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Abstract

Passenger airline delays have received increasing attention over the past several years as airspace
congestion, severe weather, mechanical problems, and other sources cause substantial disruptions to a
planned flight schedule. Adding to this challenge is the fact that each flight delay can propagate to disrupt
subsequent downstream flights that await the delayed flights’ aircraft and crew. This potential for delays
to propagate is exacerbated by a fundamental conflict: slack in the planned schedule is often viewed
as undesirable, as it implies missed opportunities to utilize costly perishable resources, whereas slack is
critical in operations as a means for absorbing disruption. In this paper, we show how delay propagation
can be reduced by redistributing existing slack in the planning process, making minor modifications to the
flight schedule while leaving the original fleeting and crew scheduling decisions unchanged. We present
computational results based on data from a major U.S. carrier, showing that significant improvements
in operational performance can be achieved without increasing planned costs.

1 Introduction

Airline plans are made up of several costly and constrained resources such as aircraft and crews. These
resources link flights across the network, with each resource flowing from one flight to another. Adding to
this complexity is the fact that although each flight needs each type of resource, individual resources do not
necessarily stay linked throughout the network. For example, an aircraft and crew might be assigned to a
common flight at a particular point in the schedule, but assigned to separate flights at a later point.

One ramification of this linkage is the potential for delays to propagate. If one flight is delayed (for
example, because of a mechanical problem with the aircraft assigned to that flight), then a subsequent flight
might also be delayed because it is awaiting that inbound aircraft. The fact that resources can “split”
compounds this. In Figure 1 (explained in detail in [3]) we see how a single flight delay can spread to delay
several other flights as well.

Airline delays have increased substantially in the past 5 years (see Figure 2). The cost impact of these
delays is substantial, including excess fuel costs (from idling aircraft), overtime pay for crew members, costs
associated with re-accommodating misconnecting passengers, as well as the lost productivity of delayed
passengers.Furthermore, the Air Transport Association has estimated that there were a total of 116.5 million
delay minutes in 2006, resulting in a $7.7 billion increase in direct operating costs to the U.S. airline industry
(see Table 1).

There are many sources for flight delays, such as mechanical problems, weather delays, ground-hold
programs, and air traffic congestion. But the secondary delays that propagate from such root delays are also
quite substantial. For example, in November 2007, more than one-third of the delays at major U.S. airports
were the result of a late-arriving aircraft (Figure 3). Furthermore, there is a natural conflict stemming from
the fact that slack is typically viewed as negative from the planning perspective (i.e. a waste of resources), but
as positive from the operational perspective (i.e. an opportunity to absorb disruption rather than allowing
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it to propagate). The focus of our research is therefore on determining how to incorporate the operational
issues associated with delay propagation into the airline planning process.

Flight 1

Flight 6

Flight 2

Flight 3

Flight 5
cockpit crew

aircraft

aircraft

Origin = A
Destination = B

Sched. Dep. = 400
Sched. Arr. = 500
Root delay = 180

Origin = B
Destination = C

Sched. Dep. = 545
Sched. Arr. = 745

Slack = 545–500–35 = 10
Propagated delay = 170

Origin = B
Destination = D

Sched. Dep. = 550
Sched. Arr. = 775

Slack = 550-500-35=15
Propagated delay = 165 

Origin = C
Destination = F

Sched. Dep. = 900
Sched. Arr. = 1050

Slack = 900-745-35=120
Propagated delay = 50

Origin = D
Destination = H

Sched. Dep. = 1025
Sched. Arr. = 1150

Slack = 1025-775-35=215
No propagated delay

Origin = F
Destination = A

Sched. Dep. = 1090
Sched. Arr. = 1150

Slack = 1090-1050-35=5
 Propagated delay = 45

Off-duty
cockpit crew

Flight 7cockpit crew
aircraft

aircraft

Off-duty
cockpit crew

Origin = A
Destination = G

Sched. Dep. = 1260
Sched. Arr. = 1390

Slack = 1260-1150-35=75
 No propagated delay

Flight 8cockpit crew
aircraft

Nodes with no propagation

Nodes with propagated 
delay (disrupted flights)

Root node

Legend

Figure 1: An example of a delay propagating. In this example, a 180-minute delay in Flight 1 results in 430
minutes of delay in downstream flights.

Direct Operating $ Per Minute Annual Delay Costs
Costs (2006) ($ millions)
Fuel 28.31 3,296
Crew 14.25 1,659
Maintenance 10.97 1,277
Aircraft Ownership 9.18 1,069
Other 3.1 361
Total 65.80 7,663

Table 1: Direct costs of delays in the U.S. airline industry. Costs based on data reported by U.S. passenger
and cargo airlines with annual revenues of at least $100 million. Source: Air Transport Association

A key challenge in this research is the difficulty in trading off between planned costs (the cost of an airline
plan under the assumption that all flights occur as scheduled and without disruption) and operational costs
(the realized cost associated with the modified plan that is implemented in response to disruptions). Given
two different plans with varying planned costs, it is difficult to determine which of the two plans will perform
better operationally. Furthermore, it is also difficult to determine whether improvements in operational
performance outweigh increases in planned costs, given that the plan will be operated several times (often,
daily) over the planning horizon, and that potential disruptions may or may not occur during any given day.
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Figure 2: The increasing trend in delayed flights. Source: Bureau of Transportation Statistics.
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Figure 3: Delay causes among all major US airports in November 2007. Source: Bureau of Transportation
Statistics.
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Thus, even determining metrics for “robustness”, and then quantifying the value of these metrics (i.e. how
much planned cost a carrier should be willing to incur to improve these metrics), are challenging research
topics themselves that have yet to be adequately solved. The fact that the planning and operations processes
are functionally separate within most carriers, with each group’s incentives aligned with different objectives,
only serves to exacerbate the problem.

We therefore propose, as an interim step, to develop an approach that does not increase planned costs,
but can nonetheless improve operational performance. Specifically, we propose to modify flight departure
times so as to re-allocate the existing slack in the network. By re-timing flights, slack can be re-distributed
to those flight connections that are most sensitive to disruption and thus delay propagation. We limit the
time windows in which flights can be re-timed, so as to maintain existing revenue projections. Furthermore,
we restrict flight re-timings such that crew pairings remain feasible and do not change in cost. Finally,
we require that the same aircraft rotations be maintained. Our computational results, based on data from
a major U.S. carrier, demonstrate that this approach leads to significant improvements in expected delay
propagation without any associated increase in planned cost.

