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Abstract

Northern boreal peatlands are important ecosystems in modulating global biogeochemical
cycles, yet their biological communities and related carbon dynamics are highly sensitive to
changes in climate. Despite this, the strength and recent direction of these feedbacks are still
unclear. The response of boreal peatlands to climate warming has received relatively little
attention compared with other northern peatland types, despite forming a large northern
hemisphere-wide ecosystem. Here we studied the response of two ombrotrophic boreal
peatlands to climate variability over the last c¢. 200 years for which local meteorological data
are available. We used remains from plants and testate amoebae to study historical changes in
peatland biological communities. These data were supplemented by peat property (bulk
density, carbon and nitrogen content), '*C, 2!Pb and '*’Cs analyses and were used to infer
changes in peatland hydrology and carbon dynamics. In total, six peat cores, three per study
site, were studied that represent different microhabitats: low hummock, high lawn and low
lawn. The data show a consistent drying trend over recent centuries, represented mainly as a
change from wet habitat Sphagnum spp. to dry habitat S. fuscum. Summer temperature and

precipitation appeared to be important drivers shaping peatland community and surface
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moisture conditions. Data from the driest microhabitat studied, low hummock, revealed a
clear and strong negative linear correlation (R? = 0.5031, p < 0.001) between carbon
accumulation rate and peat surface moisture conditions: under dry conditions, less carbon was
accumulated. This suggests that at the dry end of the moisture gradient, availability of water
regulates carbon accumulation. It can be further linked to the decreased abundance of
mixotrophic testate amoebae under drier conditions (R? = 0.4207, p < 0.001). Our study
implies that if effective precipitation decreases in the future, the carbon uptake capacity of

boreal bogs may be threatened.
Introduction

Peatlands play a key role in global biogeochemical cycling by fixing atmospheric CO2
through plant photosynthesis and releasing CO2 and CH4 through decomposition. Peatland
biological communities (plants and microbes) are strongly controlled by temperature and
hydrology, which affect peatland carbon (C) sequestration and sink potential (Jassey et al.,
2015; Laine et al., 2019; McPartland et al., 2019; Riutta et al., 2007). Bog plant communities
dominated by Sphagna are sensitive to environmental change, especially during the growing
season (Loisel, Gallego-Sala, & Yu, 2012), and plant functional type successions may even
occur under climate change, which could impact peatland carbon sink capacity (Loisel et al.,
2014). Likewise, testate amoebae, the dominant group of protozoa in peatlands, play an
important role in nutrient and carbon cycling (Gilbert, Amblard, Bourdier, & Francez, 1998).
In particular, mixotrophic testate amoebae (MTA), which partly rely on photosynthesis,
contribute to carbon sequestration in Sphagnum peatlands (Lara and Gomaa, 2017). Due to

their sensitivity to hydrology (Charman, Hendon, & Woodland, 2000), climate change may
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alter the abundance of mixotrophic testate amoebae in Sphagnum peatlands, and thus carbon
uptake. Despite their small size and biomass, it has been shown that a 50% decrease in the
biomass of MTA can be linked to a significant reduction of net C uptake (-13%) of the entire

Sphagnum bryosphere (Jassey et al., 2015).

Whilst global scale warming is projected to continue, precipitation patterns remain more
regionally variable (Collins et al., 2013). The climate model intercomparison project (CMIP5)
under an RCP8.5 scenario predicts warmer and wetter climate for Fennoscandia (Collins et al.,
2013). However, these predictions cannot be directly applied to infer peatland hydrological
conditions, which are ecohydrologically complex due to the synchronous forcing of
precipitation, evapotranspiration and runoff (Wu, Kutzbach, Jager, Wille, & Wilmking, 2010;
Zhang et al., 2018a), supplemented by autogenically-driven successional processes (Tuittila,

Viliranta, Laine, & Korhola, 2007).

Millennial-scale peat proxy studies from southern Finland have shown dynamic community
variations, with variations both between plant functional types and within Sphagnum spp.
(Tuittila et al., 2007; Viliranta et al., 2007, 2012). However, to date, there is a lack of studies
on more recent peatland dynamics in southern Finland and their response to recent climate
change, such as post Little Ice Age (LIA; ca. AD 1400-1850) warming or human-induced
warming since the late 1900s. Tree ring-based climate reconstructions (Helama et al., 2014)
and instrumental measurements from southern Finland suggest a clear increase in summer
temperatures since the LIA, with cooler and wetter summers during the LIA giving way to
increasingly warmer summer temperatures towards the end of the 20" century (Helama,

