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Decreased thermal tolerance under 
recurrent heat stress conditions 
explains summer mass mortality of 
the blue mussel Mytilus edulis
Laurent Seuront1,2,3*, Katy R. Nicastro4, Gerardo I. Zardi3 & Eric Goberville5

Extreme events such as heat waves have increased in frequency and duration over the last decades. 
Under future climate scenarios, these discrete climatic events are expected to become even more 
recurrent and severe. Heat waves are particularly important on rocky intertidal shores, one of the 
most thermally variable and stressful habitats on the planet. Intertidal mussels, such as the blue 
mussel Mytilus edulis, are ecosystem engineers of global ecological and economic importance, that 
occasionally suffer mass mortalities. This study investigates the potential causes and consequences of a 
mass mortality event of M. edulis that occurred along the French coast of the eastern English Channel in 
summer 2018. We used an integrative, climatological and ecophysiological methodology based on three 
complementary approaches. We first showed that the observed mass mortality (representing 49 to 
59% of the annual commercial value of local recreational and professional fisheries combined) occurred 
under relatively moderate heat wave conditions. This result indicates that M. edulis body temperature 

is controlled by non-climatic heat sources instead of climatic heat sources, as previously reported for 
intertidal gastropods. Using biomimetic loggers (i.e. ‘robomussels’), we identified four periods of 5 
to 6 consecutive days when M. edulis body temperatures consistently reached more than 30 °C, and 
occasionally more than 35 °C and even more than 40 °C. We subsequently reproduced these body 
temperature patterns in the laboratory to infer M. edulis thermal tolerance under conditions of repeated 

heat stress. We found that thermal tolerance consistently decreased with the number of successive daily 
exposures. These results are discussed in the context of an era of global change where heat events are 
expected to increase in intensity and frequency, especially in the eastern English Channel where the low 
frequency of commercially exploitable mussels already questions both their ecological and commercial 
sustainability.

Extreme events such as heat waves, droughts, storms and floods have increased in frequency and duration 
over the last decades1–3 and episodes considered rare today may be the norm under future climate scenarios, as 
expected from model predictions4–6. These events are likely to affect both terrestrial and marine ecosystems and 
cause high mortality7,8, deleterious impacts on populations9,10, reconfigurations of communities11–13, threaten 
global biodiversity and the provision of ecosystems services14,15, and ultimately impact socio-economic systems16. 
Natural climate variability is also noticeably superimposed onto decadal warming trends in most regions, increas-
ing the likelihood of discrete climatic events becoming extreme or anomalous17–19.

Heat waves are particularly important on rocky intertidal shores, which are one of the most thermally variable 
and stressful habitats on the planet20. In these ecosystems, the consequences of heat waves can be dramatic. For 
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instance, heat waves are responsible for the mass mortality events documented in a range of ectothermic organ-
isms such as juvenile barnacles21, limpets22–24 and mussels20,25–27. In addition, mass mortalities have the capacity 
to drive persistent ecosystem changes28,29. Intertidal mussels are important ecosystem engineers through their 
attachment to the substrate in dense mono- and multi-layered beds that create microhabitats that remain moist 
and thermally benign during low tides30,31 and offer protection against wave action during high tides32. Mussel 
beds also increase habitat complexity, providing substrate for colonisation, trap sediment and organic particles 
that serve as food for small invertebrates and shelter from predation33–35. Therefore, although mussels may out-
compete other primary-space holders such as seaweeds and other sessile invertebrates36,37, their bioengineering 
properties often enhance local biodiversity by facilitating the establishment and persistence of a variety of small 
invertebrates38–40.

Mussels are also of prime economic importance, in particular the blue mussels Mytilus edulis (Linnaeus, 1758) 
and M. galloprovinciallis (Lamarck, 1819). They are estimated an average net worth ranging from $2,480,000 to 
$102,000,000 in the United States41. In Europe, the culture of these species produces about 50% of the annual 
world-wide harvest of mussels42, and represent 48% of the 160,000 tons of bivalves produced annually in France43. 
Numerous natural and shellfish mussel beds are also scattered along the French coast of the eastern English 
Channel. The production of the latter is of industrial extent, covering 55 hectares and representing a production 
of 2,600 tons annually, worth 1.8×107 €44. In turn, natural mussel beds, though professionally exploited and rep-
resenting ca. 450 tons per year44, are also traditionally exploited by locals who are allowed to take up to 5 litres of 
mussels larger than 4 cm in length per day, a recreational fishery worth ca. 250 tons per year45.

Despite an increase in mussel production along the French Atlantic coastline since 200146, blue mussel beds 
are identified as a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities 
(NERC) Act 2006, as a Priority Marine feature (PMF) under the Marine (Scotland) Act 2010, and included on the 
OSPAR (Annex V) list of threatened and declining species and habitats. This is particularly relevant as summer 
mortalities of both wild and cultured M. edulis have recurrently been reported throughout the world20,26,47–50. 
Noticeably, these aestival mortalities may drastically increase with the expected rise in both mean temperatures 
and the frequency of extreme high temperature events (IPCC, 2018) warming. In the western Atlantic region, 
intertidal population of M. edulis have experienced catastrophic mortality directly associated with summer high 
temperatures and, over the last 50 years, a poleward contraction of the species southern range edge has occurred51.

