2534–2547.

doi: 10.1021/jm049092j

Frontiers in Pharmacology | www.frontiersin.org 14 January 2018 | Volume 9 | Article 11

https://doi.org/10.1021/jm500132p
https://doi.org/10.1002/minf.201700020
https://doi.org/10.1186/s13321-016-0154-2
https://doi.org/10.1021/ci500305c
https://doi.org/10.1021/acs.jcim.5b00090
https://doi.org/10.3390/ijms17071055
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.2174/1568026054637683
https://doi.org/10.1371/journal.pone.0017986
https://doi.org/10.1021/acs.jcim.6b00753
https://doi.org/10.1016/j.bbapap.2005.07.045
https://doi.org/10.1021/ci700052x
https://doi.org/10.1021/jm0300330
https://doi.org/10.2147/DDDT.S136150
https://doi.org/10.1002/jcc.540130412
https://doi.org/10.1631/jzus.2007.B0815
https://doi.org/10.1021/jm980536j
https://doi.org/10.1111/bph.13509
https://doi.org/10.1021/jm300687e
https://doi.org/10.1021/ci100214a
https://doi.org/10.1007/s10822-012-9547-0
https://doi.org/10.1590/0074-02760160207
https://doi.org/10.1093/nar/gkj028
https://doi.org/10.1111/cbdd.12590
https://doi.org/10.1093/nar/gkw952
https://doi.org/10.1006/jmbi.1996.0477
https://doi.org/10.1007/s10822-012-9575-9
https://doi.org/10.1021/jm9910775
https://doi.org/10.1021/ci8002649
https://doi.org/10.1177/107385840000600408
https://doi.org/10.1371/journal.pone.0138957
https://doi.org/10.1021/jm701301m
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1093/nar/gkv1037
https://doi.org/10.1007/s10822-011-9533-y
https://doi.org/10.1002/9783527633326.ch11
https://doi.org/10.1016/j.drudis.2013.01.007
https://doi.org/10.1021/ci900249b
https://doi.org/10.1021/jm049092j
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Réau et al. Decoys Selection in Benchmarking Datasets

Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T., Murray, C. W.,

Taylor, R. D., et al. (2004). Virtual screening using protein-ligand docking:

avoiding artificial enrichment. J. Chem. Inf. Comput. Sci. 44, 793–806.

doi: 10.1021/ci034289q

Vilar, S., Karpiak, J., and Costanzi, S. (2010). Ligand and structure-basedmodels for

the prediction of ligand-receptor affinities and virtual screenings: development

and application to the β2-adrenergic receptor. J. Comput. Chem. 31, 707–720.

doi: 10.1002/jcc.21346

Vogel, S. M., Bauer, M. R., and Boeckler, F. M. (2011). DEKOIS: Demanding

evaluation kits for objective in silico screening—a versatile tool for

benchmarking docking programs and scoring functions. J. Chem. Inf. Model.

51, 2650–2665. doi: 10.1021/ci2001549

von Korff, M., Freyss, J., and Sander, T. (2009). Comparison of ligand- and

structure-based virtual screening on the DUD data set. J. Chem. Inf. Model. 49,

209–231. doi: 10.1021/ci800303k

Wallach, I., and Lilien, R. (2011). Virtual decoy sets for molecular docking

benchmarks. J. Chem. Inf. Model. 51, 196–202. doi: 10.1021/ci100374f

Wang, R., Fang, X., Lu, Y., and Wang, S. (2004). The PDBbind database:

collection of binding affinities for protein-ligand complexes with known three-

dimensional structures. J. Med. Chem. 47, 2977–2980. doi: 10.1021/jm030580l

Wang, R., Fang, X., Lu, Y., Yang, C.-Y., and Wang, S. (2005). The PDBbind

database: methodologies and updates. J. Med. Chem. 48, 4111–4119.

doi: 10.1021/jm048957q

Wang, R., Liu, L., Lai, L., and Tang, Y. (1998). SCORE: a new empirical method for

estimating the binding affinity of a protein-ligand complex.Mol. Model. Annu.