Merildinen, & Tuomenvirta, 2009; Luoto & Helama, 2010). Experimental studies applying
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open top chambers or mesocosms that started in the 2000s provide empirical short-term
simulation data of peatland responses to different climate conditions (Dieleman, Branfireun,
McLaughlin, & Lindo, 2015; Mikiranta et al., 2018; Ward et al., 2013; Weltzin, Bridgham,
Pastor, Chen, & Harth, 2003; Wiedermann, Nordin, Gunnarsson, Nilsson, & Ericson, 2007).
A very recent experimental study of plant community response to a 15 year-long water-table
drawdown suggested that fen vegetation is less resilient to water level changes, with these
communities experiencing clear species turnover, while bog vegetation appeared to be more
resistant (Kokkonen et al., 2019). Considering this potentially slower response time of bog
vegetation to changes in the environment, there is a need for studies which capture longer
time periods than allowed by field experiments. Aerial photographs offer decadal-scale
opportunity to observe changes in peatland environments but mainly at a landscape scale
(Jauhiainen, Holopainen, & Rasinmiki, 2007; Tahvanainen, 2011). Only the most modern
remote sensing techniques are accurate enough to investigate small-scale changes in
vegetation type composition (e.g., vascular plants, mosses) over a few decades (Mikola et al.,
2018). Proxy-based analysis of peat profiles has the potential to provide accurate and
long-term perspectives on peatland dynamics over centuries, but so far, in the boreal climate
zone it has only been recently applied to permafrost peatlands in western Canada (Magnan et
al., 2018; Piilo et al., 2019; van Bellen et al., 2018). In short, there is a clear gap in
understanding the responses and feedbacks of boreal bogs to on-going warming over
timescales (i.e. decadal to centennial) relevant to contemporary and future climate and

environmental change scenarios.

The links between vegetation, moisture conditions and climate are vital in understanding past,

and in modelling future, peatland carbon dynamics (Frolking et al., 2010; Strack, Waddington,
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Rochefort, & Tuittila, 2006). Currently, large uncertainties remain in models of peatland
dynamics due to a lack of quantitative understanding on peatland vegetation successions on
decadal to centennial time scales. This study aims to quantifiably test whether changes in
plant and testate amoeba communities, as well as carbon accumulation, are related to local
climate variation over the past 200-300 years — a period that captures both post-LIA and
post-industrial climate warming. More specifically, we aim to 1) reconstruct changes in
peatland vegetation, hydrology and carbon dynamics over the past 200-300 years; 2) link the
detected changes in peatland dynamics to measured climate parameters, namely summer
temperature and precipitation; 3) determine the vegetation-hydroclimate-carbon dynamic
feedbacks in boreal peatlands. To address the microtopographically heterogeneous nature of
bogs, we examined three different microhabitats at each study site. This experimental design
enabled habitat-to-habitat and site-to-site comparisons and provides the first high-resolution
centennial-scale multiproxy study for northern boreal bogs in which replicated 2!°Pb and

14C-dated peat records encompassing different microhabitats are presented.
Material and methods

Study sites and sampling

The two study sites, Siikaneva (61.83650°N, 24.17262° E) and Lakkasuo (61.78625° N,
24.30908° E), are located in southern Finland (Figure 1), ¢. 6 km from one another and in
separate hydrological catchments. Based on the 30-year averages (1981-2010) from the
nearest weather station, Juupajoki-Hyytidld (61.8456° N, 24°2906 E), the mean annual
temperature of the area is 4.2 °C and mean annual precipitation is 711 mm (Pirinen et al.,

2012).
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The Siikaneva peatland complex, which is surrounded mainly by boreal forest (Figure 1a),
contains both fen and bog areas. The studied peat cores were collected within the bog area,
which hosts a well-pronounced microtopography represented by open-water pools, bare peat
surfaces, hollows and higher and drier lawns and hummocks (Korrensalo et al., 2018). The
bog surface is covered by Sphagnum mosses, except in the ponds and bare peat surfaces.
Sphagnum fuscum and S. rubellum grow on hummocks, where vascular plant vegetation is
dominated by dwarf shrubs, such as Andromeda polifolia, Calluna vulgaris and Empetrum
nigrum. Eriophorum vaginatum is also found on hummocks and is common on lawns, where
the moss layer is dominated by S. magellanicum and S. rubellum. Wet hollows are dominated

by S. cuspidatum and S. majus, Carex limosa, Rhynchospora alba and Scheuchzeria palustris.

Lakkasuo peatland is an eccentric raised peatland complex surrounded by boreal forests
(Figure 1b). The sampled bog area is a mosaic of ecohydrological gradients from dry
hummocks, to intermediate lawns and wet hollows (Andersen et al.,, 2011). The

habitat-specific vegetation features are similar to those at Siikaneva.

