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Decreased thermal niche breadth as a trade-off of antibiotic
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Evolutionary theory predicts that adaptations, including antibiotic resistance, should come with associated fitness costs; yet, many
resistance mutations seemingly contradict this prediction by inducing no growth rate deficit. However, most growth assays
comparing sensitive and resistant strains have been performed under a narrow range of environmental conditions, which do not
reflect the variety of contexts that a pathogenic bacterium might encounter when causing infection. We hypothesized that reduced
niche breadth, defined as diminished growth across a diversity of environments, can be a cost of antibiotic resistance. Specifically,
we test whether chloramphenicol-resistant Escherichia coli incur disproportionate growth deficits in novel thermal conditions. Here
we show that chloramphenicol-resistant bacteria have greater fitness costs at novel temperatures than their antibiotic-sensitive
ancestors. In several cases, we observed no resistance cost in growth rate at the historic temperature but saw diminished growth at
warmer and colder temperatures. These results were consistent across various genetic mechanisms of resistance. Thus, we propose
that decreased thermal niche breadth is an under-documented fitness cost of antibiotic resistance. Furthermore, these results
demonstrate that the cost of antibiotic resistance shifts rapidly as the environment changes; these context-dependent resistance

costs should select for the rapid gain and loss of resistance as an evolutionary strategy.

The ISME Journal (2022) 16:1843-1852; https://doi.org/10.1038/541396-022-01235-6

INTRODUCTION
The extensive distribution of antibiotic-resistant bacteria across
both clinical and environmental habitats demonstrates the
difficulty of limiting the dispersion of antibiotic resistance [1].
However, evolutionary theory predicts that resistance should
come with widespread fitness costs in the absence of antibiotics: if
there were no cost, then all pathogens should become resistant,
and resistance should never be lost [2-4]. Empirically, many
known resistance mechanisms are energetically costly (e.g., efflux
pumps), which divert a portion of a cell’s energetic budget away
from growth and reproduction [5, 6]. Many studies have sought to
quantify fitness costs to antibiotic resistance with the goal of
identifying growth deficits that accompany resistance (as
reviewed by [7]). Meta-analyses of bacterial growth rates have
found wide ranges of fitness costs for resistance to different
antibiotics [8]. And, in some cases, there are no discernable
growth rate difference between antibiotic-sensitive strains and
resistant strains [9-11]. However, an important consideration is
that most experimental tests of bacterial growth are done under
tightly constrained environmental conditions, usually at 37 °C to
mimic human body temperature. The absence of fitness cost in
this single context does not preclude the presence of fitness costs
in different conditions [12], meaning there may be unidentified
fitness costs to these seemingly unaffected resistant bacteria.
Although bacterial cultures in the laboratory are maintained
under a narrow range of environmental parameters, bacterial
pathogens might encounter many different environments when

causing an infection [13, 14]. For instance, their host's body
temperature might rise or fall [15], or the cell may have to persist
outside the body during a transmission event [16]. Fitness costs to
antibiotic resistance might manifest differently in these varied
environments; for example, temperature mediates both antibiotic
resistance and cell growth by affecting processes such as protein
folding and the rate of chemical reactions within the cell [17, 18].
Thus, a mutation that confers resistance might be neutral at one
temperature but could have adverse effects when protein shape
or enzyme kinetics are altered. In this case, strong specialization
for antibiotic resistance might have costs in the ability to tolerate
multiple environments.

Here, we propose decreased thermal niche breadth, defined as
reduced growth rate across a range of temperatures, as a cost of
antibiotic resistance. Because niche breadth is independent of
maximum growth rate, it is possible for fitness costs to manifest as
either a cost in maximum growth rate (Fig. 1A), a cost in thermal
niche breadth (Fig. 1B), or a cost in both maximum growth rate
and thermal niche breadth (Fig. 1C). The addition of this
dimension of fitness could reconcile the theoretical framework
of requisite fitness costs with the experimental evidence that
fitness costs are absent in some conditions; if costs to resistance
are in decreased niche breadth, there may be no apparent fitness
costs in some environments.

The interest in quantifying fitness costs is, in large part, due to the
influence of fitness costs on the population dynamics of antibiotic-
resistant and antibiotic-sensitive bacterial strains [19, 20]. A fitness
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cost to antibiotic resistance would slow the spread of resistant
strain, as the resistant bacteria would be at a competitive
disadvantage [2]. However, it is not straightforward to extra-
polate from fitness costs to community composition; several
additional dimensions of fitness such as lag time [21], resource
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Fig. 1 Conceptual illustration of niche breadth and maximum
growth rate as independent dimensions of fitness. Because fitness
costs in thermal niche breadth are independent of absolute growth
rate, increasing resistance might show a decreased growth rate
across all temperatures (cost in maximum growth rate, which occurs
at the thermal optimum, Top; A), @ more rapid drop-off in growth
rate away from the thermal optimum (cost in thermal niche breadth;
B), or both a decreased maximum growth rate and a narrower
thermal range (cost in both maximum growth rate and niche
breadth; C).

