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Abstract
Purpose To determine if levels of very long chain polyunsaturated fatty acids (VLC-PUFA; ≥ 28 carbons;4-6 double bonds) in
human sperm correlate with sperm quantity and quality as determined by a complete semen analysis.
Methods Ejaculates from 70 men underwent a complete semen analysis, which included volume, count, motility, progres-
sion, agglutination, viscosity, morphology, and pH. For lipid analysis, sperm were pelleted to remove the semen. Lipids
were extracted from the cell pellet and methyl esters of total lipids analyzed by gas chromatography. The sphingolipids
were enriched and sphingomyelin (SM) species measured using tandem mass spectrometry. Pair-wise Pearson correlation
and linear regression analysis compared percent VLC-PUFA-SM and percent docosahexaenoic acid (DHA) to results from
the semen analysis.
Results VLC-PUFA-SM species having 28–34 carbon fatty acids were detected in sperm samples, with 28 and 30 carbon VLC-
PUFA as most the abundant. The sum of all VLC-PUFA-SM species comprised 0 to 6.1% of the overall SM pool (mean 2.1%).
Pair-wise Pearson analyses showed that lower levels of VLC-PUFA-SMpositively correlated with lower total motile count (0.68)
and lower total count (0.67). Total VLC-PUFA-SM and mole % DHA (22:6n3) were not strongly correlated (− 0.24). Linear
regression analysis confirmed these findings.
Conclusion This study revealed a positive correlation between the levels of VLC-PUFAwith sperm count and total motile count
and suggests that both sperm quality and quantity may depend on the presence of VLC-PUFA. The lack of correlation between
VLC-PUFA and DHA suggests that low VLC-PUFA levels do not result from inadequate PUFA precursors.

Keywords Sperm lipids . Sperm . Sphingomyelin . Fatty acids . Very long chain polyunsaturated fatty acids . Motility . Sperm
count . Fertility

Introduction

Semen analysis is the initial step for infertility evaluation of
the male partner. However, the cause of abnormal semen anal-
ysis is often times unexplained even after urologic evaluation
for anatomic and hormonal causes. The lipid composition of
the sperm membrane plays a major role in sperm structure and
function and could relate to the semen analysis abnormalities
and ultimately fecundability. The lipids of sperm are relatively
unique in that they contain many different sphingolipids in-
cluding sphingomyelin (SM) that have long-chain (LC) poly-
unsaturated fatty acids (PUFA) such as docosahexaenoic acid
(DHA, 22:6n3), eicosapentaenoic acid (EPA, 20:5n3), and
arachidonic acid (AA, 20:4n6), as well as very long chain
PUFA (VLC-PUFA; ≥ 28 carbons) [1, 2]. There is precedent
for linking polyunsaturated fatty acid (PUFA) deficiencies to
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infertility as levels of DHA, docosapentaenoic acid (DPA),
and AA were reduced when an important enzyme in PUFA
biosynthesis, delta-6-desaturase (D6D), was knocked out in
mice. These mice were infertile [3] and PUFA supplementa-
tion restored their fertility [4]. One type of fatty acid that is
particularly unique to sperm is the VLC-PUFA (≥ 28 carbons)
in the spermmembrane, which are synthesized via the enzyme
elongation of very long chain fatty acids-4 (ELOVL4) from
dietary essential fatty acids and incorporated into
sphingolipids, primarily sphingomyelin [5]. The biosynthetic

pathways for synthesis on n3 and n6 VLC-PUFA are present-
ed in Fig. 1.

VLC-PUFA are found in the testis, sperm, and the retina [1,
6–9]. While studying several different transgenic and knock-
in/knockout rodent models of ELOVL4 (juvenile-onset
Stargardt-like macular dystrophy-3), we discovered that some
of the affected males bred poorly or not at all, depending on
the severity of the expression of the mutation. Consequently,
we examined the VLC-PUFA in their testes and discovered
that the poor-breeding ELOVL4-affected animals had

Fig. 1 Schematic of the biosynthesis of n3 and n6 VLC-PUFA from
shorter chain polyunsaturated fatty acids. Pathways of in vivo very long
chain polyunsaturated fatty acid (VLC-PUFA) biosynthesis from essen-
tial fatty acids (EFA) 18:3n3 and 18:2n6 mediated by ELOVL4 and other
ELOVL enzymes. Desaturation and elongation of the EFAs are per-
formed by fatty acid desaturase-1 (FADS1 or Δ5 desaturase), fatty acid

desaturase-2 (FADS2 or Δ6 desaturase), and ELOVL1-5. Apart from
ELOVL4, which mediates C28-C36 VLC-PUFA biosynthesis, other
ELOVL enzymes are nonspecific or multifunctional and act at several
steps. Reproduced with permission from Man Yu et al., (2012). J. Lipid
Res. 53:(3) 494–504
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significantly reduced levels (unpublished data). Knowing that
lipids play integral roles in energy production and membrane
structure, we hypothesized that a subset of human males who
suffer from poor fertility would have comparatively low levels
of VLC-PUFA in their sperm. The objective of our study was
to determine if levels of VLC-PUFA in the sperm correlate
with sperm quantity and quality as determined by a complete
semen analysis.

