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DECREASING MULTICOLLINEARITY

A Method for Models with Multiplicative Functions

KENT W. SMITH

Northwestern University

M. S. SASAKI

University of Michigan

When the multicollinearity among the independent variables in a regression model
is due to the high correlations of a multiplicative function with its constituent
variables, the multicollinearity can be greatly reduced by centering these variables
around minimizing constants before forming the multiplicative function. The

values of these constants that minimize the multicollinearity are derived, and the
conditions are identified under which centering the variables about their means
will reduce the multicollinearity. Among the advantages of this procedure are that
the mean square error remains at its minimum, that the coefficients for other
variables in the model are unaffected by it, and that the OLS estimates for the
original model can be calculated from those for the modified model. Thus, even
when estimates of the original model are desired, the procedure can be used to
reduce numerical error.

he problems created by multicollinearity among the
independent variables in least-squares regression are

by now well-known, and there is no need to go into a lengthy
litany of them. Briefly, as multicollinearity increases, the least-
squares estimates of the regression coefficients remain unbiased,
but the determinants of the independent variables’ covariance
and correlation matrices approach zero, and the standard errors
of the coefficients increase. Also, the expected distance between
the vector of least-squares coefficients and the vector of true
regression coefficients increase with some estimates frequently
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having either unreasonably large values or unreasonable signs.
Moreover, slight sampling fluctuations in the estimates of the
zero-order covariances can cause large swings in the values and
signs of least-squares estimates of the coefficients in the presence
of multicollinearity-a phenomenon someone once called the
problem of the &dquo;bouncing betas.&dquo; Apart from these statistical
problems of estimation, multicollinearity also creates a numerical
one: as the determinant of the covariance matrix decreases, the
rounding error in computing the inverse of the matrix, which is
needed for the least-squares estimates, increases. (For further
discussion of these problems, see the articles on ridge regression
cited below and, for example, Blalock, 1963; Gordon, 1968;
Althauser, 1971; and Rockwell, 1975.)

Perhaps the most frequently cited symptom of multicol-

linearity, large standard errors, is actually a function of both
multicollinearity, in the sense of high intercorrelations among
the independent variables, and large residual variance. We are
concerned here primarily with the former. The size of the stand-
ard errors can often be reduced by using larger or more efficient
samples and by increasing the numerical accuracy in one’s data;
however, reasonable applications of these tactics frequently do
not overcome the problems posed by the multicollinearity in-
herent in the models with multiplicative terms which we shall
be discussing.

Hoerl (1962) and Hoerl and Kennard (1970a, 1970b) have
proposed ridge regression as one way of overcoming the prob-
lems of multicollinearity. (For practically oriented didactic
articles on ridge regression, see Marquardt and Snee, 1975; and
Deegan, 1975. See also Henry, 1976.) The improvements sug-
gested recently by Guilkey and Murphy (1975) and Kasarda and
Shih (1977) make ridge regression even more attractive; however,
it is not necessarily the final answer to all problems of multi-
collinearity. A few limitations and disadvantages, in addition to
those discussed by Deegan (1975) and Henry (1975), are worth
mentioning. First, ridge regression may require considerable
computational time if there are a large number of independent
variables. Even with Kasarda and Shih’s iterative procedure
(which eliminates the necessity of calculating a set of complete
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ridge-trace plots), the correlation matrix, with its diagonal ele-
ments augmented by the constant, must be inverted separately
for several diffferent values of the constant. Second, ridge regres-
sion does not provide a minimum mean-square error for the
model. While the proportion of variance explained may not be
the primary goal of regression analysis, one may not want to give
up the minimum mean-square error provided by least-squares
regression for the sake of more efficient estimates of the partial
regression coefficients. Finally, there is a characteristic that is
admittedly only occasionally a problem. The vector of least-
squares regression coefficients is a linear transformation of the
vector of the ridge coefficients; however, the transformation
involves the inverse of the observed correlation matrix. Thus,
if one wanted to calculate the unbiased least-squares coefficients
indirectly to circumvent the numerical rounding error in calcu-
lating this matrix inverse, one could not do so through ridge
regression.