In this context, we investigate the potential causes and consequences of a mass mortality event of M. edulis that 
occurred along the French coast of the eastern English Channel in early August 2018, when massive quantities 
of dead empty mussel shells were found washed ashore either accumulated locally (Fig. 1A) or stretched along 
kilometres of coastlines in one (Fig. 1B) or several high-tide marks (Fig. 1C). Specifically, we used an integrative, 
climatological and ecophysiological methodology based on three complementary approaches. We first conducted 
field surveys to assess the size and quantity of dead mussels washed ashore, and to infer the presence of dead 
mussels on the beds through transects ranging from the upper to the lower limits of M. edulis intertidal range. 
We subsequently inferred the presence of a heat wave and assessed its severity in the study area on the basis of 
a multidecadal air and sea surface temperature time series. We further examined body temperature temporal 
patterns in M. edulis by continuously recording body temperature in situ every 20 minutes using biomimetic 
mussels. Based on these patterns, we subsequently mimicked the thermal conditions experienced by M. edulis 
during the heat wave in laboratory assays aimed at assessing M. edulis lethal temperature. We finally discuss the 
implications of the heat wave on M. edulis in an era of global warming and estimate the financial losses for the 
local community.

Methods
Study area and local climatic conditions. The present work was conducted along the French coast of the 
eastern English Channel (Fig. 2). This temperate epicontinental sea is characterised by the amplitude of its semi-
diurnal tidal range (between 3 and 9 m). The resulting strong (1 to 2 m s−1) flood-dominated tidal currents parallel 
to the coast result in a net flow towards the North sea52–54, and generate extremely high levels of mixing, with 
turbulence intensities ranging from 10−7 to 10−4 m2 s−3 55. Sea surface temperature typically ranged between 5 °C 
in winter and 18 °C in summer, even though surface temperature can be as low as −0.3 °C and as high as 22 °C, 
and has essentially been dominated by seasonal fluctuations over the last 5 decades56. Noticeably, an increase in 
sea surface temperature has been observed since the mid-1990s56 at a rate of ca. 0.4 °C per decade57, as well as an 
increase in the frequency of exceptional events, especially in summer56.

This area is also characterised by intertidal rocky reefs and platforms interspersed between stretches of sandy 
and pebble beaches that are directly exposed to the main SSW swell direction that characterises this area58. These 
intertidal rocky shores host 14 Mytilus edulis beds that are all spatially disconnected, essentially by stretches of 
sandy or pebble beaches with the exception of the three southernmost beds that are separated from the northern 
ones by two long stretches of sandy beaches and the fishing port of Boulogne-sur-Mer (Fig. 2). These beds range 
in size from 0.51 to 10.56 hectares, with mussel density ranging from 1,290 to 7,571 mussels per metre square 
and covering 31.5 to 80.5% of available substrate59 (Table 1). Noticeably, the percentage of commercially exploit-
able mussels is extremely low (i.e. 0.5 to 7%) on all but one of these beds59 (Table 1), which jeopardises their 
sustainability60.

Assessing heat wave conditions. The intensity of the thermal forcing observed during the summer 2018 
was categorised following Hobday et al.61, using the climatology of both air and seawater temperature of the study 
area. Specifically, we categorised the summer 2018 heat wave using multiples of the difference ∆T between the cli-
matological mean and the climatological 90th percentile, which is the threshold used to identify marine heat waves 
(MHW; Hobday et al.62). The magnitude of this difference was subsequently used as a descriptor of an observed 
thermal event as moderate (1 to 2 ∆T), strong (2 to 3 ∆T), severe (3 to 4 ∆T) and extreme (>4 ∆T) heat waves. 
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The climatology of air and sea surface temperatures were respectively based on hourly air temperature recorded 
by the Météo France (www.donneespubliques.meteofrance.fr) weather station of Boulogne-sur-Mer (50°43′54N, 
1°35′53E) from 1949 to 2017 and biweekly sea surface temperature recorded at the inshore station (50°40′75N, 
1°31′17E) of the SOMLIT network (Service d’Observation en Milieu LITtoral; www.somlit.epoc.u-bordeaux1.fr) 
from 1996 to 2017.

Field assessment of mussel mortality. On August 17, 18 and 19, we systematically surveyed the 25 kilo-
metres of shoreline between the southernmost and northernmost of the 14 known intertidal mussel beds of the 

Figure 1. Illustration of the mass mortality of M. edulis in the eastern English Channel, where dead empty 
shells were either found as localised accumulation spots (A) on site g shown in Fig. 2, or stretched along 
kilometres of coastlines as solitary high-tide marks (B) or multiple high-tide marks (C) respectively found on 
beaches identified as I and II in Fig. 2.
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eastern English Channel (Fig. 2, Table 1) to identify where dead mussels were washed ashore as localised accumu-
lation spots or accumulated along high-tide marks (Fig. 1) and subsequently estimate their quantity. Specifically, 
two observers performed 6 hour surveys each day during daytime low tides. We subsequently identified three 

