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Objectives: Acute sleep deprivation (SD) seriously affects cognitive functions, such
as attention, memory, and response inhibition. Previous neuroimaging studies have
demonstrated a close relationship between the functional activities of the precuneus
(PC) and the function of alert attention. However, the specific effect of the PC on
attention decline after acute SD has not been elucidated. In this study, we used resting-
state functional magnetic resonance imaging (fMRI) to study the relationship between
the changes of the PC functional connectivity and alertness decline after total SD.

Methods: Thirty healthy, right-handed adult men participated in the experiment. Alert
attention and functional connectivity were assessed by the Psychomotor Vigilance Test
and a resting-state fMRI scan before and after total SD. The region of interest to region
of interest (“ROI-to-ROI”) correlation was employed to analyze the relationship between
the PC and other brain regions after acute SD.

Results: Participants showed decreased alert attention after total SD. In addition, SD
induced decreased functional connectivity between the right PC and the right middle
frontal gyrus (MFG). Moreover, there was a significant correlation between the decreased
PC functional connectivity and alertness decline after total SD.

Conclusion: Our findings suggest that the interruption of the connection between
the right PC and the right MFG is related to the observed decline in alert attention
after acute SD. These results provide evidence further elucidating the cognitive
impairment model of SD.
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INTRODUCTION

Modern society and occupational demands have led to increasing
sleep deprivation (SD). Due to long and irregular working and
studying hours, both adults and adolescents have been getting
less sleep over the past three decades (Ford et al., 2015; Keyes
et al., 2015; Sheehan et al., 2018; Hisler et al., 2019). Moreover,
about 35% of the population sleep less than 6 h/day due to
tight work schedules and the use of electronic devices before
bedtime. Short duration of sleep is significantly associated with
increased mortality (Itani et al., 2017), and SD has significant
effects on body function. Some believe that SD influences higher
brain functions, such as mood and working memory (Krause
et al., 2017; Krause Posada-Quintero et al., 2019), and basic
brain functions, such as attention and alertness. SD is not simply
a representation of SD and its associated functions; it is also
a combination of many harmful factors, such as prolonged
insomnia and lack of sleep (Krause et al., 2017).

Extensive research has been carried out on the effects of SD
on attentional alertness. Molecules associated with sleep stress,
such as adenosine and the hypothalamic system, control the
mechanisms involved in the transition between sleep and arousal
and are candidates for the chemical signaling and network
regulation that typically regulates sleep loss in dose-dependent
attention disorders (Saper et al., 2010). Neuroimaging analysis
of how acute SD alters brain function related to attention tasks
has shown that functional magnetic resonance imaging (fMRI)
signals in the dorsolateral prefrontal cortex (DLPFC) and the
parietal sulcus were reduced during attention tasks after SD
(Chee et al., 2010, 2011; Czisch et al., 2012). In fact, not only
did SD reduce task-related activity in these frontal and parietal
regions, but it also reduced connections to the lateral visual cortex
during visual–spatial attention tasks. In addition, SD affects
thalamic activity during sustained attention, suggesting that the
thalamus may play an interactive role in the SD-influenced
network (Tomasi et al., 2009; Chee et al., 2011). Recently,
default mode network (DMN) instability was discovered in the
attention deficit associated with SD (Buckner and DiNicola,
2019). Some reports describe the inability of the anterior and
posterior cortical regions of the DMN to completely deviate from
the midline during the execution of sustained attention tasks
under SD conditions. In addition, in the sustained attention
test, increased DMN activity during task execution predicted
slower execution speed and decreased accuracy of participants
(Drummond et al., 2005). In contrast, the significance detection
network, including the frontal insular cortex, showed reduced
activity during attentional tasks after sleep loss (Ma et al., 2015).