In this article, we shall suggest an alternative means of over-
coming multicollinearity that does not have these disadvantages
of ridge regression. This alternative applies only to a limited, but
frequently encountered, set of models with an inherent multi-
collinearity problem (Althauser, 1971)-namely, models with
both &dquo;main&dquo; effects and multiplicative interaction terms. The
simplest of these models is the three-term one of the general form

in which X3 is the product of the two variables XI and X2:

X3 = XIX2. [2]

This product is often so highly correlated with its constituent
variables that it is difficult to separate the multiplicative effect
from the additive ones. Alone, the effect of X3 may be significant;
but it frequently becomes insignificant when the additive effects
/3t and /32 are added, as in model 1. Likewise, the additive effects
alone may be jointly significant but decrease the residual sum
of squares by an insignificant amount when added to a model



38

containing the constant and X3. (The statistical problems of
these models are explored also by Allison, 1977; and Southwood,
1978. Their discussions complement ours.)

SOME ALTERNATIVE MODELS
WITH MULTIPLICATIVE FUNCTIONS

Multiplicative functions such as X3 have been frequently used
to represent interaction effects, wherein the effect of one inde-
pendent variable on the dependent variable depends upon the
value of the other independent variable. The product of the two
variables, however, is only one of an infinite number of con-
tinuous two-variable functions representing interactions, not to
mention the infinite number of discontinuous functions as well.
For instance, the term /3(ao + lrIX1)e-X2 in a regression model
would also represent an interaction between Xi and X2. Our
theories and theory-like descriptions of processes are seldom
developed enough to suggest the specific form of an interaction;
indeed, we are usually very fortunate if our theorizing unam-
biguously explains or predicts merely the presence, or absence,
of an interaction between variables. (For a discussion of the
linkage of verbal formulations of interactions and algebraic
models, see Southwood, 1978.) Probably among the primary
reasons why the multiplicative function 2 has been widely em-
ployed are that it is very easy to calculate and that it is at least
somewhat sensitive to the presence of interactions of a wide range
of functional forms.

Even among models with multiplicative functions, model 1

with X3 is but one special case of the more general model

with

X4 = (Xi - C) (X2 - d) [4]

in which c and d are constants. In the commonly used model 1,
c and d are zero; but there usually is again no clear theoretical
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reason why they should be zero as opposed to some other values.
Indeed, one can at times make a good argument for their being
nonzero. Such an argument is in fact made at least implicitly
by some proponents of consistency effects. Centering the varia-
bles around any values within the range of sample observations
before forming their product means not only that the absolute
value of the effect increases with the deviations of both variables
from these central values, but also that the function will be posi-
tive if both variables deviate in the same direction and negative
if they deviate in opposite directions. In some instances, one
might substantively argue that c and d should be the means of
XI and X2 respectively so that the interaction effect increases
with the deviations of the variables from their expected values;
in others, one might argue that c and d should be the modes so
that the effect increases with deviations from the most frequent
values. No doubt there are cases in which arguments could be
made for other nonzero values as well, although usually the
choice will probably not be clearly dictated by substantive or
theoretical considerations.

In general, we suspect the function 4 with nonzero values of c
and d is more often substantively interpretable as an interaction ef-
fect than is function 2. There are, however, at least two cases in
which function 2 with zero c and d does have a clear interpre-
tation. The first is when both XI and X2 are dummy or indicator
variables for different categorized variables. In this case, the
coefficient Q3 corresponds to the interaction effect in the analysis
of variance for factorial designs. The second is when one variable,
say Xi, is a dummy variable and the other, X2, is an interval-level
variable. In this case, /33 represents the difference between the
regression coefficient for X2 in the group identified by the dummy
XI and that in the base-line group. But even in cases such as these
where one substantively wants estimates of the parameters in
model 1, numerical error can be minimized by, first, estimating
the parameters in model 3 using the minimizing values of c and d
that we shall develop, and then calculating the estimates for
model 1 from those for model 3. Using the procedure this way is
analogous to using orthogonal polynomials for testing and esti-
mating polynomial models.
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The estimates of the parameters for model 1 can be calculated
from those for model 3 because the two models are exact linear
functions of one another. Expressing model 1 in terms of model 3,

Notice that the coefficients for the multiplicative function are
unaffected by the values of c and d (equation 8). What are af-
fected are the interpretations and the consequent values of the
coefficients for XI and X2. More generally, estimates based on
any given pair of values for c and d can be used to calculate the
estimates for any other values of c and d.