Figure 2. Localisation of the 14 M. edulis beds documented along the French side of the English Channel 
(black arrows), shown together with the accumulation of empty dead shells as localised spots (white stars) 
and stretched along kilometres of coastlines (black lines). The numbers I and II respectively identify the 
northernmost and southernmost stretches of beaches where dead M. edulis heavily accumulated along the high-
tide marks. The scale bar represents 1 km. Map data: Google, SIO, NOAA, U.S. Navy, NGA, GEBCO, Image 
Landsat/Copernicus (A), and Google, SIO, NOAA, U.S. Navy, NGA, GEBCO (B).
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localised spots and two stretches of beaches where empty M. edulis shells where respectively found forming thick 
(typically 30 to 60 cm) aggregations at scales ranging from a few metres to tens of metres (Fig. 1A) and in mono- 
and multi-layered bands accumulated nearly continuously along kilometres of high-tide marks (Fig. 1B,C).

At the three identified localised accumulation sites, we first estimate the surface Sa covered by dead mussels 
using drone digital photographs (PARROT BEBOP 2) taken from a height of 20 m and previously calibrated using 
a white disk of PVC (diameter 50 cm). The area covered by mussels was subsequently assessed using the software 
Image J (https://imagej.nih.gov/ij/). We then estimated the thickness Ti of each accumulation zone from 10 hap-
hazardly chosen points, where 1 litre of dead shells were sampled, their abundance ni (ind l−1) subsequently esti-
mated and each shell length measured with an electronic calliper. The number of dead mussels was estimated as 
Na = Sa × Ta × na, where = ∑ =T Ta i i

1

10 1
10  is the mean thickness of mussel accumulation and = ∑ =n na i i

1

10 1
10  the 

mean mussel density per litre.
Where M. edulis were found accumulated along high-tide marks, we first estimated the length Li and width Wi 

of each high-tide mark i from drone digital photographs (see above). We subsequently estimated the density (di, 
ind m−2) of dead M. edulis using ni 25 × 25 cm quadrats regularly placed on high-tide marks. The number of dead 
mussels Ni found along each high-tide mark was estimated as Ni = Li × Wi × di.

Assessing M. edulis body temperature. To examine body temperature temporal patterns of the blue 
mussel Mytilus edulis at the study sites, we used data from an ongoing survey of the thermal properties of the 
intertidal ecosystems of the eastern English Channel. Data consisted of M. edulis body temperature recorded 
every 20 minutes from June 6, 2017 using biomimetic mussels (i.e. ‘robomussels’63) that were built with empty 
mussel shells (40–45 mm in length) filled with silicone sealant encasing a temperature logger (Thermochron 
iButton DS1922L; resolution 0.5 °C). Robomussels were deployed with the anterior-posterior axis perpendicular 
to their hard rock substratum, in growth position (posterior upward) in intact natural beds using marine grade 
epoxy resin (Z-spar Splash zone, A-788). Robomussels were deployed within mussel beds, as loggers deployed 
as solitary individuals tend to yield anomalously high readings64. Previous to deployment, robomussel tempera-
ture readings (N = 20) were tested by placing them in pairs next to live mussels fitted with K-type thermocouple 
probes (4 Channels Lutron TM-903 Thermometer, resolution 0.1 °C) for aerial temperature ranging from 10 to 
40 °C. Readings from robomussels (Trm) and live mussels (Tlm) were highly significantly correlated (r2 = 0.98, 
p < 0.01), and the slope α and the elevation β of the regression line Trm = 0.99 Tlm + 0.07 could not statistically be 
distinguished from theoretical expectations α = 1 and β = 0, respectively (p > 0.05). We also deployed unmodi-
fied temperature loggers (DSL1922L iButtons; resolution 0.5 °C) to record rock surface temperature both on bare 
rocks and under mussel beds. iButtons were wrapped in parafilm, epoxied into shallow depressions chiselled into 
the rock, and covered by a 1–2 mm layer of epoxy, which was flush with the rock surface.

Assessing M. edulis thermal tolerance. In October 2018, we estimated the thermal limits of M. edulis as 
the temperature lethal to 50% of individuals (LT50) following a 6-h aerial exposure. The experiment was designed 
to mimic the temporal dynamics of M. edulis robomussels deployed in the field during the heat wave in terms 
of (i) rate of temperature increase and decrease, (ii) maximum temperature reached and (iii) duration of expo-
sure. To simulate the two tidal events per day characterising the tidal regime of the eastern English Channel, we 
used a 18-h recovery period set-up as a 6-h immersion, 6-h aerial exposure and 6-h immersion, all at ambient 
environmental water and air temperature (i.e. 16 °C). To assess the thermal tolerance limits of the populations, 
we collected individuals from three beds where local accumulations of dead mussels were found (i.e. Fort de 
l’Heurt, Pointe de la Crèche and Pointes aux Oies; Fig. 2, Table 1) and assess their thermal tolerance immediately 
upon return to the laboratory (typically within 30 minutes) to avoid any tolerance changes that may occur during 
laboratory acclimation65.