Samples were collected in October 2016 using a 60-cm long box corer from the transition
zone between hummock and hollow, the extreme ends of moisture gradient, because the
transition zone is most sensitive to changing environmental conditions (De Vleeschouwer,
Chambers, & Swindles, 2010). At each site, we collected three peat cores along a moisture
gradient within the transition zone: from low hummock (LH), high lawn (HL) and low lawn
(LL) (Figure Ic, Table 1). Water-table depth (WTD, cm) at each sampling point was
measured and dominant vegetation of the coring point was surveyed (Table 1). Individual

cores were wrapped in plastic and transported to the laboratory in sealed PVC tubes and

This article is protected by copyright. All rights reserved



stored in a freezer. The cores were later defrosted and sub-sampled in 1-cm thick slices for
further analyses. In addition, a survey of surface vegetation and WTD (measured over the
2016 growing season) was also carried out at both sites. In total, 19 plots were investigated,

covering the main variations in vegetation.

Chronology

Radiocarbon (1*C), lead (*!°Pb) and caesium (!¥’Cs) dating methods were used to establish the
chronologies. In total, six basal bulk peat samples, which represent equally good dating
materials as picked plant remains, especially for Sphagnum bogs (Holmquist et al., 2016),
were sent to Poznan Radiocarbon Laboratory (Poznan, Poland) for '“C dating. Roots and
rootlets were picked out and discarded to avoid contamination. The chemical pre-treatment
followed the standard acid-base acid method for peat samples (coded as WW) (Brock,
Higham, Ditchfield, & Ramsey, 2010). The chronology of the top part of each core (c. 40 cm)
was determined primarily with ?!'°Pb dating. The 2!°Pb dating samples were treated at the
University of Exeter, UK (cores SLH, SHL, LLH and LHL) and University of Helsinki,
Finland (cores SLL and LLL). A dry ¢. 0.2-0.5 g subsample from each 1-cm or 2-cm interval
was analysed for 2!°Pb activity after spiking with a *’Po yield tracer; see Kelly et al. (2017)
and Estop-Aragonés et al. (2018) for detailed procedure. The alpha spectrometry counting
was conducted at the University of Exeter for all the cores. Additionally, caesium (¥’Cs)
dating with y spectrometry, which provides date “markers”, was applied on single core SLH

at the Finnish Meteorological Institute to validate the 219pp results (Arnaud et al., 2006; Jeter
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2000). The '*’Cs-peak, indicating 1986 AD (when the Chernobyl disaster occurred), was used

as a date maker and integrated into the age-depth model of SLH.

Age-depth models were developed using Plum (Aquino-Lopez et al., 2018) in R version 3.6.0
(R Core Team, 2019). *C ages were calibrated using the IntCall3 calibration curve (Reimer
et al., 2013). Total ?'°Pb data (Bq/Kg) were inputted in Plum and the number of samples
which Plum used was determined by the pre-analysis within the software with exception of
those cases where equilibrium was reached in the three or less deepest samples (LLH, LHL,
SHL and SLL). Plum is capable of integrating *'Pb and radiocarbon dates into a single
chronology by avoiding remodelling of the *!°Pb, resulting in an unbiased chronology. This

study represents the first application of Plum that integrates both '*C and *!°Pb.

Proxy analyses

Plant macrofossil analysis was undertaken for all six cores at 1- to 2-cm resolution. For the
four cores characterised as low hummock and high lawn ecotones, where the plant records
indicated changes in hydrology, we also conducted testate amoeba analysis as we expected
these changes to be more reliably visible in testate amoeba records (Gatka, Tobolski, Goérska
& Lamentowicz, 2017; Viliranta et al., 2012; Zhang et al., 2018a). Testate amoeba analysis
was first performed at 4-cm resolution, but in cases where prominent changes occurred, the
resolution was increased to 2-cm. The lower resolution was sufficient where the proxy-based
WTD reconstruction was used as an environmental variable in explaining carbon
accumulation patterns, as carbon accumulation rate calculations were completed at 4-cm

resolution and were therefore comparable with the testate amoeba results.
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Plant macrofossil analysis was performed following Viliranta et al. (2007). Volumetric
samples (c. 5 cm®) were gently rinsed under running water using a 140-um sieve. No
chemical treatment was applied. Remains retained on the sieve were identified. Proportions of
different plant types and unidentifiable organic matter (UOM) were estimated with the aid of
a scale paper under a petri dish using a stereomicroscope at the magnification of 10 — 40.
Further identification to species level was carried out using a high-power light microscope at
the magnification of 100 — 200. Plant-based WTD reconstruction was carried out using the
modern vegetation survey data from the Siikaneva and Lakkasuo sites based on a weighted
average approach; transfer function development followed the methods described in Zhang et

al. (2017).