The primary contribution of our research is in developing models that can diminish delay propagation
in operations, without any increase in planned costs. Our proposed models can take into account delay
propagations caused by aircraft, crew members, connecting passengers, as well as other shared resources.
By demonstrating that the integrality of these models can be relaxed (i.e. that the models can be solved as
linear, rather than integer, programs), we are able to consider all down-stream impacts without sacrificing
tractability. The paper is outlined as follows: In Section 2 we review the related literature. We present models
for re-allocating slack in Section 3, as well as a simulation model to help validate the results. Computational
experiments are presented and analyzed in Section 4. Finally, Section 5 offers conclusions and suggested
areas for future research.

2 Literature Survey

In this section, we first briefly introduce the different steps in the airline planning process. Then we focus
on different approaches to address airline delays and present related literature.

2.1 Airline Planning Problems

The airline planning process is classically decomposed into four sub-problems: schedule generation, fleet
assignment, maintenance routing, and crew scheduling.

The objective of the schedule generation problem is to determine what markets, frequencies, and times
to fly in a given period of time, taking into account both forecasted demand data and available resources
(Berge [6]). The fleet assignment problem determines which type of aircraft should be assigned to each
flight, considering the demand and capacity constraints (Abara [1]). The maintenance routing problem is
primarily a feasibility problem that assigns specific aircraft to flights to ensure adequate opportunities for
required maintenance checks (Barnhart and Talluri [5]). The objective of the crew scheduling problem is to
find the most cost-effective assignment of cockpit or cabin crews to flights (Barnhart et al [4]).

These airline planning problems are complex and large-scale by nature. Therefore, they are often treated
as deterministic in order to achieve tractability, not taking into account the impact of delays and disruptions.
In the following subsection, we highlight some of the approaches taken to incorporate disruptions in the airline
planning process.

2.2 Robust Planning

Airline operations are subject to significant uncertainties. Disruptions often occur as a result of weather
conditions, unplanned maintenance issues, safety checks, security concerns, and more. The goal of robust
planning is to generate schedules that are less sensitive to these disruptions. This is a demanding task, given
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both the size and the uncertainty of the networks. There have been two major types of approaches to robust
airline planning in the literature.

In the first approach, a stochastic programming model is used to capture uncertainties. Yen and Birge
[26] developed a stochastic model for the airline crew scheduling problem and adopted a delay branching
algorithm to solve the resulting problem. Alternatively, Rosenberger et al [21] used a simulation model to
implement a stochastic approach for the crew scheduling problem and to evaluate recovery policies. Fuhr
[10] developed a stochastic model to evaluate the on-time performance of a given schedule.

The second approach to modeling disruptions is to define surrogate problems that inherit the stochastic
nature of the original problem. For example, Rosenberger et al [20] showed that fleet assignments with less
hub connectivity and more short cycles perform better in operational circumstances. Schaefer et al [22]
modeled the crew scheduling problem under uncertainty using approximated expected pairing costs. They
also defined a lower bound on the expected cost of the pairings. Klabjan et al [11] defined a regularity
measure as a way to capture robustness and considered maximizing this measure in addition to minimizing
total cost.

2.3 Recovery Models

While robust planning models try to avoid disruptions proactively, recovery models seek the best way of
reacting when disruptions do occur, so as to minimize their impact on the system and prevent propagation.
Therefore, recovery models are often studied within the robust planning context [21]. Clarke et al [9]
explained the role of an airline’s operations control center in mitigating the impact of irregularities on
operations. Yan and Yang [25] developed a framework to handle schedule perturbations caused by aircraft
breakdowns. Abdelghany et al [2] developed a decision support tool to automate crew recovery during
irregular operations. Lettovsky et al [15] developed a real-time recovery plan to restore a disrupted crew
schedule. Yu and Qi [27] have studied the recovery models used by United Airlines in the context of disruption
management. More extensive surveys of the literature on recovery models can be found in Kohl et al [12]
and Bratu and Barnhart [7].

2.4 Flight Re-timing Models

Perhaps the most closely related research to this paper is that of Stojkovic et al [23] and Lan et al [13], both
of whom also consider the use of flight re-timings to improve schedule performance.

In [23], the primary focus is on day-of-operations recovery activities. In particular, they focus on how
to modify an existing plan in order to recover from a set of minor disruptions. They require that crew
connections, rest requirements, aircraft connections, maintenance requirements, passenger connections, etc.
all be maintained. They permit not only changes to flight departure times (specifically, increases), but also
allow activities to be expedited. For example, the amount of time required to off- and on-load passengers
might be relaxed. The objective function then seeks to minimize the costs associated with extra resource
utilization (for example, as needed when expediting activities) and passenger inconveniences.

Lan et al [13] consider two problems, both related to our research. First, they consider how changes in
aircraft routings can be used to reduce the potential for delays to propagate via connecting aircraft. In this
case, they hold flight departure times constant but allow the assignment of aircraft (i.e. tail numbers) to
flights to change so as to better utilize the slack in the system to absorb disruption. In a separate problem,
they keep the aircraft routings fixed but allow flight times to vary within a limited time window. The
objective in this problem is to decrease the impact of delay on passengers’ ability to make flight connections.

Both of these papers serve to demonstrate how even minor schedule modifications can have significant
impact on system performance under disruptions, and help motivate our research.

The idea of using time windows in the airline planning context was first introduced by Levin [16].
Rexing et al [19] allowed scheduled flight departure times to vary within a given time window to improve
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flight connection opportunities and the cost-effectiveness of the fleet assignment. Stojkovic and Soumis [24]
considered the problem of simultaneously modifying the existing flight departure schedule and planning
individual work days (duties) while keeping planned aircraft itineraries unchanged. Mercier and Soumis
[17] considered an integrated aircraft routing and crew scheduling model which allows the departure time of
the flights to vary within a given time window. Burke et al [8] constructed a multi-objective optimization
model to improve schedule reliability as well as schedule feasibility by re-timing flights and permitting minor
changes in aircraft rotations while keeping the fleet assignments fixed.