Mussel bed Surface (ha) Density (ind m−2) >4 cm (%) Mussel cover (%)

Rupt 0.67 5753 4 0.70

Plats Ridains 6.34 3423 6 0.62

Liettes 4.66 2685 3 0.62

Langues de Chien 4.02 3782 7 0.58

Platier 0.51 2904 3 0.32

Sud de la Slack 2.43 2432 6 0.53

Pointes aux Oies 10.56 1400 6 0.52

Ailettes 3.73 2610 4 0.81

Fort de Croy 2.93 1289 21 0.44

Pointe de la 
Crèche

9.88 2524 2 0.47

Fort de l'Heurt 5.10 4694 0.6 0.63

Cap d'Alprech 4.59 7571 0.5 0.56

Ningles 2.32 5732 0.8 0.47

Equihen 2.11 5940 0.6 0.44

Table 1. Names and specifics of the 14 M. edulis beds known in the eastern English Channel; compiled from 
Ruellet et al. (2016).
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For each experimental treatment (i.e. 20, 26, 29, 32, 35, 38 and 41 °C), ten mussels were placed in a sealed 
1-litre glass jar along with a seawater-saturated paper towel to maintain 100% relative humidity66, hence to pre-
vent both any desiccation and evaporative cooling induced by gaping67. Replicate jars (n = 6, total N = 60 mussels 
for each experimental treatment) were submersed in a water bath for 6 hours, where mussels were first heated at 
rates representative of the conditions encountered by M. edulis in the eastern English Channel (i.e. from 3.5 to 
4.5 °C per hour; see below) from ambient seawater temperature (i.e. 16 °C) until one of seven experimental tem-
peratures was reached. This temperature range has been chosen to reflect the temperature patterns experienced 
by M. edulis at our study sites (Seuront, unpublished data), including in July and August (see below), and previ-
ously published values of M. edulis lethal thermal limits, i.e. typically between 25 to 37 °C26,68–71. Experimental 
temperatures were maintained for 1.5 and 3 hours before being quickly cooled down back to ambient seawater 
temperature by immerging the jars in running seawater, and thus entering an 18-h recovery period dichotomised 
as 6-h immersion, 6-h aerial exposure and 6-h immersion at ambient environmental water and air temperature 
(i.e. 16 °C). The whole procedure was repeated over 5 consecutive days, simulating the daytime thermal aerial 
exposure event per day.

An additional treatment based on a temperature increase of 1 °C every 5 min followed by a 6-h exposure to 
each of the six experimental temperatures and a recovery period as described above was also repeated over 5 
consecutive days to assess the effect of extremely rapid and severe warming events that have previously been 
described in temperate intertidal mussel beds65 on the thermal tolerance of M. edulis.

A robomussel was included within each temperature treatment to monitor the temperature of a real mus-
sel. We used survival in ambient temperature controls where jars were held in a 60-litre aquarium of running 
natural seawater at 16 °C as our indicator of any handling stress. Survival was assessed after the recovery period 
via inspection for movement or responsiveness to probing, and we calculated LT50 for each site using individual 
generalised linear models with binomial error distributions, with mussel survival modelled as a function of aerial 
temperature.

Results
Assessing heat wave conditions. Based on a 68-year air temperature climatology and the heat waves 
(HW) classification61,62, four HWs (which lasted between 3 and 5 days) were identified from air temperature in 
2018: one in late June (June 28 to 30; 19.2 to 25.7 °C), two in July (July 5 to 7 with 20.3 to 21.9 °C, and July 23 to 
25 with 21.9 to 22.8 °C) and one in August (August 1 to 5; 20.4–22.9 °C). In addition, five HWs were identified 
on June 23 (18.7 °C) and 26 (18.9 °C), July 13 (20.5 °C) and 17 (21.1 °C), and August 10 (20.4 °C). These events 
were classified as moderate (78.1%) to strong (21.9%) in June, moderate (67.8%), strong (23.1%), severe (7.0%) 
and extreme (2.0%) in July, and moderate (63.0%), strong (30.9%) and severe (6.2%) in August. In contrast, based 
on a 21-year sea surface temperature climatology, sea surface temperatures were only marginally considered as 
moderate heat waves in July and August.

Assessing mussel mortality. The three local accumulation zones (areas ranging from 45 to 160 m2) were 
covered by layers of dead mussels that were 0.3 to 0.6 m thick. The volume and number of dead mussels was 
subsequently estimated as ranging from 18 to 96 m3 and 3.1 × 106 to 1.4 × 107 mussels, respectively (Table 2). 
More specifically, based on the percentage of dead mussels of commercial size (i.e. >4 cm in length) found in 
the accumulation zones (i.e. 21 to 33%), a conservative estimate of 70 fresh commercial mussels per litre, and a 
volume-to-mass ratio of 1.43 (i.e. one litre of fresh commercial mussel typically weights 0.7 kg), the number and 
mass of dead mussel of commercial value were respectively estimated as totalling 6.7 × 106 mussels and 67.4 tons 
(Table 2).