Processing of testate amoeba samples followed a modified version of the standard method
(Booth, Lamentowicz & Charman, 2010). Samples were boiled in distilled water for 15 min
and stirred occasionally. The samples were then sieved with a 300-pm mesh and back sieved
with a 15-pm mesh. Materials retained on the 15-pum sieve were centrifuged at 3000 r.p.m. for
5 min. At least 100 individual shells for each sample were counted and identified to species or
“type” level under a light microscope at the magnification of 200 — 400. Taxonomy followed
Charman et al. (2000), supplemented with online sources (Siemensma, 2019). Testate
amoeba-based WTD reconstructions were performed using the transfer function developed by
Amesbury et al. (2016). Absolute WTD values (the larger the values the drier the conditions)
were normalized to z scores over the length of each core (Swindles et al., 2015). Z > 0
indicates drier conditions than the sequence’s average, z < 0 indicates conditions wetter than

average. We calculated the total proportion of mixotrophic testate amoeba taxa (here
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Amphitrema wrightianum, Archerella flavum, Heleopera sphagni, Hyalosphenia papilio,

Placocista spinosa) that contribute to carbon cycling in peatlands (Jassey et al., 2015).

A LOESS smoothing function with a span-value (degree of smoothing) setting of 0.5 was
applied to the compiled proxy-wise WTD (z scores) dataset to explore the overall
hydrological changes reflected on different proxies. The analysis was completed using the

function loess () in R version 3.6.0.

Peat property analyses and carbon accumulation

Contiguous samples of known volume (5 cm®) were extracted from the cores at 1-cm
resolution and freeze-dried. Samples were then weighed to enable calculation of bulk density
(g cm™), which was done by dividing the dry peat weight (g) by the wet peat volume (cm?).
Percentage of carbon and nitrogen content by mass was measured at every 4 cm on
homogenously ground sub-samples using a Micro Cube Elemental Vario CNS-analyzer at the
University of Helsinki, Finland. Carbon-to-nitrogen mass ratios (C/N) were calculated from C

and N content data.

Vertical growth rates for each peat core were calculated based on the mean age estimates
derived from the age-depth models. Apparent carbon accumulation rate (ACAR; g C m? yr'!)
was calculated by multiplying the bulk density of a depth-specific increment by its C content
and by the accumulation rate. Peat decay modelling (Clymo, 1984) was used to derive the
allogenic impacts-forced carbon accumulation variations (Zhang et al., 2018b). The Clymo

model (1984) was first applied on the cumulative peat mass (bulk density) data to derive peat
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addition rate (p) and peat decay coefficient (o) using the curve fitting method. After which the
derived parameters p, o and carbon content were used to calculate carbon accumulation rate
(CAR) under constant conditions (autogenic accumulation). The difference (presented as
CAR z scores) between ACAR and CAR are therefore interpreted to be driven by allogenic

forcing.

Environmental drivers on carbon accumulation

To address the environmental controls on carbon accumulation patterns, linear regression
analysis (95% confidence intervals displayed) was applied to carbon accumulation rates and
potential environmental variables. The environmental variables included reconstructed WTD
z scores from testate amoebae for cores SLH, SHL, LLH and LHL, and from plant
macrofossils for cores SLL and LLL; measured July-August temperature (thereafter referred
to as summer temperature) data (1829-2016) from the Finnish Meteorological Institute;
mixotrophic testate amoeba proportion for SLH, SHL, LLH and LHL. The analyses were first
applied for individual cores and when this suggested that cores from the same habitat had
similar patterns, habitat-specific analyses were performed and used for further discussions.

The analysis was carried out using the Im() function in R version 3.6.0.
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Results

Chronology and vertical peat growth

The studied peat cores from Siikaneva were dated to c¢. 1700-1820 AD, while Lakkasuo peat
cores yielded basal ages of ¢. 1710-1760 AD. The '*C dating of the basal sample from core
SHL yielded a modern age and was detected as an outlier in the age-depth model. Plum uses a
gamma autoregressive model to construct the chronology, this model gathers information
from all the measurements and uses it to infer an age estimate at any depth (even when the
measurements are not present). In the case of SHL, Plum used the information from the first
40 cm, where 2!'°Pb was measured, to infer a trend and memory parameters which allowed the
model to conclude that the '*C date was an outlier and then provided an age estimate given
the information provided by the 2!°Pb data, although with a bigger uncertainty, therefore the
chronology of the section below c¢. 40 cm should be interpreted with caution. Peat
accumulation rates have been relatively consistent within Lakkasuo peatland during recent
centuries, while larger variations within individual peat cores and between different cores

occurred at Siikaneva site (Tables 1 and S1-3, Figure 2).

Past vegetation succession

The plant macrofossil assemblages recorded in situ vegetation dynamics over the past c¢. 200—
300 years. In all the six cores, Sphagnum spp. were the dominant component, occasionally
accompanied by other taxa such as Eriophorum vaginatum, Mylia anomala and Ericaceae spp.

