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Abstract

Background: Intervention strategies for obesity are global issues that require immediate attention. One approach is to
exploit the growing consensus that beneficial gut microbiota could be of use in intervention regimes. Our objective was to
determine the mechanism by which the probiotic bacteria Lactobacillus paracasei ssp paracasei F19 (F19) could alter fat
storage. Angiopoietin-like 4 (ANGPTL4) is a circulating lipoprotein lipase (LPL) inhibitor that controls triglyceride deposition
into adipocytes and has been reported to be regulated by gut microbes.

Methodology/Principal Findings: A diet intervention study of mice fed high-fat chow supplemented with F19 was carried
out to study potential mechanistic effects on fat storage. Mice given F19 displayed significantly less body fat, as assessed by
magnetic resonance imaging, and a changed lipoprotein profile. Given that previous studies on fat storage have identified
ANGPTL4 as an effector, we also investigated circulating levels of ANGPTL4, which proved to be higher in the F19-treated
group. This increase, together with total body fat and triglyceride levels told a story of inhibited LPL action through
ANGPTL4 leading to decreased fat storage. Co-culture experiments of colonic cell lines and F19 were set up in order to
monitor any ensuing alterations in ANGPTL4 expression by qPCR. We observed that potentially secreted factors from F19
can induce ANGPTL4 gene expression, acting in part through the peroxisome proliferator activated receptors alpha and
gamma. To prove validity of in vitro findings, germ-free mice were monocolonized with F19. Here we again found changes
in serum triglycerides as well as ANGPTL4 in response to F19.

Conclusions/Significance: Our results provide an interesting mechanism whereby modifying ANGPTL4, a central player in
fat storage regulation, through manipulating gut flora could be an important gateway upon which intervention trials of
weight management can be based.
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Introduction

Despite continuing efforts to educate the public on the link

between being excessively overweight and developing chronic

diseases, the prevalence of obesity continues to increase (reviewed

in [1]). This rapid increase and its significant health and economic

burden have motivated a search for better prevention and

treatment strategies. Alongside evaluation studies of popular

weight loss regimens, scientific interest has also extended to

secretory products such as adipokines, shown to influence aspects

of pathogenesis of obesity-related diseases and weight loss. Here

the physiology of fasting has become an issue since weight gain

stems from an excess of caloric intake over expenditure. A critical

event in the fasting response is its metabolic adaptations and the

liberation of fatty acids from adipose tissue governed by numerous

endocrine and cellular factors. One such factor is the Angiopoie-

tin-like 4 protein (ANGPTL4, FIAF for fasting induced adipose

factor, or PGAR for PPARc angiopoietin related). ANGPTL4 is a

circulating lipoprotein lipase (LPL) inhibitor and plays a key role in

regulating deposition of triglycerides in adipocytes [2,3].

ANGPTL4 is also a downstream target gene of peroxisome

proliferator activated receptors (PPAR), the agonists of which are

widely used for the treatment of type 2 diabetes and dyslipidemia

[4,5]. ANGPTL4 has been reported to be highly expressed in liver

and adipose tissue [5], and plasma levels of the protein decrease on

a chronic high-fat diet [4]. Interestingly, ANGPTL4 has also been
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shown to be susceptible to regulation by the gut microbiota. It was

suggested that a conventional whole gut flora down regulated

intestinal ANGPTL4, which promoted adiposity [6,7]. It was also

speculated that ‘‘Westernized’’ microbial ecology may function as

a predisposing factor for obesity. This hypothesis is corroborated

by findings of differences in recipient’s body fat being dependent

on the origin of a colonizing flora [8], and that diversity in the

microbiota may contribute to subsequent fat storage [9].

In recent years, we have begun to understand the benefits of a

well composed intestinal flora, emphasizing a role for health

promoting pro- and prebiotics. Probiotics are living microbial food

ingredients beneficial to health beyond basic nutrition. The most

common and researched species belong to the genera Lactobacillus,

Bifidobacterium and Saccharomyces [10]. Interestingly, there are some

reports in the literature indicating possible anti-obesity effects of

probiotic bacteria, although the underlying molecular mechanisms

have not been revealed [11,12,13,14]. In the current study, we

examined the possibility that probiotic bacteria could target the fat

storage regulator ANGPTL4 and, as a consequence, execute its

modulatory effects. We have chosen to focus on Lactobacillus

paracasei ssp paracasei F19 (F19) which is a gram-positive, non-spore

forming bacterium initially isolated from human small intestine.