Areas of the brain that belong to the DMN are more
susceptible to SD (Chen et al., 2018; Tashjian et al., 2018).
It is reported that the precuneus (PC) may be an important
“distribution node” in the DMN (Li et al., 2019). Furthermore,
based on partial correlation analysis, Fransson pointed out that
the PC might be the only network node in the DMN that
directly interacts with other nodes (Fransson and Marrelec,
2008). A growing body of other evidence suggests that in clinical
and laboratory conditions, the PC is closely related to cognitive
functions, such as attentional alertness and neuropsychiatric

activities (Cherkassky et al., 2006; Groen et al., 2009). Studies
have shown that the PC and the neighboring posterior cingulate
cortex are responsible for ongoing information gathering from
ourselves and the world around us and automatically distributing
it (Cabeza and Nyberg, 2000). In the resting state, the PC and
the cingulate cortex, as parts of the DMN, are active and are
involved in a wide range of attention processes (Hutchinson et al.,
2009; Vogt and Derbyshire, 2009). In addition, the structural
and functional connections between the PC and thalamus are
consistent with the white matter pathways between the PC and
thalamus (Crone et al., 2015; Hannawi et al., 2015; Cunningham
et al., 2016). Indeed, the role of the PC is not well established
due to the lack of specific studies on its function. As it is located
between the somatosensory and visual cortex and has no special
functional role, the PC has not been the subject of profound
research (Cavanna and Trimble, 2006). Until now, the structural
and functional changes of the PC under SD have rarely been
studied, and the analysis of functional connectivity of the PC by
fMRI and attentional alertness has not been analyzed.

In light of this, we attempted to explore the changes in
the functional connections between the PC and other brain
regions during SD, as well as the correlation between the
changes of functional connectivity and in certain aspects of
cognitive functioning. In order to screen and preliminarily verify
functional changes in connections between the PC and other
brain regions, we designed a variety of Visual Analog Scale (VAS)
to initially identify the possible brain functions (Huang et al.,
2019) and performed further studies using the Psychomotor
Vigilance Test (PVT), which is regarded as a “gold standard” tool
to assess for the neurobehavioral consequences of SD (Basner and
Dinges, 2011; Basner et al., 2015). Through these methods, we
further define the functions of the PC.

MATERIALS AND METHODS

Participants
We recruited a total of 30 young adults (30 male, right-handed,
age range: 20–30 years) and provided financial compensation
for their participation in this study. The subjects were all
undergraduates or graduate students. Informed consent forms
were signed voluntarily by the participants after the process,
risks, and benefits of the study were explained to them
in detail. After enrollment, specialist physicians who were
qualified to practice medicine in China performed standardized
medical examinations on them. The main forms of medical
examination included subjective inquiry confirmed by self-
report and objective examination (i.e., electrocardiogram, scales,
hematological monitoring) to eliminate potential major diseases.
The inclusion criteria were: (1) No history of cardiovascular
disease, respiratory system, nervous system, infectious diseases,
mental disorders, and sleep disorders and (2) Having regular
daily life and rest habits without sleep disorders (Pittsburgh Sleep
Quality Index scale <7); 1 week before the study began, daily
activities of participants were conducted according to the normal
routine, and consumption of stimulant drinks and food, such
as carbonated drinks, tea, and coffee, was banned, and smoking
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was recommended to be avoided. All subjects participated in this
study voluntarily and provided written informed consent before
participation. This study was approved by the Research Ethics
Committee of Beihang University (Beijing, China).

Behavioral Measures
As an auxiliary means of detection, the VAS, a validated
and simple psychometric tool, was used to assess the levels
of alertness, anxiety, attention, self-confidence, anger, and
nervousness of the participants prior to and after SD (Huang
et al., 2019). In order to adapt to the 100-point system
of the Chinese people, we adjusted the VAS slightly to
an evaluation scale that increased every 10 points and is
divided into 10 grades from 0 to 100, corresponding to the
0–10 scale of the standard VAS. Through this, we tried to
evaluate this simple measurement method and perform a
preliminary assessment.