Moreover, both models are alternative ways of stating the
model

in which

The equivalencies after the first equal signs are for model 3;
those after the second are for model 1. In other words, no matter
what the values of c and d are, adding function 4 (or func-
tion 2) to a two-variable additive model is equivalent to using
model 9. Stated in this form, the model has no additive effects
of XI and X2; it has instead only an effect for the product of their



41

deviations from a and y respectively. Stated this way, the model
can be interpreted as a &dquo;threshold&dquo; one. The parameter a is the
threshold level for Xi, above which XI contributes positively to
Y and below which it contributes negatively; and the parameter y
is the threshold level for X2.
Two general points should be made about models 1, 3, and 9.

First, becuase they are linear transformations of each other, they
are in one respect the very same model. But, perhaps equally
important, the three models represent very different ways of
describing this same dependency of Y on Xl and X2. They lend
themselves to different kinds of substantive interpretations,
and they vary in the ease and numerical accuracy with which they
can be estimated. Depending upon the values of c and d, models
1 and 3 can also lead to different conclusions about the statistical

significance of effects because the models can have different
levels of multicollinearity. (For an insightful discussion of the
problems of describing and interpreting coefficients more gener-
ally in multiple regression, see Mosteller and Tukey, 1977: 299-
303, 419-422.)
The threshold model 9 is not directly amenable to linear

estimation procedures; and it must be restated as either model 3
or its special case, model 1, before ordinary least-squares regres-
sion can be employed. Since our substantive theories are usually
not precise enough to suggest specific values of c and d, it seems
appropriate-at least for estimation-to fall back on numerical
considerations and to select the values which will minimize the

collinearity of the multiplicative function X4 with XI and X2 for
the given sample, rather than to assume a priori that these con-
stants should be zero.’ 1

In this article, these minimizing values of c and d are derived,
and the effects that they and other possible values can have on
multicollinearity in model 3 are explored. In what follows,
asterisks will be used to denote statistics and parameters relating
to model 3 with nonzero values of c and d; symbols without
asterisks refer to model 1 with X3 rather than X4.

This procedure for decreasing multicollinearity has several
attractive characteristics, some of which have already been
alluded to. First, as we shall see, the values of c and d that mini-
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mize the collinearity also make X4 uncorrelated in the sample
with Xl and X2. Thus, the estimates of {31 and {32 that are obtained
using model 3 and the minimizing constants are the same as those
obtained using a model containing only the additive effects of Xi
and X2 (just the first three terms on the right of models 1 and 3).
In effect, the procedure establishes an estimating and testing
hierarchy using the criterion of parsimony: additive effects
first followed by multiplicative ones. Again, the parallel with
orthogonal polynomials is clear.

Second, since the ordinary least-squares (OLS) estimates
b, of the {31 in model 1 can be expressed as linear functions of the
OLS estimates b* for model 3 and the constants c and d (equa-
tions 5-8), one can obtain the estimates b, without the numerical
errors caused by multicollinearity by calculating them indirectly
through the estimates b* and the minimizing values of c and d.
Third, for the same reason the variances and covariances of one
set of coefficients can be calculated from the variances and
covariances of the other set and the values of c and d. Fourth,
because models 1 and 3 are exact linear functions of one another,
OLS regression for model 3 with X4 produces exactly the same
coefficient of determination as does OLS regression of model 1
and exactly the same minimum value of the mean-square error,
assuming of course that the standard assumptions for OLS are
correct for model 1. Thus, there is no loss in predictive or ex-
planatory power when the procedure discussed here is used.