Results

F19 Supplementation to a High-fat Diet Decreases Stored
Body Fat

To investigate effects of F19 in a system of high fat diet (20%),

we used normal SPF C57B/6J mice due to their propensity for

weight gain. The two groups of mice were pair-fed to ensure that

potential weight gain would only be affected by the dietary

probiotic content (Figure 1A). After a 10 week diet regime, the

serum of the two groups was analyzed for different lipid

components. Free fatty acids were not affected by the presence

of F19 (Figure 1B), while the triglyceride load of the lipoprotein

VLDL (very low density lipoprotein) showed a modest but

Figure 1. F19 supplementation decreases fat storage in vivo. A) The two groups (5 mice/group) of high-fat (HF) and high-fat supplemented
with F19 (HF+F19) were pair-fed, referenced here by food consumption in grams/week. B) Free fatty acid content in the serum of the two groups. C)
Lipoprotein profiles of both cholesterol and triglyceride contents of very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high
density lipoproteins (HDL). D) Western blot for full length ANGPTL4 in pooled serum (10 mg protein loaded) from HF and HF+F19 mice along with
numerical representation of the same. E) Representative images from MRI visualizing fat depots (in white) in both the abdominal and visceral regions.
F) Body fat percentages for the two groups. Stars represent P = 0.045 (*), P = 0.002 (**) using Student’s t-test.
doi:10.1371/journal.pone.0013087.g001
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significant increase although cholesterol levels remained un-

changed (Figure 1C). Circulating ANGPTL4 levels were upregu-

lated in the F19 supplemented group (Figure 1D). Magnetic

resonance imaging (MRI) showed a significantly reduced body fat

profile with the presence of F19 (Figure 1E–F).

Probiotic Bacteria Induce ANGPTL4 Expression in Colonic
Cells

The colon carcinoma cell line HCT116 was used to determine

effects of selected gut microbiota on ANGPTL4 expression in

colonocytes. Cells were stimulated for 6h with the Lactobacillus F19,

the Bifidobacterium lactis 12 (BB12), and the Bacteroides thetaiotaomicron

(B.theta) (Figure 2A). Whereas F19 and BB12 generated an

upregulation of ANGPTL4 mRNA, the commensal B.theta, was

unable to stimulate expression in this cell line. The Lactobacillus

rhamnosus GG (LGG) was also able to upregulate ANGPTL4 mRNA

(data not shown). Further characterization of ANGPTL4 expression

revealed that F19 upregulated ANGPTL4 mRNA in a dose and

time dependent manner (Figure 2B–C). Elevated ANGPTL4 levels

were further confirmed at the protein level in extracts from cells

stimulated for 6 h with a subsequent 18 h accumulation period

(Figure 2D). The issue of cell line exclusivity was addressed by

quantifying ANGPTL4 mRNA after F19 stimulation in the colonic

cell lines LoVo, HT29 and SW480, which all showed a similar

upregulation of ANGPTL4 mRNA to that of HCT116 (Figure 2E).

To elucidate the mechanism of ANGPTL4 gene induction, distinct

components of the bacteria-cell interaction were studied. Heat-killed

F19 could not mount an ANGPTL4 response, while conditioned

media from bacteria interacting with cells, even when heat-inactivated,

could (Figure 3A). The need for bacteria-cell contact for production of

stimulatory molecules was also addressed. Here, we observed that

supernatants of F19 grown without cells (CS) were as good as

conditioned media (CM) where contact had occurred (Figure 3B).