Materials and methods

Institutional review board approval was received from the
University of Oklahoma Health Sciences Center and the study
has been performed in accordance with the ethical standards
as laid down in the 1964 Declaration of Helsinki and its later
amendments. This prospective cohort study enrolled males
age 18–55 presenting for semen analysis at an academic fer-
tility center. Subjects were excluded if they were unable to
provide a sample, had a current history of sexually transmitted
disease, used testosterone or anabolic steroids in the last
2 years, had a history of vasectomy or known testicular ob-
struction, or had a history of retrograde ejaculation.

In all cases, semen was collected by masturbation and proc-
essed after liquefaction had occurred. Sperm count and motility
was conducted according to the World Health Organization
(WHO) 5th edition for semen evaluation [10]. After thorough
mixing, semen volume was determined using a serological pi-
pette and pH was determined using a commercial strip of pH
paper (pHydrion, Micro Essential Laboratory, Brooklyn, New
York) by comparison to a color standard. Each sample was
given a viscosity score of 0, 1, or 2 (normal, slightly thick,
and thick, respectively) using a wide-bore pipette and assessing
flow of the semen column. Seven microliters of semen was
placed in a pre-warmed Microcell counting chamber
(VitroLife, Göteborg, Sweden) and allowed to equilibrate for
at least 1 min on a 37 °C stage warmer. Sperm concentration
(million/ml) and motility (percent) were then determined. The
rate of forward progression (RFP) was scored was scored as 0
to 4; (0, no motility; 1, sluggish or poor motility; 2, moderate
motility; 3, good motility and 4, vigorous or rapid motility),
according to the American Association of Bioanalysts (AAB)/
College of Reproductive Biology (CRB) andrology proficiency
testing standards. Each sample was given an agglutination score
of 0, 1, or 2 for none, some/mixed, and complete, respectively.
The total motile sperm count (TMSC) was calculated using the
formula Bvolume × count × motility.^ For strict morphology
(Kruger) [11], approximately 10 μl of semen was placed on a
clean glass slide, spread evenly, and allowed to dry completely
and then stained with Stat III andrology stain (Mid-Atlantic
Diagnostics, Mount Laurel, New Jersey). A minimum of 200
sperms were then counted at 100× under oil immersion and the

percent normal forms was recorded. Following clinical semen
evaluation, the remaining sample was stored at − 80 °C.

Lipid extraction A 100 μl aliquot of sample was spun at 4 °C
for 12 min at 9000×g to pellet the sperm cells, and the super-
natant was discarded. Total lipids were extracted from the cell
pellets using the method of Folch et al. [12] and stored under
nitrogen at − 20 °C.

Sphingomyelin analysis Total lipid extracts were subjected to
mild base hydrolysis to hydrolyze phospholipids. The resulting
mixture was then extracted with chloroform:methanol to obtain
the intact sphingolipids [13]. The resulting lipid extract was
dried under nitrogen and resuspended in 200 μl of 2-propanol/
methanol/chloroform (4:2:1 v/v/v) containing 20 mM ammoni-
um formate and 0.5 μM SM (d18:1/12:0) as internal standard.
Samples were introduced into a TSQ Ultra triple quadrupole
mass spectrometer (Thermo Scientif ic, Waltham,
Massachusetts) using a nanomate chip–based nano-ESI source
(Advion Biosciences, Ithaca, New York) operating in infusion
mode and SM species were measured using precursor ion scan-
ning of m/z 184 [14]. Abundances of SM molecular species
were calculated using the lipid mass spectrum analysis
(LIMSA) software (University of Helsinki) and are represented
as a relative percent of the sum based upon their response values.

Fatty acid analysis Fatty acid profiles were determined for
total lipid extracts. The internal standards 15:0 and 17:0 were
added and the lipid extracts were subjected to acid hydrolysis/
methanolysis to generate fatty acid methyl esters (FAME)
[15]. FAME were quantified using an Agilent Technologies
(Santa Clara, California) 7890B gas chromatograph equipped
with a flame ionization detector [16].