<

use efficiency [22], and resource storage [23] also affect
competitive outcomes. Thus, while a fitness costs in growth
rate represents a deficit in the ability of a strain to quickly
reproduce, it is difficult to predict the success of an antibiotic-
resistant strain from only these measurements.

In this study, we test the hypothesis that increasing resistance
to chloramphenicol carries fitness costs in thermal niche breadth,
defined as growth rate across multiple temperatures. We selected
chloramphenicol as the focal drug due to its many resistance
pathways, which allows us to use genomics to explore the
consistency of fitness costs across a variety of genetic mechanisms
of resistance [24]. In addition, chloramphenicol resistance spans a
large gradient, where evolved MICs (minimum inhibitory concen-
trations) can be in excess of 100-fold the initial MIC [25]. We
evolved resistant bacterial populations by conducting 24 parallel
evolution experiments, beginning from a culture of Escherichia coli
from the Keio collection. We measured the growth rates of these
strains at novel temperatures to evaluate how resistance affected
thermal tolerance. In addition, we competed strains of varying
resistance against one another to investigate how fitness costs of
resistance translate to the frequency of genotypes in mixed
culture and the competitive success of highly resistant strains.
Finally, we sequenced the genomes of isolates from each lineage
to understand the genetic basis of resistance and to test whether
mutations in specific genes had differential fitness effects in novel
temperatures. Together, this study defines thermal niche breadth
as a dimension of fitness, quantifies how these fitness costs shape
the competitive success of resistant strains, and relates these
deficits in novel environments to the genomic basis of resistance.

METHODS

Obtaining resistant strains via experimental evolution

We began with a single liquid culture of the lacA knockout (CGSC #11892)
from the Keio Collection of single-gene E. coli knockouts [26]. We first
identified the MIC of this strain (~3 pg/mL) by testing its growth in M9 with
varying concentrations of chloramphenicol (Fig. 2). We passaged these
cultures at a concentration of 2.5 ug/mL to allow populations to diversify
before beginning the selection experiment. We initiated 96 cultures in a
96-well plate, and selected the 24 wells with strongest cell growth to
propagate further. Experiments were done using M9 minimal media to
preclude biphasic growth arising from multiple potential carbon sources.
The cultures were incubated at 37 °C with continuous shaking. For each
passaging step, the following protocol was used: First, we ensured that all
24 cultures had visible growth. We then passaged one-tenth of the culture
to new media containing a chloramphenicol concentration of v/2x of the
prior concentration. These cultures were allowed to grow for 48 h. If there
was not visible growth in all cultures, we passaged the cultures at the same
chloramphenicol concentration and allowed cultures to grow for 48 h
again.

Cultures were initiated in 96-well plates with 150 pl volume, but were
moved to 5mL cultures at timepoint 6, because the small populations
were easily extinguished with increasing antibiotic concentrations. As
chloramphenicol concentrations became very high (>50x initial MIC),
transfers to higher antibiotic concentrations strongly inhibited growth. In
the case that there was no visible growth after passaging at the same
chloramphenicol concentration, we passaged all cultures in media with no
chloramphenicol to restore cell density. Then, we resumed the typical

The ISME Journal (2022) 16:1843 - 1852



Dilute 1:10

R ER

00000000
00000000

Time 0
(1x MIC)

Ancestor

(No CAM) (1.41x MIC)

C.M. Herren and M. Baym

Dilute 1:10

R EER

Dilute 1:10

® —@

‘ —_— ‘ Lineage 2
‘ —_ ‘ Lineage 3
‘ _— . Lineage 4
®  —@

®©  —0O

‘ —_ . Lineage 7
‘ —_— ‘ Line;alge 24
Time 2 Time 14

(2x MIC) (128x MIC)

Fig. 2 Schematic of evolution experiment to obtain strains of varying chloramphenicol resistance. Beginning with a common ancestor,
grown with no chloramphenicol (CAM), we first passaged cultures at their MIC to create 24 replicate lineages. When transferring cultures to
new media, we diluted cultures 1:10 during each passage. The rate of increase in antibiotic was a factor of V2 between sequential levels.

protocol steps, beginning at the concentration the cells previously
experienced. We terminated the experiment when cultures were no
longer able to grow when transferred to a higher chloramphenicol
concentration, which occurred after 14 timepoints, representing 128x the
starting concentration.

Cultures were collected for archival storage immediately before being
passaged to media with a greater chloramphenicol concentration. To
standardize cell densities for the inoculum, we created saturated cultures
by growing 10 L of original culture in media with no antibiotic for 48 h,
and stored saturated cultures at —80 °C in 20% glycerol.