We seek to extend this research by developing a flight re-timing model that focuses on minimizing the
propagation of root flight delays. Our approach permits the simultaneous consideration of interactions
between multiple resources (aircraft, crews, passengers, etc.) and follows the downstream propagation of
delays until absorbed. In particular, we are able to do so in a linear (rather than integer) program, which
has significant benefits in terms of computational performance. Because our model relies on a surrogate
objective function to approximate delay propagation, we also develop a simulation-based approach to mimic
the propagation of delays operationally. This simulation assists us in assessing the quality of our surrogate
objective function.

3 Models for Re-Allocating Planned Slack

3.1 Main Idea

Our goal is to improve the expected operational performance of a planned airline schedule without increasing
its planned cost. In particular, we want to re-time flight departures so as to re-distribute existing slack (the
scheduled connection time between two flights sharing a common resource minus the minimum turn time
between these flights) in the network, to make this slack available where it is most needed operationally.
Note that by moving a flight’s departure earlier, we increase the slack in its outbound connections, but
decrease the slack in its inbound connections (see Figure 4). Therefore, given a fixed amount of slack in the
schedule, we want to re-distribute this slack to where it can best be utilized, taking into account both the
current connection times (e.g. adding slack to a long connection is unlikely to provide significant benefit)
and also the likelihood of root delays, which determine how frequently the slack will be needed.

We limit the extent to which each flight can be re-timed in three ways. First, we maintain the feasibility
of the existing crew and aircraft assignments. Second, we protect connecting passenger itineraries. Third,
we do not permit flight times to be modified so substantially that the projected demand levels would change.
Although these restrictions limit the extent to which the schedule can be improved, we are nonetheless able to
provide an interim level of improvement (which we show to be non-trivial) that can be achieved immediately,
while researchers continue to study the broader challenges of how to quantify, value, and increase schedule
robustness through more drastic changes.

The decisions in our model are how much earlier or how much later to re-time each flight’s departure.
The constraints needed to enforce the limitations on how flights can be re-timed (so as to meet the three
restrictions outlined previously) are fairly straightforward, as is seen in the following sections. The challenge
lies in determining how to represent the objective function, so as to maintain tractability while providing a
solution that does in fact reduce delay propagation.

To explain our objective function (which is a surrogate for “robustness”), first consider a single flight
f . For this flight, we also have a set of relevant connections. For example, the aircraft assigned to flight f
might next connect to flight g, while the cockpit crew connects to flight h. In addition, the cabin crew might
connect to flight i, and flights j and k may represent key passenger connections. Each of these connections
has some (non-negative but possibly zero) scheduled slack. In our constraints, we enforce that the change in
departure time for flight f does not violate the minimum turn times for these connections – in other words,
this scheduled slack must remain non-negative.

But what happens if flight f is delayed in operations? For example, suppose its assigned aircraft has
a mechanical problem that takes 35 minutes to repair. In the absence of a recovery intervention, any
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available slack will be used to absorb this delay, with the residual delay (the delay beyond the available
slack) propagating to the connecting flights. In our example, if the slack between flights f and g is 40
minutes, then flight g will not be delayed, but if the slack between flights f and h is only 20 minutes, then
h will experience a 15 minute departure delay. If we move the departure time of flight f to be 15 minutes
earlier, then a 35 minute root delay to flight f will no longer propagate to impact flight h.

As a surrogate objective function, we propose to consider the sum of the impacts of each individual root
delay as it propagates downstream, weighting these delays by their relative probabilities. There are of course
limitations to this approach. First, we are not considering recovery decisions, which can impact how delays
propagate. Incorporating recovery is a sizeable challenge, largely due to the fact that recovery decisions are
not pre-defined but rather based on individual personnel’s prior experience and intuition. We nonetheless
suggest that incorporating some baseline rules for recovery interventions would be an important extension
of our model to consider. Second, we do not consider the interactions of root delays and, as a result, we
over-count propagation. For example suppose that the aircraft of flight f connects to flight g, while the crew
of flight h also connects to flight g. When we consider the impact of a root delay to flight f , we may capture
a downstream impact on flight g. The same will occur when we consider the impact of a root delay to flight
h. In reality, should these two root delays occur concurrently, then their effect on flight g will typically
not be additive. Of course, this over-counting will occur in both the original schedule and our proposed
alternative.

While these limitations will impact the quality of our results, we nonetheless suggest that our surrogate
function can improve over the existing schedule without increasing planned costs, enabling carriers to see
immediate improvements in their operational performance while the research community continues to seek
ways to provide further benefits. To support this hypothesis, we have developed a discrete-event simulation
model (presented in Section 3.4) to help assess the quality of our proposed solutions.

3.2 Single-Layer Model

We begin by presenting a single-layer model (SLM) for redistributing slack. This model only considers the
impact of disruptions one layer “downstream” - that is, on flights directly connected to the flight experiencing
the root disruption.

We present this model for two reasons. First, it provides a simple framework that will facilitate under-
standing of the more complex multi-layer model. Second, as demonstrated in section 4, even this simple
model can yield non-trivial benefits.

3.2.1 Notation

Sets

F set of flights
A set of all considered connections
M set of possible delay values (minutes) - here we assume that M is a discrete set

Parameters

k+
f ≥ 0 ∀f ∈ F the amount by which the departure time of flight f can be moved later

k−f ≥ 0 ∀f ∈ F the amount by which the departure time of flight f can be moved earlier
0 ≤ pm

f ≤ 1 ∀m ∈M , ∀f ∈ F the probability that flight f experiences a root delay of m minutes
sf1,f2 ≥ 0 ∀(f1, f2) ∈ A the slack between flights f1 and f2 in the original schedule

Decision Variables
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− k−f ≤ xf ≤ k+
f ∀f ∈ F

yf1,f2 ≥ 0 ∀(f1, f2) ∈ A
dm

f1,f2
≥ 0 ∀(f1, f2) ∈ A, ∀m ∈M

xf is the change in the departure time of flight f . This change is restricted to the specified range
[−k−f , k+

f ]. Note that a negative value for x means the flight is shifted earlier and a positive value for x
means that the flight is shifted later.

yf1,f2 corresponds to the new slack between flights f1 and f2, according to the modified schedule.

dm
f1,f2

corresponds to the delay that will propagate from flight f1 to flight f2 in the new schedule if there
is a root delay of m minutes imposed on flight f1.