(Figure 3).
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For the driest low hummock habitat, S. fuscum and S. rubellum dominated core SLH from c.
1710-1950 AD, after this S. fuscum was the only abundant taxon accompanied by
Eriophorum vaginatum from c. 1980 to 2000 AD. Lakkasuo core LLH was first occupied by
S. balticum and S. magellanicum during c. 1710-1770 AD, after which S. fuscum became

abundant.

For the mid-range high lawn habitat, at Siitkaneva S. rubellum was abundant throughout the
whole section, with S. balticum present from c. 1820 to 2005 AD but S. fuscum was more
commonly recorded after c. 1990 AD. For the Lakkasuo record, the bottom sample at c¢. 1730
AD was dominated by S. magellanicum. After that, S. balticum was abundant with the
presence of S. majus/cuspidatum and S. angustifolium until c. 1960 AD. Afterwards, until the

present, S. balticum was accompanied by S. fuscum.

For the wettest low lawn habitat, vegetation was more variable than for the other two habitat
types. At first, c. 1740-1800 AD, the Siikaneva assemblage was dominated by S. papillosum
and S. rubellum, but then dominated by S. cuspidatum characteristic to wet hollows. Later the
habitat changed back to S. papillosum-dominated drier lawn (c. 1850 to 1970 AD), followed
by S. rubellum-dominated assemblage towards more recent times. The Lakkasuo assemblage
was initially occupied by S. magellanicum and S. balticum between c. 1810 and 1850 AD,
followed by S. cuspidatum/majus and S. balticum-dominated assemblages. Starting from c.

1890 AD, S. rubellum became abundant.
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Reconstructed water-table depth (WTD)

The plant macrofossil-based WTD transfer function had a good performance (R* = 0.80,
RMSEP = 4.35 cm). Model-derived tolerances around WTD optima were very narrow (1 to 3
cm) for species in wet habitats where water level is close to or at the moss surface, while

species adapted to drier habitats had larger tolerances, up to 12 cm (Figure S1).

In total, 40 testate amoeba taxa were detected from the four cores (Figure 3) that were used
for reconstructing WTD. Archerella flavum was dominant in all the cores, with also Difflugia
pulex in the cores SLH, SHL and LLH, Hyalosphenia elegans in cores SHL and SLH, and

Alabasta militaris type in core SLH.

In core SLH, plant-based WTD showed only little variability, the range being within ¢. 5 cm,
but testate amoeba-based WTD showed more conspicuous variations, especially for the period
around c. 1840 AD in the late LIA where there is a remarkable wet to dry change (c. 10 cm)
(Figure 3). For core LLH, both proxies showed comparable WTD patterns, i.e. from wet
conditions before c¢. 1790 AD to dry conditions afterwards. The SHL testate amoeba record
suggests large moisture change towards wetter habitat conditions dated to ¢. 1940-1950 AD
but the plant-based WTD remained relatively stable; the assemblages were dominated by S.
rubellum with a large tolerance of 8 cm (Figure S1). For LHL, both reconstructions suggest a
wet phase between c. 1730 and 1830 AD and a dry period after c¢. 1960 AD. For the period
between them, c. 1830-1960 AD, plant-WTD shows more variations than testate
amoeba-based WTD, but both suggest medium dry conditions compared with the other two

phases. For the SLL record, no large hydrological changes were detected; the general
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conditions remained wet. While the overall conditions at LLL were drier than SLL, especially
after ¢. 1950 AD when the water table went down, several more recent wet periods were

captured.

In general, plant- and testate amoeba-based WTD reconstructions support each other, while
the latter tends to have more and/or larger variations, as also suggested by previous studies
(Galka et al., 2017; Viliranta et al., 2012; Zhang et al., 2018a). Therefore, we used testate
amoeba-based WTD reconstructions for linear regression analysis when available, i.e. for all

the other cores except low lawns where only plant-based WTD reconstructions existed.

Carbon accumulation and associations with environmental variables

Peat properties varied with depth and between different records (Table 1). For all the studied
records, bulk density was 0.05 £ 0.01 (mean + SD) g cm™, carbon content was 43.01 + 2.34%,
while nitrogen content was 0.71 + 0.28%. Apparent carbon accumulation rates (ACAR)
varied considerably (72.15 = 69.75 g C m? yr'!). All the studied sections showed a rapid
increase of ACAR for the recent years (after 2000 AD) except the core LLL, which had

relatively consistent ACARSs throughout (Figure 3).