Quantifying fitness: measuring maximal growth rates

We quantified bacterial growth rates by measuring the turbidity of cultures
(ODeoo) using a BioTek Synergy H1 plate reader. We measured 60 cultures
per 96-well plate, using only the interior wells of the plate. We used a 96-
well pipettor to inoculate 150 ul of fresh media with 2 pl of stored culture.
Cultures were incubated at a constant temperature for 24h with
continuous shaking, and measurements taken every 5min. The growth
of each culture was measured at three temperatures: their historic
temperature of 37 °C, and the novel temperatures of 32 °C and 42 °C. We
selected these temperatures by reasoning that the maximum temperature
of a mammalian host during fever is 40-41°C, so therefore 42 °C would
likely induce thermal stress. Then, we selected close 32 °C as a symmetric
temperature for the lower thermal condition.

The measurement of interest in these experiments was the maximum
growth rate achieved by each culture at each of the three temperatures.
Some data processing and cleaning was necessary, due to technical
variability in the data that arose from two main sources (detailed in Fig. S1).
First, there was some spatial variation in initial optical density readings
across the 96-well plate, despite using only inner wells. Optical density
measurements of blanks were also variable, ranging between 0.09 and
0.11. Second, the small amount of technical noise from the plate reader
was disproportionately influential when populations were small, and could
artificially inflate calculated growth rates. To address these issues, we first
re-centered the optical density data from inoculated wells to have a
minimum value of 0.02, indicating a small population at the outset of the
measurements. Results of the subsequent analyses were robust to changes
in the value selected for the initial optical density (Fig. S2). Then, we used a
smoothing function to minimize the effect of discontinuities in optical
density measurements, which were generally small but could have
disproportionate effects on the data at low optical density values; we
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used a local linear model using the surrounding 24 data points to smooth
the values. Optical density values were log-transformed before smoothing.
Again, results were robust to varying the number of data points included
to produce the smoothing (Fig. S2). Finally, to find the maximum growth
rate for each sample, we subtracted sequential values after log-
transforming and smoothing, and used the maximum difference as the
measurement of the maximum growth rate.

We hypothesized that there would be both costs in maximum growth
rate and costs in thermal niche breadth as bacteria became more resistant
to chloramphenicol. We used a linear regression to evaluate this
prediction, where the outcome variables were the growth rates of the
cultures (24 lineages x 14 timepoints X 3 temperatures = 1008 growth rate
measurements) and the predictors were the temperature of measurement
(32°C, 37°C, or 42°C), lineage (L1-L24), the timepoint (1 through 14,
representing increasing chloramphenicol resistance), and an interaction
term between temperature and timepoint. This interaction tests whether
the effect of timepoint on growth rate is differentially strong at the three
temperatures. In the five instances where there was minimal growth in the
cultures (change in ODggp < 0.05), we removed the data points from the
analysis.

Competing evolved vs. ancestral strains

Next, we wanted to directly evaluate how increasing chloramphenicol
resistance influenced competitive ability between ancestral and evolved
bacterial strains. This question addresses how the acquisition of antibiotic
resistance influences the frequency of the resistant strain in mixed populations.
We competed genotypes from the same lineage but different timepoints
against each other in the same well of a 96-well plate. The timepoints used for
competition experiments were T1, T5, T9, and T13, with all competition
experiments done in a pairwise fashion and replicated three times.

We quantified the population sizes of the different strains at the various
timepoints via flow cytometry. For each strain used in the competition
experiments (24 lineages X 4 timepoints =96 strains), we created two
transformed strains with either the pFCcGi plasmid to express the mCherry
protein or the pDiGc plasmid to express the GFP protein. These plasmids
confer resistance to ampicillin, and are suited for competition experiments
because they are similar plasmids that were constructed by the same
research group [27, 28]. We selected one colony from the successful
transformations, and created new archived stocks of these strains by
growing these strains for 48 h in M9 media containing ampicillin and then
storing them at —80°C in 20% glycerol.
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For the competition experiments, wells in a 96-well plate were filled with
M9 containing ampicillin and were inoculated with 2 pl of two strains. In each
well, there was one strain with the GFP-producing plasmid, and one strain
with the mCherry-producing plasmid. Competition experiments were
conducted at three temperatures (32°C, 37°C, and 42°C) by incubating
the 96-well plate at the given temperature for 24 h with continuous shaking.
At 24 h, plates were removed from the incubator, and 6 pl of each mixed
culture was transferred to 200 ul of water to be read on an LSRIl flow
cytometer. A minimum of 10,000 cells were counted for each well. The
outcome of interest was the population success of the GFP-producing strain;
we analyzed the GFP-producing strains, because the population changes
were more symmetrically distributed around zero with less skewness. These
experiments produced 3456 measurements of population size (4 GFP strains
x 4 mCherry strains X 3 replicates x 3 temperatures x 24 lineages).