3.2.2 Formulation

(SLM) min
∑

m∈M

∑
(f1,f2)∈A

pm
f1

dm
f1,f2

(1)

s.t.
yf1,f2 = sf1,f2 − xf1 + xf2 ∀(f1, f2) ∈ A (2)
dm

f1,f2
≥ m− yf1,f2 ∀(f1, f2) ∈ A, ∀m ∈M (3)

dm
f1,f2

≥ 0 ∀(f1, f2) ∈ A, ∀m ∈M (4)

− k−f ≤ xf ≤ k+
f ∀f ∈ F (5)

yf1,f2 ≥ 0 ∀(f1, f2) ∈ A (6)

The objective function (1) of SLM minimizes the expected value of the delay propagation by weighting
the probability of an m-minute delay on flight f1 times its propagation to f2, summed over all flight con-
nections (f1, f2) and delay lengths m. [Recall that, in this objective function, we consider only one layer of
propagation.]

Constraints (2) calculate the new slack (yf1,f2) between two flights. This is the old slack (sf1,f2) minus
the change in the departure of the first flight (xf1), plus the change in the departure of the second flight
(xf2). Note, as illustrated in Figure 4, that if flight f1 is moved earlier, then xf1 will have a negative value
and the slack yf1,f2 will therefore increase because we are subtracting this value. Constraints (6) ensure that
the connection stays feasible, i.e. that the slack remains non-negative.

Constraint sets (3) and (4) calculate how much delay would propagate from flight f1 to its outbound
connection f2 if f1 were to experience a root delay of m minutes. Specifically, the propagated delay is m
minus yf1,f2 (the root delay minus the new slack between the flights) unless this is negative, in which case
the delay is zero.

Finally, constraints (5) limit the amount by which flight times can be changed. Note that this is flight-
specific and can be used not only to restrict changes so that market share is not impacted, but also to
recognize gate limitations, slot restrictions, hourly departures (in which case the time window would be
zero), etc. Key passenger itineraries could be protected as well, by placing a lower value on the slack time
(y) between two connecting flights.

Claim: The solution to (2)-(6) will yield integer values of x.
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Linear Programming Formulation

• Constraints:

212121 ,, ffffff xxsy +−=

f1 f2
min turn original slack

original schedule

f1 f2
min turn original slack

modified schedule

0
1
<fx 0

2
>fx

new slack original slack

changes in departure times

Introduction Analysis approach Optimization model ResultsPart IFigure 4: Visualizing constraint (2): In this example, the departure of the first flight is shifted earlier by xf1 (which
is negative) and the departure time of the second flight is pushed forward by xf2 (which is positive). As a result, the
new slack (yf1,f2) equals the old slack (sf1,f2) minus xf1 plus xf2 .

Proof: In order to prove the claim, we need to show that the coefficient matrix presented by (2)-(6) is
totally unimodular. In that case, given that all elements in the right-hand-side vector of (2)-(6) are integer,
all the extreme points of (2)-(6) will be integer [18].

In order to show that the coefficient matrix defined by (2)-(6) is totally unimodular, it is sufficient to
prove that the coefficient matrix corresponding to constraints (2) and (3) – or equivalently, its transpose –
is totally unimodular. The constraints (4)-(6) are upper and lower bounds, which do not impact the claim.

We can re-write constraint (3) substituting (2), which yields:

dm
f1,f2

≥ m− sf1,f2 + xf1 − xf2 ∀(f1, f2) ∈ A, ∀m ∈M (7)

By transferring the variables to the left-hand-side we get:

dm
f1,f2

− xf1 + xf2 ≥ m− sf1,f2 ∀(f1, f2) ∈ A, ∀m ∈M (8)

Here we can see that the coefficient matrix (A) corresponding to constraint (8) has entries (aij) of only
-1, 0 and 1. Furthermore, we can partition the columns of this matrix into two sets: C1 includes the columns
corresponding to the d variables and C2 the columns corresponding to the x variables. We see that for
each row of this matrix, the summation of all the coefficients in C1 equals 1 and the summation of all the
coefficients in C2 equals 0. Therefore:

|
∑
j∈C1

aij −
∑
j∈C2

aij | ≤ 1 ∀i (9)

Therefore, A′ (the transpose of A) is totally unimodular, and thus A itself is also totally unimodular. �

This claim tells us that it is sufficient to solve SLM as an LP, rather than an IP, while still yielding
integer departure times. This has significant implications not only for the tractability of the model, but also
for our ability to extend it to include indirect downstream effects, as we see in the next section.

3.3 Multi-Layer Model

The model presented in section 3.2 only considers the impact of a root delay on the flight’s immediate
connections. Of course, these delayed connections can in turn delay their outbound connections as well if
there is not enough slack to fully absorb the disruption. In this section, we present a multi-layer model
(MLM) in which the downstream propagation of delays continues until they are fully absorbed.

To formulate this model, we must first define the notion of a propagation tree. For each root flight f0 and
each delay value m, the propagation tree represents the set of all downstream flights that could potentially be
delayed as a result of the root delay propagating. Note that because we construct these trees before re-timing
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the flights, we do not know for sure which flights will receive propagated downstream delays. Therefore the
propagation tree considers the “worst-case” scenario.

To construct a propagation tree for root flight f0 and delay value m, we look at each of its outbound
connections. For example, let f1 be the flight awaiting flight f0’s aircraft. We assume that f0 is moved to its
latest permitted departure time and f1 is moved to its earliest departure time – this creates the minimum
possible slack between each flight pair. Clearly, if a delay of length m does not propagate across this slack,
then it will not propagate across any re-timing of the flight pair. On the other hand, if it does, then the
connecting flight is added to the propagation tree. For each outbound connection that is added to the
propagation tree, we then look at all of its outbound connections, again assuming the minimum amount of
slack in the connection. Observe that for a given root flight f0, the propagation tree for a delay of length
m1 will be a subset of the propagation tree for the delay of length m2 > m1. Figure 5 presents two such
propagation trees, where the potential propagation from fi to fj is calculated as fi’s root delay minus the
slack between fi and fj plus the maximum amount by which the departure time of fi can be moved later
(k+

fi
) plus the maximum amount by which the departure time of fj can be moved earlier (k−fj

).