PPARa and PPARc Signaling Pathways Play a Role in
Induction of ANGPTL4 by F19

PPAR specific ligand stimulation of HT29 cells resulted in

increased amounts of ANGPTL4 transcripts, confirming it, with

Figure 2. Probiotics upregulate ANGPTL4 expression in colonic cell lines. A) Real-time PCR of ANGPTL4 mRNA in HCT116 cells co-cultured
with Lactobacillus F19 (F19; 107/ml), Bifidobacterium lactis (BB12; 107/ml) and Bacteroides thetaiotaomicron (B.theta; 107/ml) respectively for 6 h were
compared to non-treated (NT) control. B) Analysis of ANGPTL4 mRNA after 6 h stimulation with F19 at different concentrations in HCT116 cells. C)
Time-course of F19 (108) on ANGPTL4 mRNA expression in HCT116 cells. D) Western (50 mg) of full length ANGPTL4 in HCT116 cells treated with F19
for 6 h and collected after 24 h. Actin is shown as loading control. E) ANGPTL4 mRNA in the colon carcinoma cell lines LoVo, HT29 and SW480. Real-
time PCR data are presented as means with standard errors. All data are representative of at least 3 independent experiments.
doi:10.1371/journal.pone.0013087.g002
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varying degrees, as a target for all three nuclear receptors

(Figure 4A). When PPARc and PPARa were downregulated by

siRNA in HT29 cells induction of ANGPTL4 expression by F19

was markedly reduced (Figure 4B), revealing a partial nuclear

receptor dependency for this gut microbiota mediated effect.

Downregulating PPARd did not influence the ability of F19 to

upregulate ANGPTL4 (Figure 4B). Combinatorial transfection of

the different siRNAs did not result in cooperative effects on

ANGPTL4 expression (data not shown).

Mono-colonization of Germ-free Mice with F19 Elevates
ANGPTL4 Protein in Serum

To confirm a possible regulatory effect in vivo, we chose germ-

free (GF) NMRI mice on normal chow and exposed them to F19.

No adverse side effects on general health were observed during the

2 week colonization period, after which serum was collected from

the sacrificed mice for further investigation. Serum levels of

ANGPTL4 protein revealed an increasing trend within 2 weeks of

colonization with F19 (Figure 5A). Interestingly and in consonance

with this, an increase in triglycerides in the VLDL fraction was

seen, as possible consequence of LPL inhibition, whereas the

mono-colonization with F19 had no effect on cholesterol content

in any of the lipoprotein fractions (Figure 5B).

Discussion

In a key paper, it was reported that the gut microbiota in obese

humans and mice differ from those in lean individuals [9]. Here

the notion was raised, for the first time, that these bacteria are

involved in body weight regulation and may be a factor in the

obesity epidemic. This high-lighted the intriguing question as to

whether we could consider a ‘‘rational food design’’ approach,

targeting the gut microbiota, as opposed to a drug-based approach

to address the problem of overweight. Such an approach, in

combination with altered food intake, has an advantage in

Figure 3. ANGPTL4 mRNA expression is regulated by F19
secreted factors. A) Real-time PCR of HCT116 cells stimulated for 6 h
by live (F19) or heat-killed F19 (H-K F19) as well as fresh (CM) or heat-
inactivated conditioned media of F19 (H-I CM) compared to non-treated
(NT) control. B) Comparison between 6 h stimulation with conditioned
media (CM) and F19 culture supernatant (CS) on ANGPTL4 expression.
Bars signify means with standard errors. Results are representative of at
least 3 independent experiments, and stars represent P,0.02 (*),
P,0.01 (**), P,0.001 (***) (Student’s t-test).
doi:10.1371/journal.pone.0013087.g003

Figure 4. F19 mediated induction of ANGPTL4 gene expression
may be mediated through PPARs. A) Stimulation of ANGPTL4 gene
expression using the PPARa ligand WY-14643 (WY), PPARc ligand
Rosiglitazone (Rosi), and PPARd ligand GW0742 (G07). B) Inhibition of
ANGPTL4 response in HT29 cells after 6 h incubation with F19 by siRNA
for PPARa, PPARc, and PPARd. Controls for siRNA efficiency of each
inhibition are included as separate qPCR graphs. Expression data are
presented with standard errors of the mean. Data are representative of
at least 3 independent experiments, and stars represent P,0.05 (*),
P,0.01 (**), P,0.001 (***) (Student’s t-test).
doi:10.1371/journal.pone.0013087.g004
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reaching a larger number of individuals in a cost effective manner.