Our hypothesis for the competition experiments was that the more
resistant strains would fare worse at novel temperatures (32 °C or 42 °C)
than in their historical temperature (37°C). We evaluated this by
comparing the fraction of the community comprised of each GFP-
transformed strain as a function of the difference in resistance
(measured by the difference in the experimental timepoints of the two
competing strains). We conducted a linear mixed-effects regression
where the outcome variable was the log-ratio of the community
comprised by the GFP strain divided by the average fraction of the
community comprised by the GFP strain when grown together with the
same timepoint with the mCherry plasmid. This standardization accounts
for potential differential costs of carrying the GFP vs. mCherry plasmids.
A value of 1.4 for the well where lineage 3 T5 containing GFP was
competed against lineage 3 T13 mCherry would indicate that the lineage
3 T5 GFP strain comprised 1.4 times the fraction of the community than
it did when competed against lineage 3 T5 mCherry strain. The fixed
effect variables in the regression included the difference in resistance
between strains, temperature, and lineage, with all interaction terms
included. The difference in resistance was measured by the difference in
the experimental timepoints of the two competing strains. For example,
if the GFP-transformed strain were from T5 and the mCherry-
transformed strain were from T13, the difference in resistance would
be —8. As such, there are more data points at differences of 4 than 8 or
12, because there are more pairs of strains that are separated by 4
timepoints than are separated by 12 timepoints. A significant interaction
between temperature and resistance difference indicates that the effect
of resistance on strain growth is different among temperatures. We
included a random effect to allow the log-ratio of GFP strains to vary in
response to competing against different mCherry strains.

Genomic sequencing to identify genetic basis of resistance
After selecting strains for the competition experiments, we sequenced the
GFP-transformed versions of these 96 strains. We followed the protocol set
out in [29]; briefly, we extracted genomic DNA using an Invitrogen kit, then
carried out tagmentation using the Nextera kit (lllumina). We used Q5 High
Fidelity 2x Master Mix for the library prep, and cleaned up the libraries
with SPRI magnetic beads. We ran the sequencing on a NovaSeq (lllumina)
at the Harvard Bauer Core, producing 150 bp paired-end reads. We also
sequenced the initial ancestral strain prior to exposure to any antibiotic.

We used the computational pipeline, breseq, to determine mutations
arising in each strain [30]. This toolkit was developed for the purpose of
analyzing microbial genomes during the course of evolutionary experiments.
We used a genome for E. coli K-12, substr. MG1655 (#U00096 from Genbank)
as the initial reference, which we updated using the data from our
sequenced ancestral strain. The output of this pipeline identifies locations of
mutations in each genome and specifies the genes in which they occur.

Finally, to examine whether there were differential effects of mutations
across the three temperatures, we analyzed whether the location of
mutations within each strain could explain the outcome of the competition
experiments described above. We used a linear regression where the
outcome variable was, again, the log-ratio of the strain in competition
divided by the population of the strain when grown against the same
timepoint. The predictor variables were the difference between the two
strains in the number of mutations in each gene (e.g, L11 T13 has 1
mutation in marR and L11 T9 has zero mutations in marR, the value for
marR for L11 T13 is 1). We included interactions between all genes and
temperature, in order to test whether estimated effect sizes of mutations
differed in the three thermal environments. Also, we included lineage as a
predictor variable to account for potential differences in the success of the
GFP strains between lineages.

SPRINGER NATURE

RESULTS

Obtaining bacterial strains with varied resistance levels

We experimentally evolved 24 replicate lineages of E. coli to
tolerate increasing concentrations of chloramphenicol. By serially
passaging bacterial cultures through 14 increasing chlorampheni-
col levels, we obtained 336 (24 lineages X 14 concentrations)
populations of E. coli across a gradient of resistance levels (Fig. 2).
The 24 replicate lineages enabled us to study the variability arising
from the stochastic nature of mutation acquisition. We refer to
these populations as “cultures” rather than “strains” due to the
possible coexistence of multiple genotypes.

Resistance incurs costs in both thermal tolerance and
maximum growth rate

We measured growth rates of experimentally evolved E. coli cultures
at three different temperatures: their historic temperature of 37 °C,
and the novel temperatures of 32°C and 42 °C. We hypothesized
that growth rate costs of resistance would be larger in the novel
temperatures, consistent with reduced thermal niche breadth.