Nodes with no propagation

Nodes with propagated 
delay (disrupted flights)

Root node

Legend

f1

f2

f3

f4
cockpit crew
slack = 30

aircraft
slack = 30

cockpit crew
aircraft

slack = 45
f5

cockpit crew
aircraft

slack = 45

f1

f2

f3

f4
cockpit crew
slack = 30

aircraft
slack =30

cockpit crew
aircraft

slack = 45
f5

cockpit crew
aircraft

slack = 45
f6

cockpit crew
aircraft

slack = 60

f8

aircraft
slack = 60

f7cockpit crew
slack = 60

cockpit crew
aircraft

slack = 60
f9

f8

aircraft
slack = 60

f7cockpit crew
slack = 60Root delay: 

30 minutes

Root delay: 
60 minutes

potential propagation from f1 to f2:
30-30+15+15 = 30

potential propagation from f2 to f4:
30-45+15+15 = 15

potential propagation from f4 to f5:
15-45+15+15 = 0

potential propagation from f1 to f3:
30-30+15+15 = 30

potential propagation from f3 to f7 or f8:
30-60+15+15 = 0

potential propagation from f1 to f2:
60-30+15+15 = 60

potential propagation from f1 to f3:
60-30+15+15 = 60

potential propagation from f2 to f4:
60-45+15+15 = 45

potential propagation from f4 to f5:
45-45+15+15 = 30

potential propagation from f5 to f6:
30-60+15+15 = 0

potential propagation from f3 to f7:
60-60+15+15 = 30

potential propagation from f3 to f8:
60-60+15+15 = 30

potential propagation from f7 to f9:
30-60+15+15 = 0

Figure 5: Visualizing propagation trees: The propagation tree with root flight f1 and root delay 30 (T 30
f1 , above)

has fewer nodes compared to the propagation tree with root flight f1 and root delay 60 (T 60
f1 , below).

We define the following notation:

T m
f0

set of flights in the propagation tree associated with root flight f0 and root delay m (excluding f0)
rm
f0

(f) the parent node of flight f in T m
f0

.
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Based on this notation, we extend the single-layer model to the multi-layer model:

(MLM) min
∑

m∈M

∑
(f0∈F,f∈T m

f0
)

pm
f0

dm
f0,f (10)

s.t.
yf1,f2 = sf1,f2 − xf1 + xf2 ∀(f1, f2) ∈ A (11)
dm

f0,f ≥ m− yf0,f ∀(f0 ∈ F , f ∈ T m
f0

: rm
f0

(f) = f0), ∀m ∈M (12)

dm
f0,f ≥ dm

f0,rm
f0

(f) − yrm
f0

(f),f ∀(f0 ∈ F , f ∈ T m
f0

: rm
f0

(f) 6= f0), ∀m ∈M (13)

dm
f0,f ≥ 0 ∀(f0 ∈ F , f ∈ T m

f0
), ∀m ∈M (14)

− k−f ≤ xf ≤ k+
f ∀f ∈ F (15)

yf1,f2 ≥ 0 ∀(f1, f2) ∈ A (16)

There are two key differences between the single-layer model presented in section 3.2 and this model.
First, in the objective (10), we include not only the delay minutes that a root delay of m minutes on flight f0

imposes on f0’s immediate outbound connections, but also the propagated impact on all subsequent flights
in f0’s propagation tree.

Second, constraints (13) enforce the fact that the delay propagated to a flight downstream from the root
delay will be the amount of delay propagated to its parent minus the amount of slack between these flights.

This model is structurally quite similar to the single-layer model and exhibits the same integrality prop-
erty. The main difference is in size. For each flight in any given propagation tree, we have to add both a
new variable and a new constraint. As we observe in Section 4, however, the modified formulation remains
highly tractable for networks of a realistic size.

Claim: The solution to (11)-(16) will yield integer values of x.
Proof: The proof is similar to the one presented in 3.2. Here we argue that the coefficient matrix presented
by (11)-(13) is totally unimodular. (The constraints (14)-(16) again do not affect the integrality of the x
variables.)

As in the earlier proof, we can re-write constraints (12) by substituting in constraints (11), yielding:

dm
f0,f − xf0 + xf ≥ m− sf0,f ∀(f0 ∈ F , f ∈ T m

f0
: rm

f0
(f) = f0), ∀m ∈M (17)

Note that this constraint, which captures the relationship between the root flight and each of its “chil-
dren”, includes one d variable, with coefficient of 1, and two x variables, one with coefficient 1 and one with
coefficient -1.

Next we consider constraint set (13). First, suppose that f is a “grandchild” of f0 – in other words, its
inbound connection is f0’s outbound connection. Then by substituting (11) we get:

dm
f0,f ≥ dm

f0,rm
f0

(f) − srm
f0

(f),f + xrm
f0

(f) − xf (18)

and then by substituting (12) we get:

dm
f0,f ≥ m− sf0,rm

f0
(f) + xf0 − xrm

f0
(f) − srm

f0
(f),f + xrm

f0
(f) − xf (19)

Canceling and moving the variables to the left hand side of the constraint yields:
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dm
f0,f − xf0 + xf ≥ m− sf0,rm

f0
(f) − srm

f0
(f),f (20)

which again has one d variable with coefficient one and two x variables, one with coefficient 1 and one
with coefficient -1.

More generally, when f is a descendant of f0 in the propagation tree, substitution as above will yield:

dm
f0,f − xf0 + xf ≥ m−

∑
(f1,f2)∈Pm

f0
(f)

sf1,f2 (21)

as all the intermediate x variables cancel, with each intermediate flight on the path from f0 to f playing
the role of both parent and child. [In equation 21, Pm

f0
(f) is the set of all arcs (f1, f2) that form the path

from the root node f0 to f in the propagation tree T m
f0

.] Again, we see one d variable with coefficient 1 and
two x variables, one with coefficient 1 and one with coefficient -1.