The PVT–a classic monitoring tool for levels of psychomotor
vigilance–was used to measure certain aspects of cognitive
functioning reflecting the neurobehavioral consequences of SD
(Basner et al., 2011). Subjects were instructed to press the button
as soon as they saw a visual stimulus presented at random inter-
trial intervals appearing on the screen while trying to minimize
error operation. A dot (diameter 3 1/4 cm, viewing angle
1.5 × 1.5◦) appeared as a visual stimulus in the center of an LCD
screen with 1,024 × 768-pixel resolution (refresh rate, 60 Hz).
The red dots appeared pseudo-randomly in the center of the
screen, lasting up to 1,000 ms before subjects pressed the button,
and disappeared immediately when the button was pressed.

Procedures
The experiments were conducted in a sleep laboratory at the
General Hospital of People’s Liberation Army and Institute of
Beihang University (Beijing, China), which included a sleep
monitoring room with noise less than 30 dB and a daily activity
room. During the process of the experiment, the subjects took
part in the study in batches of four people each, and two
operators monitored the physical and mental states of the subjects
and supervised the relevant experimental contents. At 8:00 a.m.
on the first day of the experiment, the subjects arrived at the
laboratory and wore body-movement watches. They performed
daily activities from 8:00 to 20:00, including playing games,
reading, talking, sitting for rest, and eating. The collection
of experimental data was also accomplished during this time.
From 22:00 to 8:00 on the second day, the subjects completed
at least 8 h of sleep under the supervision of the operators,
with monitoring of body movement during sleep. SD began
at 8:00 on day 2 and ended at 20:00 on day 3. During the
study, subjects performed normal daily activities and completed
relevant experimental data collection. MRI scans began at 20:00
on the third day. During this time, monitoring activities, such
as electrocardiography and the subjective assessment of scales,
were completed. At the end of the experiment, the subjects
were supervised by the experimenters while having a restorative-
free sleep in the sleep laboratory. After completing the physical
health status assessment on the morning of the fourth day, the
subjects left the sleep laboratory at 12:00. During the whole

experiment, it was ensured that no less than one operator was
medically qualified.

Comparisons before and after the experiment design were
carried out with the official start of the test. All subjects
underwent scanning twice: one during 36 h of SD and another
during rested wakefulness (RW). The two scans were performed
at least 3 weeks apart to minimize the possibility of residual SD
side effects in participants who had undergone SD scans prior to
RW scans. Both scans were performed at the same time of day
using the same scanning sequence.

All participants were scanned in a 3.0 T Siemens Magnetom
Skyra (Siemens Medical Solutions, Erlangen, Germany) with a
standard transmit–receive head coil in the General Hospital of
People’s Liberation Army. Before the beginning of the scan, the
subjects were instructed to prepare for the test (by removing
magnetic objects, wearing shoes, and wearing earplugs, for
example). The subjects were then instructed to lie supine on the
MRI bed, and their heads were fixed with sponge and bandage.
At the beginning of each scan, high-resolution T1-weighted
structural images (176 slices) and three-dimensional gradient
echo images were acquired using the following parameters:
repetition time = 2 s, echo time = 30 ms, flip angle = 12◦,
field of view = 256 mm × 256 mm, matrix = 64 × 64, voxel
size = 1 × 1 × 1 mm, and no slice gap. Resting fMRI data
were acquired with one run of 8 min (240 images per session)
using the following parameters: repetition time = 2 s, echo
time = 30 ms, flip angle = 90◦, field of view = 256 × 256 mm,
matrix = 64 × 64, slice thickness = 3 mm, and slice gap = 1 mm.
During the scan, the subjects were asked to close their eyes,
keep their heads and body as steady and still as possible, and
think about nothing. Data, such as heart rate and breathing, were
collected at the same time. It is important for the subjects to
remain awake during the scanning process, and so the operators
communicated with the subjects through a microphone before
each scan to remind them to stay awake. After each scan, the
subjects were asked whether they had stayed awake during the
scanning process.