Overall, we found the growth rates decreased strongly with
increasing antibiotic resistance (Fig. 3A). We then calculated relative
growth rates for each lineage by dividing the growth rate at each
timepoint by the growth rate of the culture at timepoint 1 (T1) at the
appropriate temperature (e.g., all cultures at 32 °C were standardized
by the ancestral growth rate at 32°C). Analysis of these relative
growth rates showed that there was both a fitness cost in maximum
growth rate and a fitness cost in thermal niche breadth; the linear
model showed a strong negative effect of increasing resistance on
growth rate at 37°C (F;, ¢74=988.2, p<0.001), and significant
variability in the effect of resistance on growth at the three different
temperatures (F; 974 = 13.8, p <0.001).

The negative effect of resistance on growth rate was greater at
32°C and 42°C than at 37°C (Fig. 3B). Thus, there were
disproportionate fitness costs in both the novel temperatures.
This finding is corroborated by counting the number of evolved
(T2 or greater) populations that showed an increased growth rate,
when compared with their ancestor (T1); at 37 °C, there were 41
evolved cultures with growth rates greater than that of the
ancestor at 37 °C, whereas at 32 °C there were 13 evolved cultures
that grew faster than the ancestor at 32 °C, while at 42 °C only two
did. Therefore, the presence of fitness costs was more consistent
in the novel temperatures.

Strong competitive disadvantage of resistance at increased
temperature

Next, we evaluated the effects of increasing chloramphenicol
resistance on competitive success, measured by the fraction of the
community comprised by a resistant strain when grown in mixed
culture with a more sensitive strain. We transformed strains from
96 cultures (timepoints 1, 5, 9, and 13 for each of the 24 lineages)
with either GFP or mCherry plasmids and quantified population
sizes after competition assays using flow cytometry. We found that
resistance level was a strong driver of the composition of mixed
cultures in the competition experiments (Fig. 4). For example, at
32°C and 37°C, the most sensitive strains (T1) grew to a
population 1.3x larger when grown against the most resistant
strain (T13), as compared with being grown against the same
timepoint (T1). The growth differential was much stronger at 42 °C,
where the most sensitive strain (T1) grew to 3x their population
size when competed against the most resistant strain (T13).

For each lineage, we evaluated whether the competitive cost of
resistance was different at 32 °C or 42 °C when compared with the
effect at 37°C. We found that 12 of the 24 lineages had
significantly stronger negative effects of resistance on strain
growth at 42°C, as compared with 37 °C. One lineage (L16) had
significantly smaller costs of resistance at 42 °C. There were no
lineages where there was a significant difference in the effect of
resistance between 37 °C and 32 °C. Full results can be found in
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Table S1. When removing the interaction between temperature
and lineage to evaluate the average effect of temperature across
all lineages, we found that the effect of resistance differed across
temperatures (F,, 3300 =51.3, p <0.001). Specifically, the negative
effect was greater at 42°C than 37°C (a slope 59% greater at
42 °C), though there was no significant difference between 32 °C
and 37°C (a slope 11% weaker at 32°C). To visualize these
differences in the effect of resistance on strain growth, we show
two lineages with contrasting results; lineage 5 had no significant
differences in the effect of resistance across temperature, whereas
lineage 19 showed a much stronger effect of resistance
differences at 42 °C than at the other two temperatures (Fig. 5).

Variability in routes to resistance among lineages

We then sequenced genomes for the 96 strains used in the
competition experiments to evaluate how the genetic mechanism

The ISME Journal (2022) 16:1843 -1852

of resistance affected fitness. All samples had coverage of at least
100x, with @ minimum number of reads per genome of 2.4 million.
Using the genomic data, we identified 220 mutations across these
96 strains; of these mutations, 24 occurred within strains at T1, 44
in strains at T5, 65 in strains at T9, and 87 in strains at T13. We also
identified the timepoint at which these mutations were first
identified within a lineage. All 24 mutations at T1 were new when
comparing against the ancestor, along with 29 mutations present
at T5 but not the same lineages at T1, 26 mutations present at T9
but not T5, and 40 mutations present at T13 but not T9. We saw
that most mutations fell within genes for known resistance
mechanisms, such as efflux pumps, the multiple antibiotic
resistance protein (mar), or ion channels. We grouped the
mutations into 10 categories for further analysis: those associated
with the acr efflux pump (64 mutations), ATP synthase (42
mutations), the mar resistance protein (20 mutations), the mdfA
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Fig. 6 Transition of resistance strategies across the chloramphe-
nicol gradient. The types of mutations acquired at each timesteps
changed as antibiotic levels increased. The most common pathways
to resistance at the four timepoints were mutations in the acr efflux
pump (T1), ATP synthase genes (T5), outer-membrane proteins (T9),
and the mdfA efflux pump (T13).