Along the northernmost and southernmost stretches of beaches where M. edulis accumulated along high-tide 
marks (Fig. 2B,C), we respectively identified 2 and 4 high-tide mark accumulation stretching along ca. 3 km of 
shoreline. These accumulations ranged from 70 to 975 m in length, 0.5 to 6.5 metres in width, and contained from 

Pointes 
aux Oies

Pointe de Ia 
Creche

Fort de 
I'Heurt Total

ID g j k

Sa (m2) 160 75 45 300

Ta (m) 0.6 0.3 0.4 —

Va (m3) 96 22.5 18 142.5

na (ind l1) 143 190 170 —

Na 1.4 107 5.4 106 3.1 106 2.2 107

% (>4 cm) 33 29 21 —

Nc (>4 cm) 4.6 106 1.6 106 6.4 105 6.7 106

Mc (>4 cm) (ton) 45.3 15.7 6.4 64.7

Losses (€) 203,860 70,666 28,917 303,444

Table 2. Surfaces (Sa), thickness (Ta) and volume (Va) of the three localised accumulation zones of dead empty 
shells of Mytilus edulis, identified with the identification codes (ID) used in Fig. 2, shown together with the 
related density (na) and number (Na) of mussels, the percentage of mussels of commercial size (%) and the 
subsequent estimate of the number (Nc) and mass (Mc) of dead mussels of commercial size, together with the 
related financial losses, respectively based on a market value of 4.5€ per kilogram of mussels of commercial size.
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432 to 6,400 individuals per square metre, representing a total of 4.3 × 106 to 9.2 × 106 dead mussels (Table 3). 
Given the observed percentage of mussels of commercial size in these high-tide mark accumulations (28 to 34%), 
the quantity of dead mussels of commercial value ranged between 1.3 × 106 and 2.8 × 106 mussels. Finally, using 
an estimate of 70 fresh mussels per litre and a volume-to-mass ratio of 1.43, the mass of dead mussels of commer-
cial value was estimated as ranging between 12.8 and 28.5 tons (Table 3).

Assessing M. edulis body temperature using biomimetic loggers. Over the 2 months that preceded 
the observed mass mortality along the shores of the eastern English Channel, four main thermal events were 
identified from robomussel temperatures as periods of 5 to 6 consecutive days with body temperatures reaching 
more than 30 °C and occasionally more than 35 °C from July 5 to 9 (32 to 35.9 °C), July 15 to 19 (33.5 to 35.3 °C), 
July 21 to 26, (30.1 to 33.2 °C), and more than 40 °C (38.2 to 41.7 °C) from August 2 to 6 (Fig. 3). These events were 
consistently characterised by a 3.5 to 4-h increase in temperature at a 4.2 to 4.3 °C per hour in July, and a 4 to 4.5-h 
increase in temperature at a rate of 4.4 to 4.6 °C per hour in August. Mussel body temperature reached maximum 
values ranging between 30.1 and 35.3 °C for 1.3 to 1.5 hours in July and between 38.2 and 41.7 °C for 3 hours in 
August. The incoming tides subsequently led to a sharp decrease in M. edulis body temperature down to seawater 
temperature at a rate of 12.6 °C per hour in July and 17.5 °C per hour in August.

No significant correlations were found between robomussel temperature and air temperature (Spearman’s ρ, 
p > 0.05). In turn, robomussel temperature was significantly positively correlated with the surface temperature 
of bare rock and the rocks below the mussel beds (Spearman’s ρ, p < 0.01). Specifically, during the four thermal 
events described above, robomussel temperatures were consistently highly significantly warmer (on average 9.8 to 
17.1 °C warmer; Wilcoxon-Mann-Whitney U-test, p < 0.01) than air temperature. Robomussel temperatures were 
also consistently highly significantly warmer (Wilcoxon-Mann-Whitney U-test, p < 0.01) than bare rocks and the 
rock under mussel beds, i.e. robomussels were on average 4.5 to 6.2 °C and 11.5 to 13.7 °C warmer than bare rock 
and the rocks below the mussel beds, respectively.

Assessing M. edulis thermal tolerance. We examined the effect of temperature, duration of exposure and 
number of repeated exposures on M. edulis mortality through the relationship between the percentage of survival 
and experimental temperature for each exposure event and duration (Fig. 4). Mussels exposed to control condi-
tions at 16 °C for 1.5, 3 and 6 hours consistently experienced 100% survival, irrespective of the number of repeated 
exposures. This observation indicates the absence of any physiological impairment related to handling stress.

i Beach Li Wi ni

di(ind m−2) Ni

%(>4 cm)

Nc(> 4 cm)
Mc(ton) 
(>4 cm) Loss (€)