The use of dietary components, together with selected normal

commensal bacteria, to regulate fat metabolism is one approach

where microbial entities are used to affect complex downstream

homeostatic presets.

A major goal of the present study was to address underlying

mechanisms for the reported effects of probiotics on adiposity. To

this end, we now confirm a clear difference in stored adiposity

between F19 and control mice on a high fat diet, and furthermore

observe an elevation of serum triglycerides possibly as a conse-

quence of the increase in circulating ANGPTL4. Indeed, similar

effects on lipoproteins have been seen in ANGPTL4 transgenic

mice, strengthening the probability that increased triglycerides is a

direct function of increased levels of circulating ANGPTL4 [15].

Free fatty acids were not elevated indicating that the mice have not

developed any symptoms of metabolic syndrome in response to

either the diet or the elevated triglyceride levels. Furthermore,

feeding of F19 did not alter the levels of the lipoprotein fractions and

thus did not result in a more atherogenic lipid profile, since isolated

elevation of triglycerides is not in itself atherogenic in rodents

[16,17]. In extension, it would be interesting to investigate F19

action in a truly obese model system to elucidate how fat storage

might be affected under more extreme conditions.

We show that ANGPTL4 expression can be induced by an

array of probiotic strains including F19. In contrast, the anaerobic

commensal B. thetaiotaomicron, is unable to induce ANGPTL4

which is in line with the reported inability of whole flora to

increase ANGPTL4 expression [6]. At present, the Lactobacillus

F19 seems to be a better inducer of the LPL inhibitor than the

Bifidobacterium BB12. Further experiments on strain differences are

highly warranted.

In order to address the mechanism of action of F19, we

monitored ANGPTL4 expression as a result of bacterial presence.

Inability of heat-killed F19 to generate a response and the

redundancy of bacteria-cell interaction, allowed us, based on these

experiments, to currently exclude bacterial wall components as the

sole source of stimuli. Conditioned media from F19 co-cultured

with HCT116 cells was, on the contrary, sufficient, even when

heat-inactivated, to increase ANGPTL4 expression. Taken

together, these data suggest that the Lactobacillus F19 secreted, as

yet uncharacterized, heat stable molecules could be responsible for

the observed effects on ANGPTL4.

ANGPTL4 is a target gene of the PPARs [18] which was

confirmed by specific ligand stimulation. When PPARa and

PPARc were abrogated by siRNA, induction of ANGPTL4 by

F19 was considerably compromised. This implies that one route

by which F19 signals for ANGPTL4 increase is via the PPARs,

which have crucial roles in energy homeostasis and adipogenesis

(reviewed in [19]). Interestingly, we have previously shown that

expression and function of nuclear receptors such as the PPARs,

can be regulated by gut microflora regarding both expression and

function [20,21]. However, despite ablation of PPARa and

PPARc, we still observed ANGPTL4 expression indicating that

additional players are also regulating ANGPTL4 expression.

Finally, we were able to confirm our results in another animal

model. Monocolonizing GF NMRI mice with F19 for two weeks

resulted in increased circulating ANGPTL4 protein compared to

non-infected GF mice. In addition, the signature increase in

triglycerides was also seen, an observation compatible with an LPL

inhibition caused by the increase in ANGPTL4 serum levels. It

should be noted that the altered serum lipoprotein profile observed

in the F19 treated mice was not of such a magnitude that might

lead to any long-term detrimental effects.

While mindful of some of the limitations of this study, we believe

that our findings provide a fundamental rationale for further

studies using select probiotic microbes in an overweight setting.

We are just beginning to comprehend how variables such as food

intake, exercise, hormonal control, and genetic variation interact

and result in a given phenotype. Our results open the intriguing

possibility that modifying LPL activity through ANGPTL4, central

to fat storage regulation, by manipulating the gut flora could be

one important mechanism by which various interventions may

modulate body fat storage.