efflux pump (15 mutations), other metabolism (generally related
to carbon usage, 16 mutations), the mscK ion channel (12
mutations), outer-membrane-associated proteins (12 mutations),
mutations in prophages (15 mutations), s/t degragation protein (12
mutations), and mutations affecting transcription/translation (12
mutations). We analyzed the dataset containing the first observa-
tion of each mutation to assess whether certain mechanisms
appeared earlier or later in evolutionary trajectories (Fig. 6). Using
chi-squared tests on the number of mutations in each category
across the four timepoints, we found that mutations associated
with the acr efflux pump (p < 0.001), ATP synthase (p = 0.041), the
mar resistance protein (p = 0.022), outer-membrane proteins (p =
0.018), and the mfdA efflux pump (p =0.013) were nonrandomly
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distributed across evolutionary time. Specifically, early mutations
at T1 were disproportionately located within the acr efflux pump,
while mutations at T5 were often within the acr efflux pump and
associated with ATP synthase. At T9, mutations within the outer-
membrane proteins became more common. Finally, the most
resistant strains frequently had mutations in the mar resistance
protein and the mfdA efflux pump. Although conducting 10 chi-
squared tests for the 10 categories allows the possibility of finding
spurious positive results, the probability of spuriously identifying
five categories at a threshold of p < 0.05 is <1 in 16,000.

Fitness effects of resistance mutations are more extreme at
higher temperature
We calculated the estimated effect of mutations in 37 genes on
the outcomes of the pairwise competition experiments, as to
compare the distribution of mutational fitness effects across the
three temperatures. Many of these genes were part of the same
cassettes (e.g., acrA, acrB, and acrR). Initially, we identified
mutations in 43 genes, though the distribution of mutations in 6
of these genes (yejA, yfaQ, xdhB, rpID, rpoC, and uvrA) were
equivalent to the mutation occurrence of other genes, and thus
could not be included in the analyses due to the fact that the
predictor variables were identical. Of these remaining 37 genes,
we saw significant differences in the estimated effects of
mutations in 24 genes between 37 °C and 42 °C. Conversely, there
were zero significant differences in effect size between the
temperatures of 32 °C and 37 °C. Effect sizes in this analysis signify
the difference in the success of a strain as a result of carrying one
extra mutation in the indicated gene. Then, we evaluated whether
the range of gene effects was larger at 42 °C or 32 °C, as compared
with the range of gene effects at 37 °C (Fig. 7). We conducted
F-tests on the distribution of gene effect sizes at 37 °C vs. 42°C
and at 37°C vs. 32°C to find whether the variances of these
distributions were unequal. We found that the range of gene
effects was greater at 42 °C than 37 °C (F34, 36 = 5.68, p < 0.001) but
that the range of gene effects was not different between 32 °C and
37°C (F35' 36 = 0.91, p= 0.79).

The genes with the most significant additional fitness cost at
42°C were: mscK, opgH, dgcF, atpD, uvrA/ssb, and ssb. Of these,
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Fig. 7 Effects of mutations are more extreme at a warmer
temperature. Results of the linear regression quantifying the effects
of mutations within 37 genes show that the estimated impact of
mutations is greatest at 42°C, as compared with 32°C or 37°C.
Values in histograms are the coefficients from the linear model,
where each coefficient is the estimated effect of a gene-specific
mutation on the ratio of that strain in competition. Effect sizes near
zero indicate no effect, whereas an effect size of 1 indicates a one-
log-fold increase in the competitive success of a strain that has
acquired a mutation in the given gene. The variance of effect sizes at
42 °C is significantly greater than at the other two temperatures.

only mutations in atpD and mscK were common, appearing in
more than 1 lineage. These genes are involved in ATP synthesis
and in ion transport via the mechanosensitive channel MscK,
respectively.

Finally, we combined the competition data with the genomic data
to examine whether specific categories of mutations were more
likely to result in decreased thermal tolerance. For this analysis, we
used Fisher's Exact Tests to determine whether lineages with a
greater cost of resistance at 42 °C (12 lineages) were more likely to
have any specific type of mutation (using the 10 mutation categories
shown in Fig. 5). Surprisingly, of these 10 tests, we found no
significant (p < 0.05) associations between mutation type and the
presence of fitness costs to thermal niche breadth, suggesting that
the tradeoff is not tied to a specific mechanism of resistance.