Min Max Min Max Min Max Min Max Min Max

1 II 70 4 8 5600 6400 1.6 106 1.8 106 29 4.5 105 5.2 105 4.5 5.2 20,462 23,386

2 II 250 1 20 992 3200 2.5 105 8.0 105 28 6.9 104 2.2 105 0.7 2.2 3,125 10,080

3 II 250 2 18 544 3056 2.7 105 1.5 106 32 8.7 104 4.9 105 0.9 4.9 3,917 22,003

4 II 150 6.5 12 432 2400 4.2 105 2.3 106 34 1.4 105 8.0 105 1.4 8.0 6,444 35,802

5 I 800 0.5 30 1125 1749 4.5 105 7.0 105 28 1.3 105 2.0 105 1.3 2.0 5,672 8,817

6 I 975  1 30 1360 2133 1.3 106 2.1 106 30 4.0 105 6.2 105 4.0 6.2 17,901 28,080

4.3 106 9.2 106 1.3 106 2.8 106 12.8 28.5 57,521 128,167

Table 3. Length (Li), width (Wi), mussel densities (di) and abundance (Ni) of dead empty shells of Mytilus edulis 
found as mono- and multi-layered bands accumulated nearly continuously along high-tide marks I found along 
the two stretches of beaches identified as I and II in Fig. 2, and estimated from ni quadrats of 25 cm × 25 cm, 
shown together with the percentage (%), number (Nc) and mass (Mc) of mussels of commercial size. The related 
minimum and maximum financial losses, respectively based on a market value of 4.5€ per kilogram of mussels 
of commercial size are also provided.
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Figure 3. Time series of robomussel temperature from June 7 to August 30, 2018 taken at a 20-min temporal 
resolution. The colored areas identify the four thermal events identified as periods of 5 to 6 consecutive days 
with temperatures reaching more than 30 °C (and occasionally 35 °C; (A–C) and more than 40 °C (D). The black 
bar identifies the periods when dead empty mussel shells were washed ashore.
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No mortality was ever observed in mussels exposed only once to temperatures ranging from 20 to 41 °C dur-
ing 1.5 and 3-h exposure (Fig. 4A,B). In turn, survival consistently decreased at all temperatures above 29 °C, at 
rates increasing with the number of exposures. Survival rates never reached 0%, though they were consistently 
higher after a 1.5-h than a 3-h exposure, with minima of respectively 19% and 10% observed after 5 consecutive 
daily exposure events at 41 °C (Fig. 4A,B). In contrast, a dramatic decline in survival rates was observed after a 
single 6-h exposure for temperature greater than 29 °C, and mussels exposed only once to 41 °C suffered a 100% 
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Figure 4. Survival rates (%) of M. edulis as a function of experimental temperature for thermal exposure of 
1.5 hour (A), 3 hours (B) and 6 hours (C), where each separate curve is a separate exposure event. Black dots: 
first exposure, dark grey dots: second exposure; intermediate grey dots: third exposure; light grey dots: fourth 
exposure; white dots: fifth exposure. The dashed horizontal line represents a 50% survival rate.
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mortality (Fig. 4C). With increases in the number of consecutive daily exposure events, 100% mortality occurred 
at lower temperatures.

The temperature lethal to 50% of individuals (LT50) could only be estimated for the fourth and fifth successive 
1.5-h thermal exposure, and third, fourth and fifth successive 3-h thermal exposure as the related survival rates 
did not decrease below 50% for the first 3 and 2 consecutive exposures, respectively (Fig. 4A,B). LT50, however, 
consistently declined with the number of successive daily exposures (Fig. 5). Specifically, the LT50 decreased from 
36.5 °C with one exposure to an asymptote of ca. 30 °C after 3 to 4 consecutive daily exposures (Fig. 4). No signif-
icant differences in survival rates calculated as a function of temperature for any of the thermal exposure consid-
ered were observed between sites (Kruskal Wallis H test, p > 0.05).

Discussion
M. edulis body temperature and local climatology. M. edulis body temperatures were consistently sig-
nificantly higher than air temperature (p < 0.01), and no significant correlation was found between M. edulis body 
temperature and air temperature (p > 0.05). These observations are consistent with previous studies highlighting 
the fact that the body temperature of ectothermic poikilotherms, either intertidal or terrestrial, are heavily con-
strained by the their exposure to direct solar radiation and the structure of their microhabitat, such that their 
temperatures are only close to air temperature in fully shaded microhabitats72,73. More specifically, despite the 
moderate nature of both the atmospheric and marine heat waves observed before the mass mortality took place, 
the body temperatures observed in the present work (i.e. 30.1 to 41.7 °C) are in the high range of mussel body 
temperature reported in the literature74–76. These results are consistent with previous observations conducted 
on tropical and temperate intertidal gastropods77–82 and confirm that environmental and individual body tem-
peratures are decoupled. They also generalize to previous work on M. edulis that showed that body temperature 
of intertidal gastropods is primarily controlled by non-climatic heat sources, i.e. solar irradiance77,83 instead of 
climatic heat sources, i.e. air and water temperatures77,84,85. In addition, biotic factors such as shell morphology, 
surface colour and patterning and thermal properties (i.e. heat transmission, absorption, reflection and conduc-
tion) are also very likely to significantly affect body temperature31,76,86,87.