Statistical analyses Descriptive statistics such as mean, medi-
an, and variance were determined for each continuous vari-
able. Frequency counts were determined for categorical vari-
ables. Pair-wise Pearson correlation was calculated for each
measured clinical and lipid parameter. Values greater than |0.5|
are considered significantly correlated. The relationship be-
tween each pair of variables was examined using linear and
logistic regression models with and without consideration for
race and age.

Results

Seventy males were consented with an average age of 33 years
old (range 23–53). The racial makeup of all participants was
as follows: American Indian 2.7%, Asian 2.7%, African
American 2.7%, Native Hawaiian/Pacific Islander 0.9%,
White 81.3%, and unreported 9.8%. The mean semen analysis
parameters are listed in Table 1. The standard deviations were
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large in most categories, especially in count and TMSC,
reflecting the heterogeneity of the population being studied.

Analysis of the SM molecular species of sperm cells from
70 human participants was performed. The relative percent of
each SM species for each sample was calculated (Fig. 2;
Online Resource 1) to determine the amount of VLC-PUFA-
SM present. VLC-PUFA-SM species having 28–34 carbon

fatty acids were detected, with 28 and 30 carbon VLC-
PUFA being the most abundant. For comparison purposes,
the percentages of all individual VLC-PUFA-SM were
summed (∑ VLC-PUFA-SM). The sum of all VLC-PUFA-
SM species made up anywhere from 0 to 6.1% of the overall
SM pool, with the average being 2.1%. The most abundant
SM species was SM (16:0), averaging 47.1%. Saturated fatty
acid–containing SM collectively made up 82.1% of the over-
all SM pool, on average. The most abundant monounsaturated
fatty acid–containing SM was SM (24:1), averaging 6.4% of
the overall SM pool. Interestingly, DHA (22:6n3) was not a
component of SM.

The fatty acid profile of the sperm cell pellet total lipid
extracts was likewise measured (Fig. 3; Online Resource 2).
The most abundant fatty acids were the saturates 16:0 (46.6%)
and 18:0 (23.4%). DHA (22:6n3) was the third most abundant
fatty acid with an average value of 9.1 relative mole percent.

Pair-wise Pearson analysis (Online Resource 3) was used to
compare the∑VLC-PUFA-SM to results from the semen anal-
ysis (volume, count, motility, RFP, agglutination, viscosity,
TMSC, morphology, and pH) performed on the same sample
to look for correlations. The pair-wise Pearson analyses showed
that lower levels of VLC-PUFA-SM positively correlated with
lower TMSC (0.68; p < 0.0001) and lower total count (0.67;
p < 0.0001), with no differences attributed to race or age.
Linear regression analysis confirmed these findings (Fig. 4),
showing a positive correlation between VLC-PUFA in SM
and sperm count (p < 0.0001) and sperm motility (p < 0.0001).

Discussion

We found that lower levels of VLC-PUFA strongly corre-
lated with decreased sperm count and decreased total mo-
tile sperm count. The chance to conceive increases with

Fig. 2 Molecular species composition of human sperm sphingomyelin
(n = 70). Values are relative percent of each sphingomyelin (SM) species
± standard deviation. The value in parenthesis represents the amide-
bound fatty acid in the SM molecule. The number to the left of the colon
represents the number of carbons in the fatty acid and the number to the
right of the colon represents the number of double bonds in the fatty acid.
∑ VLC-PUFA-SM = sum of VLC-PUFA-containing sphingomyelin
(SM) species

Fig. 3 Fatty acid profile of sperm pellet total lipid extract (n = 70). Values
are relative mole percent of each species ± standard deviation. The
number to the left of the colon represents the number of carbons in the
fatty acid and the number to the right of the colon represents the number
of double bonds in the fatty acid

Table 1 Semen analysis (n = 70)