Fifth, the procedure is not limited to three-term models such as
models 1 and 3. If there are other variables in the model, the
procedure can be used to decrease the collinearity between the
multiplicative term and the variables comprising it without

affecting the estimates of the coefficients for the other variables
or the variances of these estimates.

AN INDEX OF MULTICOLLINEARITY

Before we can proceed, we need to adopt a quantitative meas-
ure of the degree of multicollinearity in a covariance or corre-
lation matrix. The collinearity of any two variables is clearly
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related to the size of their covariance or correlation, but we need
a single summary measure for the multicollinearity among all
the independent variables and functions as a set, not taken two
at a time. Following Rockwell (1975), we shall use the deter-
minant of the correlation matrix: the smaller it is, the greater is
the multicollinearity. Since the determinant of a matrix is equal
to the product of its eigenvalues, this criterion is closely associ-
ated with another common one, namely, the ratio of the matrix’s
largest to smallest eigenvalues. We shall use the determinant of
the correlation matrix rather than of the covariance matrix,
since the latter is greatly affected by the scales on which the
variables are measured and multicollinearity is something that
should be independent of the measurement scales. Measuring
annual income in thousands of dollars rather than hundreds of
dollars should not, for instance, affect the index of collinearity
between it and other variables. The correlation matrix is also
more relevant since the preferred numerical procedure for regres-
sion analysis, used by almost all computerized regression rou-
tines, works with the correlation matrix (see, for instance, Draper
and Smith, 1966: 142-149). The determinant of the correlation
matrix of just the independent variables and functions has the
further advantage that it distinguishes between the amount of
multicollinearity and the amount of the residual variance in the
model. For a given set of independent variables and functions,
the multicollinearity is the same regardless of the dependent
variable. We should note that our entire discussion is predicated
on the acceptance of this index of multicollinearity.
The following discussion is divided into four sections. After

setting forth some notation and establishing some basic relation-
ships, we shall see in part three that model 3 with X4 will have
less multicollinearity than model 1 only if the variance of X4 is
less than that of X3. In part four we shall derive the values of
c and d that will minimize the index of multicollinearity for a
given sample. Also in this section, we shall consider the condi-
tions under which setting c and d equal to the sample means of
X, and X2 will decrease the level of multicollinearity relative to
that with c and d set equal to zero. In part five we shall establish
the linear relationship between the variances and covariances of
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the OLS coefficients b, and those ot the b; and show that this

procedure for reducing the multicollinearity related to multi-
plicative functions does not affect the mean-square error, the
OLS coefficients for other variables, or their variances. Finally,
we shall close with an empirical example.

SOME BASIC RELATIONSHIPS

Since our ultimate interest is in the determinants of the cor-
relation matrices, let us begin with the variances and covariances
of our variables (and functions). One advantage of working with
variances and covariances rather than with uncentered sums of

squares and crossproducts is that the intercept terms {3o and
{3~ are independent of the centered independent variables and
can be omitted from most of our discussion. Once the other OLS
estimates are obtained, bo and bl can easily be calculated by the
familiar formulas.
We shall use the notation s,, to refer to the unbiased sample

covariance between X, and Xj and s,, to refer to the unbiased

sample variance of X,. At several points, we shall need to express
the variances and covariances involving X4 in terms of those
involving Xi, X2, and X3. Expanding equation 4 for X4 and sub-
stituting from equation 2 for X3,

X4 = X3 - dXt - cX2 + cd. [14]

Using equation 14 and the standard formula for the covariance
of a variable with a composite, the covariance of XI and X4 is

S14 = S13 - dsn - CS12. [15]

Similarly,

S24 = S23 - dS12 - CS22. [16]

The standard formula for the variance of a composite applied to
equation 14 gives us

S44 = S33 + d2S11 + C2 S22 - 2ds13 - 2CS23 + 2cds12. [17]
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Let S be the 3-by-3 covariance matrix for Xi, X2, a’nd X3 and
S* be the covariance matrix for Xi, X2, and X4. Also define the
matrix