DISCUSSION

The results of our experiments show strong evidence for a
narrowing of thermal tolerance as a trade-off of antibiotic
resistance. Specifically, fitness costs in growth rate were greater
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in novel temperatures (32°C and 42°C) than at the historic
temperature of 37°C, indicating that resistant bacteria are less
competitively fit in these new environments (Figs. 3 and 4). When
considering measurements across all three temperatures, fitness
costs were detected in every strain with an MIC at least twice that
of the ancestor. Trade-offs to antibiotic resistance are particularly
strong at 42 °C, where population dynamics appear qualitatively
different than 37 °C and 32 °C. At 42 °C, costs in growth rate were
nearly ubiquitous among lineages, and resistant strains composed
a much smaller fraction of community composition in the
competition experiments. Interestingly, no single genetic strategy
of resistance seemed more likely to cause this decreased thermal
tolerance, suggesting that this fitness cost might be generalizable
to other antibiotics with different resistance mechanisms.
Although the growth rate and competition experiments were
largely concordant, there were minor differences in the effects of
lower temperature on apparent fitness costs, which may be
explained by several factors. First, there are possibly multiple
coexisting strains in growth rate cultures, but only one genotype
was selected for the competition experiments. Noting the large
spread in the effect of resistance mutations on fitness (Fig. 7), the
outcome of competition experiments depends on the specific
genotypes, in addition to the resistance level. Second, as noted
previously, additional factors such as resource use efficiency and
resource uptake rates also affect eventual population size.
Furthermore, we found it notable that the thermal optimum of
the ancestor was closest to 42°C than it was to the historic
temperature of 37°C. While we lack an explanation for the
mismatch in thermal optimum and historic growth conditions, the
results demonstrate empirically the independence of the max-
imum growth rate and niche breadth; although the thermal
optimum was nearer to 42 °C than 37 °C, there was a greater cost
in relative fitness at 42°C than 37°C. Overall, our experiments
demonstrate that chloramphenicol resistance reduces the ability
of evolved cells to grow in novel thermal environments, and that
these trade-offs put resistant strains at a strong competitive
disadvantage at warmer temperatures.

Despite the strong overall pattern that resistant strains fared
poorly at higher temperatures relative to their ancestor, there was
substantial variation between lineages in this effect. There are
many variables that could mediate the fitness costs across
lineages, though the most obvious is that the stochastic
accumulation of mutations leads to varied genetic bases of
resistance with varied costs in new environments [31]. Thus, future
experiments studying the trade-offs in novel environments should
include a high degree of replication in order to determine the
probability of such costs existing in a single lineage. There are
additional experimental factors that could interact with this
stochasticity of evolutionary trajectories, including population size
and the strength of the selection gradient. At very large
population sizes, convergence of evolutionary trajectories
becomes more likely due to mutation saturation within popula-
tions [32]; in this case, the most strongly beneficial mutations arise
in each population, and will persist. We can be sure that these
experiments did not approach mutation saturation because only
one lineage evolved the strongly beneficial media adaptation in
araD. This mutation can be clearly seen as a positive outlier in the
estimated gene effect sizes at 37 °C, yet it only appeared once
(Fig. 7). Similarly, the strength of the selection gradient determines
the fraction of the population that can survive passaging to a
higher antibiotic concentration. At stronger selection gradients,
fewer genotypes would survive the incremental increase in
antibiotic, leading to a smaller number of genetic routes to
resistance [33]. Thus, the initial population heterogeneity, as well
as the subsequent bottleneck size, may influence the presence
and variation in evolutionary trade-offs. Furthermore, the parti-
cular media and antibiotic used also influence the distribution of
fitness costs, as the variety of carbon sources and the specific
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antibiotic targets also determine the number and type of
mutations conferring fitness advantages. In these specific experi-
ments, observed trade-offs may also be confounded by adapta-
tion to the minimal media over the course of the evolution
experiment, in addition to the adaptations to increasing antibiotic
resistance. However, the small number of mutations in metabolic
pathways makes us confident that this is a strong factor in our
results. Finally, it would also be interesting to evaluate whether
structural variation in genomes (such as duplications or inversions)
or changes to transcriptional regulation correspond to the
observed fitness costs, as our present sequencing methodologies
cannot address these possibilities.

Two components of our analyses suggest potential mechanisms
leading to decreased thermal niche breadth: the mutations involved
in the genetic basis of resistance, and the result that warmer
temperatures are more detrimental to resistant bacteria relative to
sensitive. Increased temperatures have a multitude of effects on
bacterial physiology, including increased membrane fluidity [34],
altered protein folding [35], reduced generation time [36], and
increased speed of chemical reactions [37]. These effects of
temperature might interact with specific mechanisms of resistance
to yield the disproportionate fitness costs. For example, many
proteins involved in resistance are embedded within the outer
membrane, such as efflux pumps and outer-membrane porins. The
efficacy of these resistance mechanisms, or the energy needed for
these complexes to function, might change as a function of
membrane fluidity. A higher temperature could also increase cell
susceptibility to antibiotics, as altered protein folding at this
temperature might expose additional chloramphenicol targets
within ribosomes. In this case, cells might need to upregulate
activity of resistance mechanisms to produce the same level of
resistance. Alternatively, the location of mutations within proteins
might be more detrimental at 42 °C due to altered protein structure.
Furthermore, the ATP synthase mutations that were observed may
confer resistance by slowing cellular metabolism sufficiently that
chloramphenicol targets are no longer active; this is frequently seen
in persister cells [38], and persister mutations are common in early
stages of resistance evolution [39]. It is possible that there is a
greater cost of these ATP synthase mutations at 42 °C, as higher
temperatures often require increased cellular metabolism and
respiration. Finally, the rapid drop-off in activity of many enzymes
above their thermal optimum [40] means that cells may be
particularly sensitive to perturbations near the upper bound of their
thermal range (e.g., Fig. 1). Thus, a resistance mutation that changes
the enzyme kinetics by a small amount would have the greatest
effect near this upper thermal limit.