In a more general context, these results suggest that climate change models based on air temperature as a 
proxy for body temperature are likely to underestimate the effect of global warming on the body temperature of 
intertidal species and subsequently overestimate their physiological tolerance, and with consequences on scenar-
ios of future species distribution range72. The mechanistic links between the body temperatures of ectotherms, 
which control local88 and global distribution patterns89, and environmental variables are not as simple as previ-
ously anticipated90,91. This issue is especially critical for intertidal ectotherms, especially for sessile species such 
as mussels, which have a limited ability to buffer the effect of thermal stress through behavioural adaptation and 
active selection of thermally benign habitats82,92, as they often live close to the upper edge of their thermal win-
dow93. A thorough assessment of their thermal tolerance is hence needed to anticipate population level effects of 
heat stress and more generally change in distribution patterns, local zonation and biogeography21,94,95.

M. edulis body temperature and substrate temperature. M. edulis body temperatures (i.e. 30.1 to 
41.7 °C) were on average 4.5 to 6.2 °C warmer than the surrounding back rocks, and 11.5 to 13.7 °C warmer 
than the rocks below the mussel beds. These results are consistent with measurements conducted across M. cal-
ifornianus beds96. This directional shift in temperature modification has been shown to influence interactions 
with juvenile mussels, such that thermal stresses and associated mortality risk are higher at the bed surface, but 
substantially reduced deeper within the adult matrix96. Mussel beds are key ecosystem engineers that increase 
habitat complexity. They consequently provide substrate for colonization, trap sediment and organic particles that 

Figure 5. Thermal limits of M. edulis, estimated as the temperature lethal to 50% of individuals (LT50), shown 
as a function of the number of successive thermal exposures for thermal exposures of 1.5 hours (open dots), 
3 hours (grey dots) and 6 hours (black dots). The two open rhombs are the upper LT50 values reported in 
Sorte et al. (2019) and the black and grey lines the LT50 reported by Jones et al. (2009) respectively in June and 
November.
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serve as food for small invertebrates and shelter from predation33–35. They also facilitate the establishment and 
persistence of a range of small invertebrates, hence enhance local biodiversity38,39 and provide protection against 
wave-action32. Despite increasing evidence that mussel beds create microhabitats that remain moist and thermally 
benign during low tides30,31,96, their role in dampening thermal stress and eventually maintaining local biodiver-
sity during heat waves under a global change scenario is still a relatively untapped area of research. This issue is 
of paramount importance as mussel beds are globally acknowledged as biodiversity hotspots97–99, including in 
the eastern English Channel, where intertidal mussel beds host up to 62 taxa of epifauna60,100. Note, however, that 
evidence exists on the decline of mussel bed community diversity as a response to decadal climate change101. The 
increase in local thermal heterogeneity related to mussel beds is consistent with numerous studies conducted on 
the thermal properties of intertidal rocky substrates providing evidence that variation over very small scales can 
be equivalent or even exceed mean differences observed over much larger scales102–104. For example, the difference 
in body temperatures between the warmest and coolest mussels over an area of a few square meters (up to 15 °C 
on any given day) rivalled and sometimes greatly exceeded the expected difference in body temperatures along 
ca.1600 km of rocky intertidal zone of the western coastline of North America102. Further work is needed, how-
ever, to quantify how small-scale thermal heterogeneity, including the thermal heterogeneity observed across and 
within mussel beds, may dampen thermal stress and affect the resilience of local survival and biodiversity in an 
era of global warming where both the intensity and severity of heat waves are expected to increase4–6.

M. edulis thermal tolerance: the role of consecutive exposures. Much attention has been given to 
the thermal tolerance of mussels during immersion as a geographic range limiter57,68,105,106, mainly because there 
is no escaping from high water temperatures. For instance, Wells & Gray106 suggested that mean summer water 
temperatures of 26.7 °C set the southern range limit, whereas Hutchins105 believed the southern limit to be set by 
winter isotherms of 8 °C. Recent work showed that the hybrid zone between warm- and cold-adapted species (M. 
galloprovincialis and M. edulis, respectively) will move eastward into the English Channel towards the territory 
formerly occupied by the cold-adapted species in response to a warming climate57. In contrast, the detrimental 
effects of high temperatures during emersion may be alleviated through local changes in distribution patterns 
such as local zonation21,94,95 and aggregation patterns74. High temperatures experienced during emersion at low 
tide have nevertheless the potential to cause high rates of mortality20,25–27, which triggered studies devoted to 
elucidate the impact of aerial exposure on survival20,21,65,85,95,107.

Though the thermal limits of mussels in water are the ones demonstrating plasticity and local selec-
tion70,71,108,109, we specifically focused on M. edulis thermal limits during emersion as the seawater temper-
atures observed in the eastern English Channel (typically bounded between 16 °C and 20 °C in summer56) 
are consistently well below the temperature causing death in this species, which ranged between 25 °C and 
41 °C68,70,71,108,110,111. The population of M. edulis of the eastern English Channel is very resistant to a single 1.5-h 
and 3-h exposure to temperature ranging from 20 to 41 °C, with no recorded mortality (Fig. 4A,B). With the 
exception of repeated aerial exposures to 16 °C (control), 20 °C and 26 °C treatments, repeated exposures to tem-
peratures of 29 to 41 °C decreased survival rates (Fig. 4A,B). In contrast, a single 6-h exposure to 41 °C led to 
100% mortality, and repeated exposure led to 100% mortality for temperatures ranging from 32 to 41 °C (Fig. 4C). 
Taken together, and irrespective of the exposure duration, the effects on population mortality of repeated expo-
sures to less severe temperatures over a 3 to 5-day period are as severe as a single exposure to very high tempera-
tures, indicating that multiple exposures decrease thermal tolerance.