Thus, using the same partitioning of the columns of the A matrix as the earlier proof, the sufficient
condition for total unimodularity follows directly. �

3.4 Simultaneous Delays Model

The models presented in Sections 3.2 and 3.3 rely on the use of a surrogate objective function to achieve
robustness. In particular, objective functions (1) and (10) attempt to minimize the total amount of prop-
agated delay in the flight network by looking at how each individual flight propagates delay. The primary
limitation of this approach is that it does not take into account the fact that multiple flight delays may occur
in the network simultaneously. As a result, propagated delay will in some cases be estimated inaccurately.
Figure 6 presents one such situation.

f0

f1

f2

aircraft

cockpit crew

Root delay: 
25 minutes

Root delay: 
30 minutes

Individual delays in f0 and f1 each can impact f2

Figure 6: An example of simultaneous root delays where the surrogate objective function overestimates the
delay propagations.

Given flights f0 and f1, both of which are parent (preceding) flights of f2, the objective function includes
the sum of the delays propagated from both f0 and f1. In scenarios where both f0 and f1 experience a root
delay simultaneously, however, f2’s delay should be the maximum of the two upstream delays, rather than
their sum.

Conversely, there are occasions where the surrogate objective function underestimates delay. For example,
as illustrated in Figure 7, when simultaneous root delays happen consecutively, their overall results can be
more disruptive than what the objective functions in (1) or (10) can estimate. In this figure, individual root
delays in f0 or f1 are not enough to delay f2. However, when f0 and f1 both experience a thirty-minute
delay, their delays can propagate to cause a ten-minute delay in f2.
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f0 f1 f2aircraft
slack = 20

cockpit crew
slack = 30

Root delay: 
30 minutes

Root delay: 
30 minutes

Individual delays in f0 and f1 do not affect f2, but simultaneous 
delays in both f0 and f1 will delay f2 by 10 minutes

Figure 7: An example of simultaneous root delays where the surrogate objective function underestimates the
delay propagations.

Given that both the original and the re-timed schedules suffer from these inaccuracies, it is not clear
how the overall reduction in delay propagation is affected. Therefore, we have developed a discrete-event
simulation model to provide further analysis into the overall effects of this approximation. This enables us
to compare how both the original and the optimized schedules perform when multiple flights in the network
incur root delays concurrently.

Note that we assume root delays to be additive, meaning that if a flight has previously incurred a
propagated delay, but additionally incurs a root delay, the total departure time is pushed back by the sum
of these values. For example, consider the case when a flight is delayed because it is awaiting its (delayed)
inbound aircraft. A weather delay or mechanical delay (i.e. a root delay) at the second flight would typically
not arise until after the incoming aircraft arrived, making these delays additive. On the other hand, when
two different upstream delays simultaneously affect a flight (e.g. its crew is delayed on one inbound flight and
its aircraft delayed on another), then the propagation will be the maximum of the two propagated delays,
rather than their sum.

To accurately simulate a given flight network using a discrete-event simulation, we require a source of
randomness that will be used to determine the amount of root delays incurred by each flight. To model these
delays, we have generated empirical distributions based on the origin airport of the departing flight, using
actual delay data spanning a 12-month period. Specifically, we filtered out all delays that were propagated
from an upstream root disruption. We then clustered the remaining delays by origin station and length of
disruption. The corresponding probability mass functions were used in both the simulation, to randomly
generate the initial root delays, and as coefficients in the objective functions of SLM and MLM.

Note that in a given flight schedule, there is no obvious “first flight” – because the schedule is repeating,
any particular flight can appear as both the root of one propagation tree and a downstream flight in another.
To address this complication, our simulation algorithm employs a recursive strategy that explores all flights
in a given network without requiring a sequential ordering [14].

The delay that a flight experiences consists of two parts – propagated delay (resulting from the need
to wait for delayed upstream resources such as cockpit crews, cabin crews and aircraft) and root delay
(associated with the flight itself, such as a weather delay). The propagated delay is computed by taking the
maximum delay across all of the inbound resources, then adding this to the root delay.

To compute the total propagated delay in the network, we first initialize all flights in the network to have
a propagated delay of zero and a root delay of zero. After this initialization stage, the propagation algorithm
proceeds by executing the following steps for each flight in the network.

We pick an arbitrary flight in the network to process and call upon the random delay generator to provide
a root delay for this particular flight. If this root delay is non-zero, we update the departure time of the
current flight to be the sum of the (current value of the) propagated delay and this additional root delay.
We then consider all outbound connections from this particular flight. For each connection, we determine
how much (if any) of the current flight’s delay would propagate to this child. We then check whether this
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propagated delay is larger than the connecting flight’s current propagated delay. If it is, we update the
connecting flight’s propagated delay. Next, we add this to the connecting flight’s root delay (which will be
zero if that flight hasn’t been processed yet) to determine its new departure time. Finally, we recursively
use this new departure time to update the propagated delay of its outbound connections, repeating until a
flight delay does not propagate.

This process repeats until all flights in the network have been processed and therefore exposed to the
possibility of incurring a root delay. Through the recursive nature of the algorithm, we are guaranteed to
explore every flight and every propagation tree, updating them with the appropriate amount of propagated
delay.

4 Computational Experiments

The objectives of our computational experiments were three-fold. First, we wanted to assess the run-time
performance of our models and determine their tractability. Second, we wanted to evaluate the extent to
which minor changes in flight times could impact the potential for delays to propagate – would the optimized
schedule have significantly less delay propagation than the original schedule? Third, we wanted to use
simulation to assess the accuracy of our surrogate objective function, i.e. our metric for delay propagation.
When multiple delays are allowed to occur simultaneously, as is the case in reality, does the our new schedule
still show improved performance over the original schedule?

Our computational experiments were conducted using data provided by a major U.S. carrier offering over
500 flights per day. We considered two different dates in 2007. For each of these dates, we were given the
flight schedule, cockpit crew schedules, and aircraft rotations. Thus, we were able to consider propagation
of delays associated with incoming aircraft and cockpit crews. [We did not include delays associated with
cabin crews or connecting passengers, due to lack of data.]

As a default, we assumed that each flight was allowed to be moved up to fifteen minutes earlier or
fifteen minutes later than its original departure time. Note that, in theory, this could impact crew costs and
feasibility. For example, if a duty were currently at its maximum allowed elapsed time and we moved the
departure time of the first flight of the duty earlier and/or moved the departure time of the last flight of the
duty later, then we would violate the elapsed time limit.