4, 379–394. doi: 10.1007/s008940050096

Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A., et al.

(2017). PubChem BioAssay: 2017 update. Nucleic Acids Res. 45, D955–D963.

doi: 10.1093/nar/gkw1118

Warren, G. L., Andrews, C. W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert,

M. H., et al. (2006). A critical assessment of docking programs and scoring

functions. J. Med. Chem. 49, 5912–5931. doi: 10.1021/jm050362n

Wei, B. Q., Baase, W. A., Weaver, L. H., Matthews, B. W., and Shoichet, B. K.

(2002). Amodel binding site for testing scoring functions inmolecular docking.

J. Mol. Biol. 322, 339–355. doi: 10.1016/S0022-2836(02)00777-5

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur,

D., et al. (2008). DrugBank: a knowledgebase for drugs, drug actions

and drug targets. Nucleic Acids Res. 36, D901–D906. doi: 10.1093/nar/

gkm958

Xia, J., Jin, H., Liu, Z., Zhang, L., and Wang, X. S. (2014). An unbiased method to

build benchmarking sets for ligand-based virtual screening and its application

to GPCRs. J. Chem. Inf. Model. 54, 1433–1450. doi: 10.1021/ci500062f

Xia, J., Tilahun, E. L., Kebede, E. H., Reid, T.-E., Zhang, L., and Wang, X.

S. (2015). Comparative modeling and benchmarking data sets for human

histone deacetylases and sirtuin families. J. Chem. Inf. Model. 55, 374–388.

doi: 10.1021/ci5005515

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Réau, Langenfeld, Zagury, Lagarde and Montes. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pharmacology | www.frontiersin.org 15 January 2018 | Volume 9 | Article 11

https://doi.org/10.1021/ci034289q
https://doi.org/10.1002/jcc.21346
https://doi.org/10.1021/ci2001549
https://doi.org/10.1021/ci800303k
https://doi.org/10.1021/ci100374f
https://doi.org/10.1021/jm030580l
https://doi.org/10.1021/jm048957q
https://doi.org/10.1007/s008940050096
https://doi.org/10.1093/nar/gkw1118
https://doi.org/10.1021/jm050362n
https://doi.org/10.1016/S0022-2836(02)00777-5
https://doi.org/10.1093/nar/gkm958
https://doi.org/10.1021/ci500062f
https://doi.org/10.1021/ci5005515
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Decoys Selection in Benchmarking Datasets: Overview and Perspectives
	Introduction
	The History of Decoys Selection
	Randomly Selected Decoys
	Integration of Physicochemical Filters to the Decoy Compounds Selection
	Benchmarking Database Biases
	Highly Refined Putative Inactive Compounds Selection
	Toward True Negative Compounds

	Benchmarking Databases
	Selected Databases
	Maximum Unbiased Validation (MUV)
	Initial Compounds Database
	Actives Selection
	Decoys Selection

	Demanding Evaluation Kits for Objective in Silico Screening (DEKOIS)
	Initial Compounds Database
	Decoys Selection

	Dud-Enhanced (DUD-E)
	Initial Compounds Database
	Active Set Preparation
	Decoys Selection

	Nuclear Receptors Ligands and Structures Benchmarking Database (NRLiSt BDB)
	Ligands Preparation
	Decoys Selection

	Maximal Unbiased Benchmarking Data Sets for HDACs (MUBD-HDACs)
	Ligands Preparation
	Decoys Selection


	Discussion and Recommendations
	Ideal Benchmarking Database
	Comparison of Decoys Selection Methods for SBVS
	Comparison of Decoys Selection Methods for LBVS
	Fine-Tuned Benchmarking Datasets
	Integration of True Inactive Compounds

	Conclusion
	Author contributions
	References