The thermal limits of M. edulis, estimated as the temperature lethal to 50% of individuals (LT50) following an 
aerial exposure of 1.5, 3 and 6 hours to temperatures ranging from 20 to 41 °C are in the range of values reported 
for M. edulis (Fig. 5) following a single 6-h exposure to aerial thermal stress ranging from 23 to 45 °C71 and from 
30 to 37 °C65. The increase in LT50 observed for a given number of repeated daily exposures with decreasing expo-
sure duration (Fig. 5) finally suggests that the thermal tolerance of M. edulis to repeated heat stress events is likely 
to be higher towards the lower limits of their tidal range, where they spend less time out of the water. This result 
is particularly important for the sustainability of the species in this area, especially in an era of global warming 
characterised by increasing intensity and severity of heat waves. It also has potential critical implications for both 
the current attempts to expand mytiliculture in the eastern English Channel and the development and implemen-
tation of management and conservation strategies of the local natural mussel beds, which are of patrimonial and 
commercial relevance.

Our results are also consistent with observations resulting from successive daily exposure of M. edulis to 6-h 
aerial thermal stress ranging from 23 to 45 °C71, and a study on Littorina littorea heat coma showing that the 
temperature at which heat coma occurred declined significantly with repeated daily exposures112. They contrast, 
however, with previous work on the thermal tolerance of mussels113 and corals114, which suggests that thermo-
tolerance conferred upon exposure to deleterious temperatures allows organisms to tolerate or even acclimate 
to continued exposures, with a subsequent reduction in mortality rate compared to the initial event. While the 
resolution of this discrepancy is beyond the scope of the present study, and may be related to differences in the 
frequency of the thermal exposures, thermal history and/or species-specific induction of heat shock proteins, 
the fact that multiple exposures decrease the thermal tolerance in M. edulis suggests that in a context where the 
intensity of heat events are expected to increase in intensity and frequency4–6, this population may be increasingly 
at risk. This is particularly critical in the eastern English Channel, where the documented low (i.e. 0.5 to 7%) 
frequency of large mussels (i.e. >4 cm) on most mussel beds59 (Table 1), already jeopardises their sustainability60.

Implications for the local economy. Based on the conservative estimates of the quantity of dead mussels 
of commercial size (i.e. >4 cm) found in both the local accumulation zones and along high-tide marks, using an 
average retail price of 4.5€ per kilogram of fresh mussel45, the direct economic losses associated to the dead mus-
sels of commercial size found either in localised accumulations or stretched along high-tide marks respectively 
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represent ca. 300,000€ (Table 2) and between ca. 57,000 and 128,000€ (Table 3), totalling between 357,00 and 
428,000€. Because mussel of commercial size represented only ca. 30% of the dead mussels found in both local 
aggregations (21–33%) and along high-tide marks (28–34%), the indirect economic losses related to the death of 
mussels that would not reach the commercial size ranged between 1,120,000 and 1,430,000€. Overall, the combi-
nation of direct and indirect losses are in the range 1,550,000 and 1,860,000€.

Finally, to put these figures in perspective in a local economical context, the amount of mussels taken annually 
from the natural mussel beds of the eastern English Channel by recreational and professional fisheries are respec-
tively 250 and 450 tons44,45, representing a net worth of 1,200,000 and 2,000,000€. The mass mortality reported in 
the present study then represents a net loss ranging between 138 and 165% and 77 and 92% of the annual com-
mercial value of recreational and professional fisheries, respectively. Overall, the net loss related to this unique 
mussel mortality event ranges between 49 to 59% of the annual commercial value of recreational and professional 
fisheries combined.

Conclusion
Our results indicate that the mass mortality of the blue mussel Mytilus edulis reported in summer 2018 in the east-
ern English Channel occurred under relatively moderate heat wave conditions. This observation indicates that M. 
edulis body temperature is controlled by non-climatic heat sources instead of climatic heat sources, as previously 
reported for intertidal gastropods. More fundamentally, our results indicate that multiple exposures drastically 
decreased thermal tolerance, hence increased population mortality. This is particularly critical in an era of global 
change where heat events are expected to increase in intensity and frequency, especially in the eastern English 
Channel where the low frequency (0.5 to 7%) of commercially exploitable mussels (i.e. >4 cm) questions both 
their ecological and commercial sustainability60. The present work then raised the question of the future sustain-
ability of local mussel beds, and stress the need for the development and implementation of management and 
conservation strategies. This is especially critical as beyond their role in maintaining ecosystem structure and 
function and their economic value, mussel beds are increasingly recognised for their social and patrimonial value. 
More generally, our results stress the risk of losses in ecosystem integrity and services of intertidal communities 
under the influence of climate change115.

Data availability
The datasets generated during and/or analysed during this study can be obtained from the corresponding author 
by reasonable request.
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