To account for this, we considered four different variations. In the first and most restrictive case, we
assumed that the first flight of any duty could not be moved earlier and the last flight of any duty could
not be moved later. This greatly limits the flexibility of the network. In both of the data sets considered,
most of the flights are either the first or last flights of their duty, and thus only about twenty-five percent of
the flights were allowed to move freely. Furthermore, this overly restricts the system: in a duty whose cost
is dominated by flying time, increasing the elapsed time by stretching the first and last flights slightly may
have no impact on cost, and the feasibility of the duty may be unchanged as well.

Therefore, we considered three additional instances, each progressively less restrictive. In these, the first
and last flights of the duty were only allowed to change by five minutes, by ten minutes, or by the same
fifteen minutes as all other flights in the network.

All code was implemented and run on an Intelr Pentiumr D 3.20 GHz CPU architecture using the C++
programming language. The optimization models were developed using CPLEX/Concert Technology and
solved using CPLEX 11.0 solver.
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4.1 Goal 1 – Tractability

Table 2 shows the size and run time of each problem instance solved. The first column of this table indicates
which of the two data sets is being considered. The second column indicates the restriction on first and last
flights in a duty (note that all other flights have a ± fifteen minute time window in all instances). The third
column indicates whether the single-layer or multi-layer model is being used. The fourth, fifth, and sixth
columns give the size of the model (in number of constraints, number of variables and number of nonzero
elements) and the final column gives the run time (in seconds).

Data Duty No. of No. of No. of Run
Set Restriction Model Constraints Variables Nonzeros Time
1 0 SLM 1,319 1,592 2,869 4
1 5 SLM 2,278 2,724 4,938 3
1 10 SLM 2,498 2,975 5,420 4
1 15 SLM 2,701 3,217 5,867 4
1 0 MLM 4,745 5,048 12,328 7
1 5 MLM 5,874 6,356 15,626 7
1 10 MLM 5,995 6,494 15,853 7
1 15 MLM 6,108 6,636 16,080 8
2 0 SLM 1,041 1,251 2,245 3
2 5 SLM 2,081 2,505 4,509 3
2 10 SLM 2,269 2,714 4,906 3
2 15 SLM 2,444 2,923 5,289 2
2 0 MLM 3,932 4,178 10,035 6
2 5 MLM 5,131 5,573 13,526 7
2 10 MLM 5,273 5,733 13,835 6
2 15 MLM 5,376 5,865 14,081 6

Table 2: Size of the instances and their corresponding run times.

Note that all run times are less than 10 seconds, suggesting that there is no computational limitation
on either model. Although the model size increases substantially when moving from the single-layer model
to the multi-layer model, the fact that the problem can be solved as an LP implies that tractability is not
sacrificed when using the more accurate model.

Finally, these results suggest that even if a significant number of additional connections were considered
(e.g. incorporating cabin crews, key passenger itineraries, etc), run times would remain tractable.

4.2 Goal 2 – Impact

Our second goal was to evaluate the potential improvements in delay propagation to be gained by re-timing
flights slightly. First, we began by computing two estimates of the propagated delay of the original schedules
– one using the objective function from the single-layer model and one using the more accurate objective
function from the multi-layer model. We then optimized the original schedules twice, once using each of the
two objective functions. Again, for each of these solutions, we computed both the SLM and MLM objective
estimates of delay propagation.

Table 3 presents these results. The first column specifies which of the two data sets is being analyzed.
The second column indicates how many minutes the first/last flights of a duty are allowed to change. The
next three columns present the objective function value of the original, single-layer optimal, and multi-layer
optimal schedules relative to the single-layer objective function. For the optimized schedules, (n%) indicates
the percent improvement over the original schedule, relative to the single-layer objective function. Likewise,
the following three columns represent the multi-layer objective function applied to the three schedules.

Observe that, as expected, the amount of propagation is larger for all scenarios when multiple layers of
propagation are taken into account. In addition, the single-layer optimal solution of course performs better
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Data Duty Evaluated w/ SLM Obj. Function Evaluated w/ MLM Obj. Function
Set Restr. Orig. Sch. SLM Opt. Sol. MLM Opt.Sol. Orig. Sch. SLM Opt.Sol. MLM Opt. Sol.
1 0 1,294.24 1212.89 (6.3%) 1231.07 (4.9%) 2,268.55 2156.22 (5.0%) 2104.95 (7.2%)
1 5 996.102 (23.0%) 1018.69 (21.3%) 1694.16 (25.3%) 1647.24 (27.4%)
1 10 859.65 (33.6%) 882.99 (31.8%) 1380.14 (39.2%) 1340.32 (40.9%)
1 15 756.49 (41.5%) 771.08 (40.4%) 1152.08 (49.2%) 1112.17 (51.0%)
2 0 1,192.81 1129.54 (5.3%) 1139.59 (4.5%) 2,037.05 1944.77 (4.5%) 1919.01 (5.8%)
2 5 912.88 (23.5%) 929.98 (22.0%) 1518.1 (25.5%) 1481.76 (27.3%)
2 10 782.05 (34.4%) 800.21 (32.9%) 1224.79 (39.9%) 1192.33 (41.5%)
2 15 678.61 (43.1%) 691.48 (42.0%) 1008.55 (50.5%) 973.816 (52.2%)

Table 3: Reduction in the objective function (potential delay propagation) – comparing different schedules

under the single-layer objective, while the multi-layer optimal solution performs better under the multi-layer
optimization.

It is interesting to note that there is not a dramatic difference between the single- and the multi- layer
schedules in their performance under the multi-layer objective function. This is presumably due to the fact
that the delays dissipate fairly quickly and thus the immediate outbound connection plays a dominant role.
[See [3] for an empirical analysis of the characteristics of propagation trees.] Therefore, minimizing the first
layer of delays will capture much of the possible benefits.