Materials and Methods

Mice, Cell Lines and Reagents
Ten ten-twelve week old SPF (specific pathogen free) C57B/6J

male mice, divided into two groups, were put on a 10 week diet of

Figure 5. F19 monocolonization in germ-free mice increases
ANGPTL4 protein levels in serum. A) Western blot for full length
ANGPTL4 levels in a serially diluted (50, 25, 12.5, 6.25 mg protein) serum
pool of control (PBS) and mono-infected mice (F19), along with a
collated numerical representation of the same western corrected for
loading. B) Cholesterol and triglyceride profiles of very low density
lipoprotein (VLDL), low density lipoprotein (LDL), and high density
lipoprotein (HDL) in control (PBS) and mono-infected serum (F19).
Indicated bars represent the average value of each data set, n = 6, while
stars represent P = 0.045 (*), P = 0.002 (**) (Student’s t-test).
doi:10.1371/journal.pone.0013087.g005
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modified R36 Lactamin chow containing 0.2% cholesterol, 20%

cocoa fat, +/2 F19 (26109 cfu/g feed), while kept in 12 h light

cycles. The two groups were pair-fed for the duration of the diet,

and sacrificed after whole body magnetic resonance imaging was

carried out.

Twelve ten to twelve week old germ-free (GF) NMRI mice

divided into two groups were maintained on autoclaved R36

Lactamin chow (Lactamin, Sweden) while kept in 12 h light cycles.

Lactobacillus F19 was cultured on MRS plates and used to colonize

GF NMRI mice for a period of two weeks in a concentration of 109

per animal by one-time gavage. The colonized mice were sacrificed

by cervical dislocation along with age matched GF PBS gavaged

controls. From each animal the cecal content was cultured as

treatment control, which confirmed positive colonization of F19

gavage as well as continued germ-free conditions after control PBS

ingestion. Animal husbandry was in accordance with institutional

guidelines at Karolinska Institutet and all animal experiments were

approved by the ethical committee in Stockholm, Sweden (Stock-

holms norra djurförsöksetiska nämnd, N 107/07).

The human colorectal adenocarcinoma cell lines HCT116 (CCL-

247, ATCC), LoVo (CCL-229, ATCC), HT29 (HTB-38, ATCC)

and SW480 (CCL-228, ATCC) were grown and maintained

according to supplier’s recommendations.

PPARa ligand WY-14643 (used at 100 mM), PPARc ligand

Rosiglitazone (used at 5 mM), and PPARd ligand GW0742 (used

at 1 mM) were all products from Cayman.

Bacteria and Co-Culture
The bacterial strains Bifidobacterium lactis 12 and Lactobacillus

paracasei subsp. paracasei F19 were obtained from Arla Foods AB

(Stockholm, Sweden) while Bacteroides thetaiotaomicron was a lab

stock (CFGR, Karolinska Institute).

F19 was always pre-cultured for 6–8 h at 37uC on a rotating

platform (225 rpm). Pre-cultures were then added to pre-warmed

deMan Rogosa Sharpe (MRS) medium (dilution 1:20). The cultures

were cultivated overnight prior to use. Bacterial concentration at

OD600nm was determined: 1 OD600nm = 16108 F19/ml. The required

amount of F19 was resuspended in an appropriate volume of the

respective pre-warmed medium without antibiotics.

Co-culture was prepared by washing the colonic cells with warm

PBS. Cells were incubated with 26107/ml of F19 or with medium

alone. The experiment was terminated by thoroughly washing the

plates with ice-cold PBS.

To determine the actual bacterial concentration the medium

was diluted 1:107, 1:108, 1:109 in MRS medium for F19.

Suspension was put on MRS plate and incubated at 37uC
overnight. The initial bacterial concentration was calculated from

the number of colonies.

As a control, F19 was heat-inactivated by incubating at 80uC for

30 minutes. The same amount of heat inactivated bacteria as used

in the co-culture with live bacteria was suspended in 5 ml of

respective medium and added to the washed cells. Conditioned

medium was prepared by incubating F19 and HCT116 together,

after 6 hours medium was collected and filtered (pore size:

0.2 um), whereas culture supernatant was collected from F19 in

media without presence of cells. Conditioned medium was heat

inactivated by boiling (100uC, 10 minutes).