From equations 15 to 17, it follows that S* = ASA’. The deter-
minant of S*, ~ S * ~ , consequently equals ~A~ ~ ~A~. Since A
is lower triangular,) A) equals the product of its diagonal ele-
ments, or 1.0; and S*) = ) 1 ~ .2

Thus, using X4 rather than X3 will not alter the determinant
of the covariance matrix. But will it alter the determinant of the
correlation matrix, our index of multicollinearity? The corre-
lation matrix R for Xi, X2, and X3 is simply the covariance
matrix S with every row and column divided through by the
corresponding standard deviation sl’, 12 . A basic theorem in linear
algebra is that multiplying any row or column of a square non-
singular matrix F by a constant k results in a determinant of
k ~ F ~ . Given the relationship between S and R, it follows that

Similarly, if R* is the correlation matrix for Xi, X2, and X4,
then

since S* ~ _ ~ S ~ . From equations 19 and 20 we can see that using
X4 instead of X3 will decrease the multicollinearity if and only if
S44 < S33.3
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REDUCING THE VARIANCE OF
THE MULTIPLICATIVE FUNCTION

To minimize the multicollinearity due to the multiplicative
function, we want to minimize the variance of X4. Treating the
variances and covariances in S as given constants for a par-
ticular sample of observations, we can see from equation 17 that
S44 is a continuous function of c and d. Differentiating equation 17
with respect to c and d, we obtain the partial derivatives

Setting the partial derivatives 21 and 22 to zero and solving for
c and d, we obtain as the values of c and d which minimize S44 :

The right-hand expressions in terms of the correlations r~ are
more easily used with the standard output of the popular sta-
tistical packages. An examination of the second partial deriva-
tives confirm that these values of c and d do indeed define a
minimum for S44.

Interestingly, we can see from equations 15 and 16 that as44/
ad = -2s14 and S44/ ac = -2s24. Thus, by setting the partial deriva-
tives to zero, we are also setting s14 and S24 to zero.4 Put somewhat
figuratively, ridge regression deals with multicollinearity by
increasing the height of the main diagonal, or ridge, whereas the
procedure described here deals with it by lowering the height of
the off-diagonal elements. One consequence of setting s14 and
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S24 to zero is that the OLS estimates 6 and b2 will be exactly the
same as they would be if the multiplicative function were omitted
from the model. Thus, setting c and d to their minimizing values
means that XI and X2 are allowed to account additively for all
the variance in Y that they can; the multiplicative function X4
merely works with the residual variance left over. Consequently,
this procedure does not find multiplicative interaction effects
at the expense of main effects.
As noted earlier, substantive considerations at times may

suggest that the multiplicative term should involve deviations
from means, that is, that c and d in equation 4 should be the
sample means XI and X2 respectively. Under what conditions
will a multiplicative function based on deviations from means
result in less multicollinearity than the function 2 based on raw
values of XI and X2? Since S33 is simply S44 with c = 0 and d = 0,
the problem can be stated more tractably as that of finding the
conditions under which S44 with c = Xl and d = X2 is less than S44
with c = 0 and d = 0.
From equation 17 for S44, we can see that the surface of the

function S44 is symmetrical with respect to the planes c = 0 and
d = 0. As a result of this symmetry, there is an easily calculated
set of such conditions. The value of S44 with c and d equal to the
means will be less if the absolute values of the partial derivatives
of s44 with respect to c and d are less at the point on the surface
defined by c = XI and d = X2 than are the absolute values of the
partials at the point defined by c = 0 and d = 0. At this latter
point where S44 = S33, aS44/ 8d = -2s13 and 8s44/8c = -2S23 (see
equations 21 and 22); similarly, at the point where c and d equal
the means, as4a/ad = 2X2si i - 2s13 + 2XIS12 and aS44/ aC = 2XIS22 -
2s23 + 2X2S12. Thus, the value of S44 with XI and X2 centered about
their means will be less than the value of S33 if and only if the
following two conditions are true:

(1) If s13 > 0, then 0 < X2sii + XIS12 < 2sl3; [25]
if S13 < 0, then 0 > 5~2s,l + )(tSi2 > 2sl3.