Data Processing
The resting-state fMRI images were preprocessed using SPM
12 software (University College London)1 and the CONN
toolbox software version 18a (Neuroimaging Informatics
Tools and Resources Clearinghouse)2, both of which are
cross-platform software based on MATLAB (MathWorks,
Inc., Natick, MA, United States). We selected the default
preprocessing steps of CONN that include structural translation,
segmentation, and normalization; functional realignment
and unwarping; functional slice-timing correction; functional
indirect segmentation and normalization; and outlier detection
and smoothing. The first 10 volumes of the functional images
were discarded to ensure the equilibration of the MRI data
signal. The functional images were then registered to the middle
volume of each subject to measure the degree of head movement,
and the rotational and translational motion of subjects was

1http://www.fil.ion.ucl.ac.uk/spm/
2http://www.nitrc.org/projects/conn
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limited to 2◦ or 2 mm in the x, y, and z axes, respectively.
Frames showing more than 2◦ or 2 mm of head movement
from one frame to the next were removed. In head movement
processing, the mean frame-wise displacement (FD) was also
calculated, and the subjects with the mean FD-Jenkinson >0.2
were excluded (Jenkinson et al., 2002). The structural images
were normalized directly to the standard Montreal Neurological
Institute (MNI)-152 space using EPI templates, with a voxel size
of 3 × 3 × 3 mm. The functional images were normalized to
the standard space indirectly using the corresponding structural
images by which normalized bias correction was generated.
A multiple regression was used to remove nuisance signals from
the time series. A full nuisance regression including polynomial
detrending in amplitude of low-frequency fluctuations was used
to remove nuisance signals from the time series (Woletz et al.,
2018). The cerebrospinal fluid signal, white matter signal, whole-
brain signal, and six motion parameters were then eliminated.
Subsequently, the images were spatially smoothed using a
Gaussian filter with the full width at half maximum (FWHM) for
6 mm, and a band pass filter of 0.01–0.08 Hz was used to filter
the data temporally (Behzadi et al., 2007; Whitfield-Gabrieli and
Nieto-Castanon, 2012).

Functional Connectivity Analysis
We used the CONN software to study the functional connectivity
of the PC with other regions by region of interest to region
of interest (ROI-to-ROI) analysis. All ROIs were drawn from
Automated Anatomical Labeling (AAL) including 90 cortex ROIs
and 26 cerebellar ROIs (Tzourio-Mazoyer et al., 2002). In the
first-level analysis, the functional connectivity of different sources
was assessed separately for each subject, and the mean time series
of the seed point regions of the lateral PC was compared with
that of the whole brain to generate a ROI-to-ROI diagram. The
data processing method mainly included a general linear model
convolved with typical hemodynamic response functions. In the
second-level analysis, comparisons were made between subjects
[SD > RW (1, −1)] based on a general linear model of random
effects, and a seed level correction was performed for multiple
comparisons (false discovery rate, p < 0.05) (Whitfield-Gabrieli
and Nieto-Castanon, 2012).

Behavioral Correlation Analysis
Visual Analog Scale has a good reliability and validity in the
preliminary assessment of psychological states (Miller and Ferris,
1993; Huang et al., 2019), so we initially used VAS as first-level
subjective measures of mood change before and after SD. We
then used PVT to measure changes in psychomotor vigilance
before and after SD. As shorter-duration PVT may be more
sensitive to sleep loss, we chose the first 3 min of data as the
final data for processing (Loh et al., 2004; Basner and Rubinstein,
2011). In order to further assess the functions of the PC, we
used Spearman’s rank correlation to calculate the correlation
coefficient between VAS changes and functional connectivity
before and after SD. We thereafter studied the correlation
coefficient between changes in PVT and functional connectivity.
The false positive control of analysis was considered significant at
p < 0.05.