Although CAR z scores (allogenic forcing-driven carbon accumulation rate variations)
indicate some core-specific features, the general pattern suggests that for low hummocks, high
lawns and Siikaneva low lawn the environmental changes have promoted carbon

accumulation (i.e. z > 0) before c. 1830-1850 AD and after 1980 to 2000 AD (Figure 3). But
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for Lakkasuo low lawn, its CAR z scores only increased between the period from 1950 to

1990 AD.

For low hummocks there were significant correlations between all the studied environmental
variables and allogenic carbon accumulation variations measured as CAR z scores (Figure 4).
In contrast, correlations were not found for the two other habitats: high lawns and low lawns
(Figure S2). For low hummocks, a significant negative correlation (R*> = 0.5031, p < 0.001)
was detected between CAR z scores and WTD (Figure 4a), meaning lower carbon
accumulation in drier conditions. The correlation between CAR z scores and summer
temperature was positive (R*> = 0.3184, p < 0.01) (Figure 4b), but the correlation was weaker
than between CAR z scores and WTD. Abundance of mixotrophic testate amoebae were
positively linked to carbon accumulation (R? = 0.4207, p < 0.001) (Figure 4c). A further
investigation of the distribution of mixotrophic testate amoebae in different habitats indicated
that in low hummocks, the abundance of mixotrophic testate amoebae was strongly linked to
WTD (Figure S3; R? = 0.7608, p < 0.001). However, in high lawns, this link was weaker, but

still significant (R* = 0.3006, p < 0.001).

Discussion

Climate-driven centennial-scale bog surface drying

We detected a consistent peatland surface drying, inferred from both proxies (Figures 3 and 5).
In general, testate amoeba records suggest a gradual drying since the 1800s, most clearly

visible in low hummocks and in the Lakkasuo high lawn core, while shifts in vegetation
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towards plant communities adapted to drier microhabitat occurred either synchronously or a
few decades later. This drying trend is in line with another record from southern Finland,
where Sphagnum rubellum and S. balticum communities were replaced by a S.
Sfuscum-dominated community at around 1800 AD (Viliranta et al., 2007). At low hummocks
and high lawns, the vegetation change was reflected as a replacement of wet lawn Sphagna by
dry hummock Sphagna, such as S. fuscum. For low lawns, the changes were more gradual
from wet hollow taxa to lawn or even hummock taxa. Some previous studies have suggested
that increase in S. fuscum abundancy might result from increased atmospheric nitrogen input
(Vitt, Wieder, Halsey, & Turetsky, 2003; Wieder et al., 2016). However, the geochemical
analyses did not indicate any increased nitrogen load on our peatlands. In addition, a previous
study found that compared to, for example, central Europe, Finland still has a markedly small
nitrogen load (Dirnbock et al., 2014). Therefore, our data suggest the changes in plant

communities were mainly driven by changes in (climate driven) hydrology.

Our results imply that changes in hydrology were related to changes in temperature and
precipitation. Most of the vegetation shifts towards drier communities occurred after the Little
Ice Age, which ended c. 1850 AD. However, we also recorded dry shifts during the latter part
of the LIA, as also inferred by the testate amoeba assemblages. For example, at both study
sites a notable shift in vegetation towards dry communities occurred c. 1770 AD. No
measured meteorological data exist for that period, but solar irradiance reconstructions have
suggested that around 1770 AD the irradiation level was as high as that of around 1930-1940
AD (Lean, Beer, & Bradley, 1995), when measured temperatures were high. This suggests

that summer temperature seems to play a critical role in controlling bog vegetation
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communities via changes in moisture conditions. Measured summer temperature records
warmer than 17.3 °C (average for the period 1990-2018) corresponded with each of the other
drying phases. In particular, in the 1940s AD several continuous warm summers followed one
another, and these may have contributed to the substantial successional change towards drier
vegetation that we recorded. The detected link between Sphagnum community changes and
summer temperature is in line with studies from Alberta, Canada, where the increase in
summer temperature and consequent enhanced evapotranspiration resulted in a dry shift that

triggered a vegetation change towards S. fuscum domination (Magnan et al., 2018).

In addition to summer temperature, summer (June-August) precipitation might be another
factor that controls bog moisture changes. Even though instrumental climate records showed
that summer precipitation since 1850 AD had been annually variable with a range of c. 35 to
345 mm (mean + SD: 200 + 65 mm) and no clear trend, most of the drying vegetation shifts
occurred during very dry summers (summer precipitation <100 mm). However, the same
vegetation shifts also happened during wet summers (>250 mm) in the past decade, for
example in SHL with increased proportion of S. fuscum and disappearing of S. balticum,
which may result from increased evapotranspiration during warm summers. These recent wet
summers might also explain the clear wet shifts recorded in low hummock testate amoeba
data (SLH and LLH) c¢. 2000 AD, which indicate a higher sensitivity of testate amoebae to
environmental changes than plants, as there were no clear corresponding vegetation changes
towards wetter communities (Viliranta et al., 2012; Zhang et al., 2018a). However, it should
also be noted that despite these recent wet shifts, conditions were still drier than the very early

wet conditions during mid-late 1700s at both sites (Figure 5).
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Response of carbon accumulation to climate forcing