Real-Time PCR
RNA was prepared using the Qiagen RNeasy Mini Kit

following the manufacturer’s protocol and cDNA was synthesised

using the cDNA synthesis kit from Invitrogen according to

protocol. Semi-quantitative, SYBR Green based (Applied Biosys-

tems) real-time PCR was used to detect transcripts. Forward and

reverse primers were mixed at equal concentration and used at a

final concentration of 0.2 mM. Beta-actin Fw: 59-CCTGGCACC-

CAGCACAAT-39, Rv: 59-GCCGATCCACACGGAGTACT-39;

ANGPTL4 Fw: 59- AAAGAGGCTGCCCGAGAT -39, Rv: 59-

TCTCCCCAACCTGGAACA-39. Each experiment was carried

out in sample duplicates. The mRNA levels of each sample were

determined in triplicates. Real-time PCR was performed using the

ABI 7500 System for data acquisition and analysis by using the

ABI 7500 System Sequence Detection software. Data is presented

as mean values with standard errors.

Western Blot
Cells were treated according to figure specifications and lyzed in

Schindler lysis buffer (50 mM Tris pH 8; 0.1 mM EDTA; 0.5% NP-

40; 10% Glycerol; 150 mM NaCl; 10 nM okadaic acid; 5 mM

sodium fluoride; 400 mM sodium vanadate; 1x Complete (Roche,

Germany); 1 mM phenylmethanesulphonylfluoride). The ANGPTL4

antibody (409800; Zymed; California, USA), raised against an internal

region of the protein, was used to detect full length protein at a 1:500

dilution, Actin (sc-1616) was used at 1:1000, and Albumin (sc-50536)

at 1:2000, while immunodetection was carried out by an appropriate

secondary peroxidase-conjugated antibody (DAKO A/S, Denmark)

followed by chemiluminescence (ECL, Amersham, UK).

SiRNA
Elimination of PPARa, PPARc, and PPARd transcripts from

HT29 cells was accomplished by Dharmacons readymade siRNA

products (SMARTpool Human PPARG/A/D). Transfection was

carried out according to manufacturer’s protocol using the

DharmaFECT 4 reagent with a final siRNA concentration of

0.5 mM/cm2.

Lipoprotein Analysis
Total cholesterol and triglyceride content in lipoprotein

fractions were determined by size exclusion chromatography on

2.5 ml of individual plasma samples using a Superose 6 PC 3.2/30

column (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) as

described [22]. The respective lipoprotein fraction’s lipid concen-

trations were calculated after integration of the individual

chromatograms.

Magnetic Resonance Imaging and Analysis
In vivo magnetic resonance imaging (MRI) measurements were

made under 1.5–2% isoflurane in O2 anesthesia. Fat distribution

was measured in every mouse after the 10th week of the diet

period. All in vivo MRI were performed on a Bruker 4.7-T field

strength magnet and a 40-cm horizontal bore diameter (Bruker

Biospec Avance 47/40; Bruker, Karlsruhe, Germany) equipped

with a commercially available circular resonator (Bruker) with an

inner diameter of 24 mm for RF pulse application and signal

detection. Body temperature was maintained using a temperature-

controlled air stream around the body of the mouse. For

measurement of whole body adiposity, the main sequence

employed was a Bruker implementation of rapid acquisition with

relaxation enhancement (RARE) imaging [23]. Briefly, the mouse

was laid on a support and positioned in the center of the coil. A

total of , 40 contiguous 1.5-mm-thick transversal slices covering

the mouse body were recorded. Image analysis was carried out

with Paravision 3.01 image analysis software (Bruker). As a result,

regional changes in fat were assessed on the basis of total, intra-

abdominal, or visceral and subcutaneous fat depots. The

abdominal fat is the sum of visceral and subcutaneous fat within

the abdominal region. MRI-visible visceral fat comprises omental,

Adiposity and ANGPTL4
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retroperitoneal, and mesenteric fat depots. Two-dimensional

image series were then imported into Biomap platform (Boulder,

CO) for pixel counting-based determination of fat volumes. A

signal threshold was used after a Gauss filter a maximum

likelihood, and a class-select interaction was applied to exclude

all nonfat tissues in each slice. A density factor of 0.9 g/ml was

used to convert fat volumes (in ml) into fat mass (in g).
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