RESULTS

Initial Quality Assessment of the Data
During the experiments, no accidents or adverse events occurred,
and no subjects were excluded for such reasons. In the
preliminary processing of the functional magnetic resonance
data, two subjects were excluded from all statistical analyses due
to head movement exceeding the mean FD-Jenkinson >0.2 and
a large number of frames with head movement greater than
2◦ or 2 mm. In the evaluation of the VAS, two people were
excluded because the data were not saved due to errors in the
questionnaire acquisition terminal. In the processing of PVT
data, no subjects were excluded. A total of n = 28 subjects were
included in the functional connectivity analysis. A total of n = 28
subjects were included in the behavioral analysis, and a total of
n = 26 subjects were included in behavioral correlation analysis.
The second-level correlation analysis between the change in
functional connectivity and VAS included 26 subjects. The
correlation analysis of the change in functional connectivity and
PVT included 28 subjects.

Behavioral Results
Demographic and Sleep Quality Index data were collected
(Table 1). By paired sample t-test, the VAS showed significant
changes before and after SD in levels of anxiety (t = 7.641,
p < 0.001), attention (t = −2.87, p < 0.008), self-confidence
(t = 6.986, p < 0.001), anger (t = 7.486, p < 0.001), and
nervousness (t = −2.069, p = 0.049) of the participants (Table 1).
PVT monitoring data were also statistically analyzed by paired
sample t-test, identified significant differences in psychomotor
vigilance before and after SD, especially in the mean response
time (mean RT), and the fastest 10% fastest response time (Fastest
10% RT), the slowest 10% fastest response time (Slowest 10% RT).

TABLE 1 | Demographic data, sleep quality index, and psychological traits
(n = 28).

RW SD t p-value

Ages 24.48 ± 2.57 – – –

Height 175.93 ± 5.01 – – –

BMI 23.64 ± 1.73 – – –

PSQI 3.37 ± 1.19 – – –

Attention (VAS) 82.69 ± 14.85 56.54 ± 19.79 7.64 < 0.001

Anxiety (VAS) 26.15 ± 15.51 35.77 ± 19.22 −2.87 0.008

Vigor (VAS) 83.46 ± 15.99 53.08 ± 19.34 6.99 < 0.001

Self-confidence (VAS) 84.62 ± 14.76 59.62 ± 18.86 7.49 < 0.001

Anger (VAS) 23.08 ± 13.79 30.38 ± 17.77 −2.07 0.049

Nervousness (VAS) 26.15 ± 18.78 33.08 ± 17.15 −2.09 0.047

Mean RT (PVT) 351.42 ± 35.65 373.98 ± 42.05 −4.84 0.001

Fastest 10% RT (PVT) 284.38 ± 27.18 312.58 ± 39.21 −4.40 < 0.001

Slowest 10% RT (PVT) 431.53 ± 39.69 447.94 ± 41.64 −2.05 0.05

Lapse probability (PVT) 5.5 ± 10.49 7.11 ± 7.20 −0.97 0.34

RW, rested wakefulness; SD, sleep deprivation; BMI, body mass index; PSQI,
Pittsburgh Sleep Quality Index; VAS, Visual Analog Scale; RT, reaction time; PVT,
Psychomotor Vigilance Test.
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The functional connectivity between the bilateral PC and the
whole-brain ROIs in the RW and SD conditions is shown in
Figures 1, 2. CONN software was used to calculate the changes
in the functional connections between the PC and other seed
regions of the brain before and after SD, and it revealed that the
functional connections between the right PC and the right middle
frontal gyrus (MFG) lobe were obviously weaken (Figure 2 and
Table 2).

In this experiment, there is a positive correlation
between attention (VAS) and decrease of functional
connectivity by Pearson correlation analysis to explore
the possible correlations between VAS and the changes
in functional connectivity of the right PC and the right
MFG (Figure 3). Then, the Pearson correlation analysis
between PVT and the changes in functional connectivity
of the right PC and the right MFG also suggested that
the decreased functional connectivity was significantly

negatively correlated with an increased maximum 10% RT
of PVT (Figure 4).