Peatland carbon accumulation is mainly controlled by vegetation composition, water table and
temperature. However, due to the complexity of interactions between these factors and the
highly heterogeneous nature of peatlands, links between peat carbon accumulation and any
individual environmental variables are not straightforward (e.g., Loisel and Garneau, 2010;
Piilo et al., 2019; Zhang et al., 2018b). We did not observe any changes in plant functional
types, e.g., from Sphagnum to shrubs (Tuittila et al., 2012), thus we assume that the detected
variation in carbon accumulation rate is largely due to variations in moisture and temperature,
although changes in moss community might alone could still drive changes in carbon
accumulation due to different photosynthesis and decomposition rates at the species level
(Hajek, Tuittila, Ilomets, & Laiho, 2009; Kangas et al., 2014; Laine, Juurola, Hajek, &

Tuittila, 2011; Turetsky, Crow, Evans, Vitt, & Wieder, 2008).

Our results suggest that the response of carbon accumulation rate to environmental changes in
the past varied for different habitats. For low hummocks the CAR z scores showed significant
linear correlations to all studied variables. In contrast, the other two habitats, high lawns and
low lawns yielded no significant correlations. At low hummock conditions, summer
temperature showed a weak linear accelerating impact (R* = 0.3184, p < 0.01) on carbon
accumulation, while WTD showed a much stronger forcing (R? = 0.5031, p < 0.001), with
drier conditions resulting in lower carbon accumulation rates. Recent experimental studies

support our palaeo interpretation, by suggesting that WTD is a more important forcing factor

This article is protected by copyright. All rights reserved



than temperature alone (Laine et al., 2019; Mikiranta et al., 2018). The different response
patterns of the three habitats indicate that only in low hummock habitats WTD was a limiting
factor for carbon accumulation, whereas for lawns, water tables were sustained high enough
to enable effective carbon accumulation. The influence of the limiting factor WTD on carbon
accumulation likely worked through changes in biological communities, for example, the
decreased carbon accumulation under water-limited low hummocks can be partly linked to the
distinct decrease of mixotrophic testate amoeba abundance in such habitats (R> = 0.7608, p <
0.001), which can significantly cause reduced carbon accumulation (R? = 0.4207, p < 0.001)

(see also Jassey et al., 2015).

Carbon uptake capacity of boreal peatlands in the future

Our results suggest that in addition to global-scale impacts of warming on peatland carbon
accumulation (Gallego-Sala et al., 2018), local small-scale hydrological conditions are crucial
in controlling carbon accumulation dynamics. Thus, including moisture as a predictor variable
for the future estimates of carbon dynamics is highly important. If we are to experience severe
droughts and consequent water level drawdowns, peatland carbon uptake capacity is
threatened. According to our study, Siikaneva where roughly 21% of the peatland area is
covered by hummocks (Korrensalo et al., 2018) has, to some extent, already decreased carbon
accumulation capacity due to surface drying since 1850 AD — the most severe periods
occurring from the 1850’s to the late 1900’s. If drying continues, most of the current lawn

surfaces, which now cover c. 38% of the Siikaneva peatland area (Korrensalo et al., 2018),
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have the potential to turn to low hummock habitats; this development has already been
predicted in a field experimental study at Lakkasuo (Kokkonen et al., 2019). This potential
habitat transition will also stress mixotrophic testate amoebae, as current lawn conditions are
generally more appropriate habitats for most of the mixotrophic testate amoeba taxa (e.g.,
Zhang et al., 2018c). Therefore, further drying may reduce the abundance of mixotrophic
testate amoebae and consequently reduce peatland C fixation. This scenario is in line with a
recent model-based pan-Arctic carbon accumulation prediction study that shows decreased
carbon accumulation for southern Finland by the end of 21 century in comparison to the
accumulation rate in the 20" century (Chaudhary, Miller, & Smith, 2017). Widespread drying
of boreal peatlands in recent centuries has been very recently recorded (Swindles et al., 2019;
van Bellen et al., 2018). The future climate prediction for Fennoscandia is warmer and wetter
(CMIPS5 under RCP8.5) (Collins et al., 2013). However, and more importantly, a net effect on
summer moisture balance may be negative, as increased evapotranspiration may result in
summer-time moisture deficit. Bogs are suggested to be more resistant to drying than fens
(Jaatinen, Fritze, Laine, & Laiho, 2007; Kokkonen et al., 2019), as they already regularly
experience dry seasons/periods (Thormann, Bayley, & Szumigalski, 1998). Yet, here we
evidenced consistent climate-driven water level variations, dry shifts and subsequent changes
in biological assemblages in two adjacent bogs under warmer conditions in the past. With
prolonged warming and consequent peat surface drying, Sphagna communities may be even
gradually replaced by shrubs (McPartland et al., 2019; Munir, Xu, Perkins, & Strack, 2014),
which would have more profound impacts on peatland carbon uptake capacity (Loisel et al.,