When determining how to place a quantitative measurement on
the conceptual notion of niche breadth, there are multiple possible
metrics that could be used [41]. Here, we chose to measure niche
breadth as the relative growth rate of evolved strains against their
ancestors, because it reflects the importance of strain competition in
antibiotic resistance evolution. Indexing the growth rate against that
of its ancestral strain is a strong predictor of the ability of the mutants
to increase in abundance by outcompeting the ancestral strains
[8, 42]. As such, using the relative growth rate as a measurement of
niche breadth implicitly indicates that interactions with other cells
are important in shaping niche breadth. Thus, our measurements of
niche breadth correspond more closely to quantifying the “realized
niche,” which includes the effect of biotic interactions on population
persistance, as compared with the “fundamental niche” of abiotic
conditions the organism can tolerate [43]. Conversely, the funda-
mental niche may be of greater interest in contexts where
community composition is variable, or where range boundaries are
driven by upper or lower temperature limits. In this context, a more
appropriate measurement of niche breadth might be obtained by
calculating the width or area of the thermal performance curve
[44, 45]. Thus, it is unlikely that any single quantitative metric of niche
breadth would be appropriate for every population of interest.
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Deciding upon the definition of niche breadth for an experimental
system requires understanding the relative importance of biotic
interactions, abiotic conditions, and the components of fitness that
contribute to maintaining a viable population.

In addition to thermal tolerance, there are many other
dimensions of niche breadth where fitness costs could manifest.
Further exploration of environmental tolerance might include the
ability to withstand desiccation or changes in pH. Another aspect
of decreased niche breadth could be the ability to survive biotic
interactions, such as the ability to evade a wide variety of immune
system responses or to avoid infections by bacteriophages. Of
particular importance are trade-offs that would manifest in
reduced virulence. This category of fitness costs to niche breadth
might include reduced host range or decreased survival outside
the human body. These two dimensions of fitness would slow the
spread of person-to-person infection by either decreasing the
number of susceptible hosts or decreasing the transmission rate of
an infected individual. Thus, further studies of evolutionary fitness
costs might explicitly incorporate multiple stages of a pathogen'’s
life cycle. More broadly, the need to simultaneously maintain
adaptations under antibiotic pressure reflects the pressures of a
generalist vs. specialist strategy. Theory indicates that it might be
difficult to evolve strong specialization (e.g., antibiotic resistance)
without losing other functionality due to pleiotropic effects [46].
Because the long-term survival of resistant populations is the
multiplicative effect of survival across different life stages, modest
trade-offs in niche breadth could strongly impact the population
dynamics of resistant bacteria.

Given the impact of costs to niche breadth on the frequency of
resistant bacteria, these trade-offs likely have consequences for
the long-term evolution of antibiotic resistance. For example, if
narrower niche breadth means that resistance can change from
beneficial to detrimental over short time spans (as is the case
when changing environments), this rapid reversal in fitness could
select for easy gain and loss of resistance. Indeed, this is seen
frequently in bacteria, when resistance in nature can be nearly
instantaneously acquired by horizontal gene transfer or transpo-
sable elements [47]. In addition, these experiments suggest that
there are further dimensions of bacterial fitness that have not
been tested by laboratory experiments, due to the homogenous
environments used for cell culturing. Testing for fitness costs in
novel environments could shed light on the temporal or spatial
distribution of resistance evolution. For example, the finding that
resistance decreases thermal niche breadth might contribute to
the observation that resistance increases with ambient tempera-
ture [48]. Similarly, because some mechanisms of antibiotic
resistance overlap with physiological temperature shock
responses [49], the distribution of antibiotic-resistant bacteria
may shift as climate change intensifies [50]. Consequently, these
experiments raise the question of how adaptation for resistance
interacts with adaptation to other specific stressors, and whether
fitness effects across different environments are correlated (e.g.,
[51]). For example, it would be both clinically and theoretically
valuable to know whether antibiotic resistance is lost more readily
when cells are subjected to novel selective pressures. More
broadly, integrating niche breadth into the framework of fitness
costs has the potential to resolve seeming contradictions in
resistance evolution; costs in niche breadth allow for the
possibility that any resistance mutation has trade-offs, but the
costs may not be apparent in a constant environment.
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