DISCUSSION

In this study, we assessed the effects of 36 h of SD on functional
connections between the PC and other regions of the brain. The
results showed that the functional connections between the right
PC and the right MFG were significantly weakened after 36 h
of acute SD. However, the changes of functional connectivity
between the PC and other brain regions showed no significant
statistical changes.

Previous studies have shown that the brain functions
sensitive to SD are associated with substantial impairments
in cognitive performance (especially attention and working
memory), emotion, and regulation and memory abilities

FIGURE 1 | ROI-to-ROI functional connectivity of the left precuneus during the RW, SD, and SD > RW conditions. False discovery rate-corrected (p < 0.05) for
ROI-to-ROI tests. ROI, region of interest; SD, sleep deprivation; RW, rested wakefulness.

FIGURE 2 | ROI-to-ROI functional connectivity of the right precuneus during the RW, SD, and SD > RW conditions. False discovery rate-corrected (p < 0.05) for
ROI-to-ROI tests. ROI, region of interest; SD, sleep deprivation; RW, rested wakefulness.

TABLE 2 | ROI-to-ROI functional connectivity statistics for an individual seed region: comparisons between SD and RW scans (t-test).

Target region AAL label MNI center t Uncorrected p-value FDR-corrected p-value

rPC Right precuneus 9, −56, 44

lPC Left precuneus −8, −56, 48

Rmfg Right middle frontal gyrus 37, 33, 34 −3.97 0.0005 0.0324

ROI, region of interest; SD, sleep deprivation; RW, rested wakefulness; AAL, Automated Anatomical Labeling.
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FIGURE 3 | The change in functional connectivity was significantly correlated
with the VAS of attention. VAS, Visual Analog Scale; SD, sleep deprivation;
RW, rested wakefulness.

(Durmer and Dinges, 2005; Goel et al., 2009; Kelley et al., 2013;
Louca and Short, 2014). On the one hand, the DMN is closely
related to attention task execution under the SD condition.
However, the DMN is not a homogeneous network, and SD has
a dissociative effect on the functional connectivity of the DMN.
The functional connectivity between the ventral DMN and the
dorsal DMN is enhanced after SD. After SD, the decrease of
functional connectivity of the dorsal DMN is associated with
impairment of basic cognitive function and associated with
RTs of PVT (Buckner and DiNicola, 2019). In the case of the
PC, it is located in the dorsal region of the posterior medial
parietal lobe. As a part of the dorsal DMN that is involved in
a wide spectrum of attention processes (Vogt and Derbyshire,
2009), the PC acts as an attention information integration center
that organizes information from different regions of the brain
(Lin et al., 2011). In contrast, some studies suggest that the
inferior frontal junction comprising posterior aspects of the
inferior frontal sulcus may be an important node that interacts
between the ventral attention network (VAN) and the Dorsal
Attention Network (DAN) (Asplund et al., 2010). Some studies
propose that the right MFG may be the node that links the
dorsal and ventral networks (Fox et al., 2006). Interruption
of the ongoing process of the dorsal network while focusing
on a new task-related external stimulus is not recommended
(Corbetta et al., 2008). Furthermore, a positive function of the
MFG consisted of attention tasks, suggesting that it is a key
feature in sustained attention (Neale et al., 2015), and that the
MFG is an important part of the attention network (Gogulski
et al., 2017). Given the consistency of multiple functions between
the two brain regions and considering that the functional
connection between the right PC and the right MFG is the only
significant change between the PC and the rest of the brain before
and after SD, it is reasonable to presume that the functional
connections between the PC and the MFG were probable to
be attention-related.