2014; Munir et al., 2014).
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In summary, the two studied southern boreal bogs with separate catchment areas consistently
showed shifts towards drier peatland surface conditions during recent centuries. The general
drying trend was reflected in both plant and testate amoeba communities. Both summer
temperature and precipitation, and more importantly effective moisture balance, are important
drivers of peatland vegetation and hydrological conditions. Our study suggests that
environmental forcing on carbon accumulation is most prominent for low hummock habitats.
In short, the drier the conditions, the less carbon accumulated. The above derived patterns
reveal that even though peatland carbon accumulation processes are complex, they will
become more predictable when some controlling factors reach their threshold levels. We
preliminarily conclude that carbon sink capacity of northern bogs is endangered if the future
climate warming results in bog moisture deficiency. Peat surface drying might lead to
eventual proportional decrease of lawn areas and increase the area of hummocks, although the
possibly correspondent decrease of hollow areas might on the other hand mitigate the carbon

accumulation reduction by reducing methane emissions.
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Figure caption and table

FIGURE 1 Upper panel: Location of the two study sites (red stars), the base map was
downloaded from the National Land Survey of Finland Topographic Database under a CC 4.0
open source license. Lower panel: (a and b) Aerial photos of Siikaneva and Lakkasuo
peatlands (2019 Google), red arrows show the coring points; (c) The
microtopography-specific sampling design.

FIGURE 2 Age-depth models of the studied cores developed using Plum. The measured
unsupported 2'°Pb activities are in green, '*’Cs activities (SLH) are in black and calibrated *C
dates are in blue. The grey shading indicates the 95% confidence range of the age-model. The
red line is the weighted mean age based on the model. The '*’Cs-peak indicated 1986 AD at
depth 21-22 cm (in core SLH) is shown using a black star.

FIGURE 3 Diagrams showing selected peat property (i.e. BD: bulk density; C/N: carbon
nitrogen mass ratio; C%: C content; ACAR: apparent carbon accumulation rate; CAR:
allogenic carbon accumulation rate), plant macrofossil and testate amoeba percentages for the
studied six cores. Mixotrophic testate amoeba taxa are marked in red. Plant macrofossil- and
testate amoeba-based water-table depth (WTD) reconstructions are also shown. The timing of
post-Little Ice Age warming (1850 AD) is indicated using a red line. Main vegetation drying
shifts are marked using blue lines.

FIGURE 4 Linear regression analyses of allogenic carbon accumulation rate (CAR) z scores
and environmental variables for low hummocks. Analyses for high lawns and low lawns are
shown in Figure S2. (a) water-table depth (WTD); (b) summer temperature (T); (c)
mixotrophic testate amoeba (TA) abundance. The gray shading areas represent the 95%
confidence intervals.

FIGURE 5 Summary of testate amoeba (TA)- and plant-based water-table depth (WTD)
reconstructions and peatland vegetation successions in the studied cores. Only selected plants
are shown for each core showing the main moisture changes using colour-based WTD
indications derived from Figure S1. Each drying vegetation change is indicated using a black
arrow. Mean summer temperature and total summer precipitation are shown with the means
for the periods before and after 2000 AD indicated using vertical lines.
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TABLE 1 Detailed description of studied peat cores. WTD: Water-table depth of the
sampling point. BD: bulk density. C%: carbon content. N%: nitrogen content. PAR: peat

accumulation rate.

Site Core WTD Surface vegetation Core depth Basal age BD C% N% PAR
(cm) (cm) (cal yr AD) (g cm) (cm yr")
- #*SLH 17 Sphagnum fuscum 57 1744 - 1644 0.06 +0.01 43.65+0.99 0.73+0.24 0.45+0.54
>
% *SHL 8 S. rubellum, S. fuscum 49 1770 - 1874 0.05+0.01 44.28+2.78 0.58+0.15 0.63+0.57
~
B *SLL 3 S. rubellum, S. papilosum 52 1685 — 1741 0.05+0.15 43.30+0.70 0.88+0.41 0.38+0.66
° *LLH 10 S. fuscum 58 1683 — 1737 0.07 +£0.01 43.37+3.17 0.73+0.29 0.27+0.21
=
é *LHL 6 S. balticum, S. fuscum 61 1684 — 1738 0.05+0.01 40.91+0.42 0.60+0.13 0.27£0.19
3 *LLL 3 S. rubellum, S. balticum 54 1731 - 1805 0.05+0.01 42.87+2.69 0.74+0.23 0.23+0.07

Note. *: Surface age control was based on 2!°Pb dating. *: Surface age control was validated by '*’Cs dating.

The basal ages were based on *C dating except core SHL, which was modelled by Plum.
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