Finally, we observe that flight re-timing can have substantial improvements on the delay propagation,
ranging from approximately 5 percent for the most tightly restricted instances to approximately 50 percent
for the least restricted instances. Of course, there are several caveats that must accompany these results.
First, we did not take into account the delay propagation associated with cabin crews or any passenger
itineraries for which the second flight of the itinerary would be “held” for connecting passengers (these could
easily be incorporated, given available data, and would have little impact on run times). It is not clear what
impact these additions would have on the quality of the optimal solutions, as the changes would impact both
the original and the modified schedules. Second, we have not taken into account recovery decisions, which
again will affect propagation within both the original and the optimized schedules. Finally, we re-iterate
that our surrogate objective function over-counts propagation because it considers each delay one at a time.
We address this limitation through the use of a discrete-event simulation model in the next section.

4.3 Goal 3 – Validity

In order to better assess the impact of the fact that the surrogate objective function does not incorporate the
concurrency of delays in our optimization model, we simulated each of the schedules (the original schedule
and the re-timed schedules based on the single-layer and multi-layer models) using the same probability
distribution functions for the root delays as in the optimization models.

The results are summarized in Table 4. The first two columns describe the instance. The next three
columns give the ratio of the expected amount of delay propagation (in minutes), as estimated by 2000
replications of the simulation model, divided by the value of the surrogate objective function under the
original or re-timed schedule.

As expected, the simulated values differ from the surrogate values. However, the ratio is fairly consistent,
suggesting that the impact of ignoring concurrent delays has comparable impact on both the original and the
re-timed schedules. Thus, it is not surprising that the simulated value of the re-timed schedules still demon-
strates a significant improvement over the simulated value of the original schedule. Table 5 demonstrates
this. The first two columns describe the instance. The next three columns give the expected amount of delay
propagation (in minutes), as estimated by the simulation model, for each of the three schedules. Columns
four and five also provide the relative improvement over the original schedule. Although these improvements
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Data Duty Simulation / Surrogate
Set Restriction Orig. Sch. SLM MLM
1 0 1.187 1.224 1.180
1 5 1.261 1.200
1 10 1.275 1.203
1 15 1.288 1.202
2 0 1.168 1.193 1.166
2 5 1.224 1.170
2 10 1.238 1.170
2 15 1.252 1.158

Table 4: Comparing the simulation results with the surrogate objective function value.

Data Duty Orig. Sch. SLM MLM
Set Restrictions Average Average Average
1 0 2692.1 2576.3 (4.3%) 2543.9 (5.5%)
1 5 2076.6 (22.8%) 2033.7 (24.4%)
1 10 1708.6 (36.5%) 1660.1 (38.3%)
1 15 1432.1 (46.8%) 1384.8 (48.6%)
2 0 2378.6 2289.0 (3.8%) 2266.7 (4.7%)
2 5 1813.9 (23.7%) 1776.4 (25.3%)
2 10 1476.6 (37.9%) 1433.0 (39.7%)
2 15 1219.3 (48.7%) 1167.8 (50.9%)

Table 5: Reduction in the delay propagation (simulation results) – comparing different schedules

are lower than the surrogate objective values, they nonetheless demonstrate a substantial opportunity for
reduction in delay propagation through minor flight re-timings.

4.4 Discussion

We conclude this section with a few final observations.

First, we note that changing flight times can make key passenger itineraries infeasible by decreasing the
connection time between them beyond that which is feasible for a passenger to connect. Such itineraries can
be protected by adding constraints of the form:

yf1,f2 = sf1,f2 − xf1 + xf2 (22)
yf1,f2 ≥ 0 (23)

which says that, for a protected itinerary (f1, f2), the time between the scheduled arrival of flight f1

and the scheduled departure of flight f2 must not decrease below the minimum passenger connection time.
Observe, however, that we do not include delay propagation from flight f1 to flight f2 in the model, because
we do not assume that flights are delayed to await connecting passengers.

Second, we observe that – as with any model – the re-timing solutions that result from our models will
only be starting points, which will need to be fine-tuned before implementation. In particular, although the
0-minute model may be overly restrictive in terms of maintaining the current crew costs and feasibility, the
15-minute model may result in some crew violations. These violations would have to be corrected manually,
but we suggest that substantial benefits can still remain even after these modifications.

Third, to partially reduce this post-processing, we suggest that one way to reduce crew infeasibilities
would be to identify the largest amount by which the length of the duty could increase without violating
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elapsed time limits and/or changing cost the dominant cost from the flight time to the elapsed time. Then,
for each duty, a constraint of form:

−xf ′ + xf ′′ ≤ emax − e (24)

could be used to ensure that the length of the duty not increase beyond this limit. In the above constraint,
f ′ and f ′′ are the first and the last flights of a duty respectively, e is the elapsed time of that particular duty,
and emax is the maximum elapsed time in a duty.

5 Conclusions and Future Research

Airline delays have significant negative impact on airline costs, passenger convenience and productivity, and
the environment. One major cause of delay is the down-stream propagation of initial delays to subsequent
flights. This issue is exacerbated by the fact that slack is undesirable from a planning perspective, as
it “wastes” costly resources, but is critical from an operational perspective, as it can be used to absorb
disruptions and prevent their propagation.

Addressing operational concerns in the planning process can be quite challenging, however. First, metrics
for evaluating the operational performance of a planned schedule must be developed. Second, cost functions
must be developed to trade-off planned and (anticipated) operational costs. Finally, these cost functions
must be incorporated in an already-challenging planning process. In particular, because delay propagation
spans across multiple resources, schedule design, fleeting, crew scheduling, and maintenance routing must
all be considered concurrently.

As an intermediate measure to partially decrease the propagation of delay while these other challenging
topics are studied by the research community, we propose to modify flight departure times within the
framework of an existing airline plan. By re-allocating the existing slack to those flight connections that
are most prone to delay propagation, we can reduce downstream impacts without changing planned crew
or fleeting costs and without changing revenue projections. Our computational results show significant
opportunities for improvement without any increase in planned costs.

Future research in this area of course includes the three issues raised above – metrics for evaluating
the robustness of a planned schedule, cost functions for computing the trade-off between planned costs and
anticipated operational costs, and methods for incorporating these cost functions in the planning process.
In the shorter time horizon, our research could be expanded by more explicitly addressing correlations
between different root delays. Finally, we are interested in including recovery decisions (e.g. canceling flights,
swapping aircraft, and calling in reserve crews) in our model to capture their impacts on the operational
performance of a planned schedule under disruptions.
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