Thereafter, the correlation analysis between the changes of
the brain functional VAS and the changes between the right
PC and the right MFG preliminary supported this hypothesis
and suggested that the changes in attention were significantly
correlated with the changes in functional connectivity between
the two brain regions (Figure 2). VAS is a simple but effective
subjective assessment method (Huang et al., 2019). Although
the sample size was small and there may be bias, the results it
presents provide a relatively clear direction for further research
on brain function. Changes in functional connectivity led to no
obvious related changes in anxiety, vigor, self-confidence, anger,
and nervousness. The PC and MFG are important nodes of
their respective brain networks, which are related to a variety
of brain functions. The PC is associated with a variety of
brain functions, not least because the PC region of the brain is
an integrated region of neural networks, especially the DMN,
where the brain integrates and distributes signals. The MFG is
also associated with a variety of functions, including attention,
speech, mood, and wakefulness (Kelley et al., 2013). However,
the range of brain functional tasks that may be undertaken by
the connection between the right PC and the right MFG will
be significantly reduced. This will be attributed to inconsistent
bilateral brain function. The left and right MFG have clear
functional differences, and the functional asymmetry in MFG is
concerned with different brain networks (Song et al., 2019); the
left MFG has been found to be associated with working memory,
memory retrieval, social perception, and emotional regulation
(Zhang et al., 2003; Ochsner and Gross, 2005; Wang et al., 2018).
The right MFG plays an important role in sustained attention,
and the hemispheric specialization of attention function is caused
by the incongruous interhemispheric interaction between the left
and right MFG. Therefore, the results from correlation analysis of
the changes between various VAS and the functional connectivity
preliminarily verified our hypotheses.

To further confirm our inference on the basis of the
preliminary results, we used a classic tool for monitoring and
evaluating SD and further analyzed the correlation between
the PVT and changes in the functional connection between
the right PC and the right MFG. We found that there
was a moderate correlation between the fastest 10% RT
(r = −0.415, p = 0.028) and the functional connection of
two regions and a strong correlation between the mean 10%
RT and the functional connection (r = −0.608, p = 0.001).
As a classic detection method of psychomotor vigilance, the
PVT measures changes in RT to visual stimuli to measure
attention and vigilance (Warm et al., 2008). It is a very
sensitive measure of vigilant attention as well as the degree of
acute and chronic sleep disorder and circadian misalignment
(Goel et al., 2009; Basner et al., 2015). With negligible
aptitude and learning effects, the PVT is probably the most
widely used measure of alertness (Lim and Dinges, 2008;
Basner et al., 2015).

In this study, functional connectivity between the right PC
and the right MFG after acute SD was associated with a change
in attention VAS scores and a change in RTs in the PVT. This
suggested that the right PC and the right MFG were involved in
the function of attention in their respective networks, that there
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FIGURE 4 | The change in functional connectivity between the right PC and the right MFG was significantly correlated with the mean RT (A), fastest 10% RT (B),
and slowest 10% RT (C) of PVT. PC, precuneus; MFG, right middle frontal gyrus; PVT, psychomotor vigilance test; SD, sleep deprivation; RW, rested wakefulness;
RT, response time.

probably exists a connection point between the two networks,
and that there was an attention-related brain network connection
between the right PC and the right MFG.

LIMITATIONS OF THE STUDY

Our experiments focused on the effects of acute SD on young
people in modern life, given that the majority of work with
sleep disorders in China is done by young men. Therefore, the
experimental subjects are young men. On the other hand, sleep
problems are also prominent in women. We will continue to
improve relevant studies in the following studies.

CONCLUSION

In conclusion, taken together, our resting-state fMRI and
behavior results suggest that the functional connections between
the right PC and the right MFG before and after SD were

decreased, and that the decreased functional connections were
significantly correlated with decreased attention. We conclude
that the right PC and the right MFG play an important role
in the maintenance of attention, and that there may well be
a functional connective basis for the maintenance of attention
between them, which is an important node for the maintenance
of brain attention function.
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