Sperm parameters Mean ± Stdevd Range

Volume (ml) 3.0 ± 1.5 0.1–6.5

pH 7.5 ± 0.4 6.6–8.0

Count (million/ml) 37.2 ± 33.7 0.1–176

% Motility 46.9 ± 15.6 0–73

Rate of forward progressiona 2.0 ± 0.3 0–3

Agglutinationb 0.5 ± 0.5 0–2

Viscosityc 0.4 ± 0.6 0–2

Total motile sperm count (million) 52.8 ± 49.5 0–216.2

Morphology (% normal) 4.6 ± 2.9 0–11

a The rate of forward progression (RFP) was scored as 0 to 4)
b Each sample was given an agglutination score of 0, 1, or 2 for none,
some/mixed, and complete, respectively
c Viscosity score of 0, 1, or 2 was assigned for normal, slightly thick, and
thick, respectively
d StDev = standard deviation
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higher sperm concentrations [17, 18]. Total motile sperm
count also positively correlates with the chance of preg-
nancy in infertility treatments such as intrauterine insemi-
nation (IUI), a treatment frequently recommended for idi-
opathic male infertility [19, 20]. The semen analysis is a
superficial external view of the sperm quantity and quality.
There are not reliable and reproducible tests for sperm
function such as capacitation, the acrosome reaction, bind-
ing and penetration of the zona pellucida, and ultimately
fertilization [21]. VLC-PUFA-containing sphingomyelin
are concentrated in the head of the spermatozoa and under-
go changes with capacitation, thereby playing a role in
fertilization [22]. The VLC-PUFA content of the sperm
plasma cell membrane is crucial for stability of the mem-
brane, and varying levels of VLC-PUFA have resulted in
changes in the cell membrane fluidity, flexibility, and/or
rigidity [23, 24]. Certainly, the components of the sperm
plasma membrane play an important role in sperm devel-
opment as well as sperm function.

The lipids of sperm are relatively unique in that they contain
many different sphingolipids that have long-chain polyunsatu-
rated fatty acids (LC-PUFA) such DHA (22:6n3), EPA
(20:5n3), and AA (20:4n6), as well as very long chain PUFA
containing 28 or more carbons [1, 2]. Some studies in humans
found an association between sperm quality and the sperm
levels of n3 PUFA [25, 26]. In one study published in
Clinical Nutrition [27] proven fertile men (n = 78) were found
to have higher blood and spermatozoa levels of n3 PUFA.
Infertile men (n = 82) had significantly higher AA (n6)/
DHA(n3) andAA (n6)/EPA(n3) ratios that were both negative-
ly correlated with total sperm count, spermmotility, and sperm
morphology. Another study reported a positive correlation
(p < 0.001) between sperm motility and DHA levels [27].
Esmaeili et al. [5] reviewed the literature on dietary fatty acid
effects on sperm quality and concluded that there were

differences in n3 and n6 PUFA levels in sperm of fertile and
infertile men and that supplementation with DHA could im-
prove the quality of human sperm, although this was not
shown in all publications. Interestingly, there have been no
reported clinical trials to determine the efficacy of DHA sup-
plementation on male fertility using pregnancy and live births
as an outcome measure. Neither has there been any detailed
analysis of VLC-PUFA in human sperm from fertile and infer-
tile males.

VLC-PUFA are essential fatty acids (EFA) and must be
synthesized from shorter chain EFA that are derived from the
diet (Fig. 1). Delta-6 desaturase is an important enzyme in
PUFA biosynthesis and plays a key role in converting 18:3n3
to 18:4n3, and 24:5n3 to 24:6n3; the latter is then retro-
converted in peroxisomes to DHA (22:6n3). We collaborated
with a group at the University of Illinois Urbana and found that
male mice lacking delta-6 desaturase activity were infertile and
showed an arrest in spermatogenesis [4]. We showed in this
same study that dietary supplementation with DHA, a precur-
sor of VLC-PUFA, completely reversed the infertility and
sperm defects, which clearly established an essential role for
DHA in mouse fertility. However, at that time, we did not
appreciate the potential role of VLC-PUFA, products of elon-
gation of DHA, in fertility. Zadravec et al. [28] showed that
deletion of ELOVL2, the enzyme that converts C-22 PUFA to
C-24/26 PUFA (precursors of VLC-PUFA), also resulted in
mouse male infertility. In these mice, providing DHA did not
restore fertility, indicating that DHA deficiency in and of itself
is not the problem. Likely, it is the lack its elongation products
(VLC-PUFA). Rabionet et al. [29] were the first to show the
importance of VLC-PUFA in sperm maturation in mice; they
characterized a number of sphingolipids, mostly fucosylated,
several of which were composed primarily of VLC-PUFA.
Depletion of ceramide synthase-3 led to a significant decrease
in VLC-PUFA-containing sphingolipids and a loss of

Fig. 4 Linear regression analysis of % VLC-PUFA-SM (sum of VLC-PUFA-containing sphingomyelin) versus sperm count (million/ml) and total
motile sperm count (volume × count ×motility)
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spermatogenesis. However, they did not confirm infertility
with breeding studies.

To our knowledge, this is the first time that a correlation has
been made between the health of human sperm and VLC-
PUFA. Future studies should evaluate if fertilization rates in
in vitro fertilization correlate with levels of sperm VLC-
PUFA. Additionally, we need to evaluate pregnancy and live
birth as a consequence of VLC-PUFA and see if this improves
with supplementation. Future animal studies will focus on
ELOVL4 knockout mice and determine if fertility can be re-
stored through VLC-PUFA supplementation in their diet. If
successful, we would anticipate that some forms of human
male infertility could be reversed with VLC-PUFA treatment.
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