(2) If S23 > 0, then 0 < Xis22 + K2S12 < 2s23;
if S23 < 0, then 0 > X’iS22 + X2s12 > 2s23. [26]
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For most sets of data, these conditions are met; indeed, the
minimizing values of c and d will often be close to ki and X2.
However, there are some unusual combinations of means, vari-
ances, and covariances for which they are not true. In these
unusual cases, centering the variables about their means before
forming the multiplicative term will not, consequently, decrease
the multicollinearity.

Conditions 25 and 26 can also be used to determine the effect
on multicollinearity of any other set of values for c and d, by
merely replacing XI and X2 in conditions 25 and 26 with these
other values. Of course, one can always estimate the parameters
for model 3 using the minimizing values of c and d and then,
through linear transformations, obtain estimates of the pa-
rameters associated with any other values of c and d.

SOME IMPLICATIONS OF
THE LINEAR RELATIONSHIP OF THE b, AND b~

As we saw in equations 5 to 8, model 1 with Xi, X2, and X3 is a
linear transformation of model 3 with Xi, X2, and X4. Models I

and 3 are simply alternative ways of stating the same functional
relationship of Y with XI and X2. As a consequence, the sums
of squares explained by the two models are equal; and since they
both have the same degrees of freedom, the mean-square errors
for the two models are also equal. Furthermore, the variances
and covariances of one set of OLS estimates can be calculated
from those of the other set. For instance, substituting the OLS
estimates into equivalencies 5 to 8 and using the standard formula
for the variance of a sum,
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Finally, there is the fact that using X4 rather than X3 has no
effect on the OLS estimates of the regression coefficients for
other variables in an expanded model and none on the variances
of these estimates. For instance, let us say that we add a term for
variable X5 to both models 1 and 3, creating the expanded models
whose OLS estimates are respectively

Y=bo +b¡X¡ +b2X2 +b3X3 +bsXs +e, [31] ]

and

Y = b~ + b:X¡ + b;X2 + b;X4 + b;Xs + e. [32]

Substituting the values of X4 from equation 4 into model 32
and gathering terms,

Y = (b* + b~cd) + (b* - b4 d)X1 + (b* - b4 d)X2

+ b4 ¡X2 + bs Xs + e. [33]

Since equations 31 and 33 are both OLS solutions, it is imme-

diately evident from a comparison of the two that b* 5 does

indeed equal bs and that their variances are equal.

AN EXAMPLE

For an empirical example, we can use a model which Jackman
( 1974: 38-39) suggested, but which he did not analyze because of
the high multicollinearity in his data. The data are aggregate for
60 countries in 1960. The dependent variable, Y, is the Schutz
coefficient of income equality, reversed from its usual form so
that a high value indicates a high level of income equality (Jack-
man, 1975: 64-65; 1974: 37-38). The first independent variable,
Xi, is the normal logarithm of the energy consumption per
capita in 1960, measured in kilograms. The second independent
variable, X2, is Jackman’s (1975 : 64-65; 1974: 37-38) measure
of a country’s democratic performance in the period around
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1960. The values for Y and X2 were obtained from Jackman
(1975: 210-211, 216-218); those for Xi, from Taylor and Hudson
(1972: 326-328).

In the literature on the determinants of social equality, there
are several at least implicit suggestions that there may be an
interaction effect between the level of democracy in a country
and its level of economic development. Accordingly, Jackman
suggested using our model 1, including the multiplicative X3,
with the log of per capita energy consumption and the democratic
performance index. However, the high collinearity of X3 with
Xi and X2 make the OLS estimates for the model both un-
reasonable and unstable.

In the first four rows and columns of Table 1 are the correla-
tions and covariances of the three variables and the function X3.
On the diagonal of the matrix are the variances, below the
diagonal are the correlations, and above the diagonal are the
covariances; to the right of the matrix are the means. Note
especially the very high values of 0.852 and 0.907 for r,3 and r23.
The determinant of the correlation matrix for Xi, X2, and X3
is 0.00727; Haitovsky’s heuristic chi-square statistic for this
determinant (Rockwell, 1975) has a value of 0.417. We have here
an extreme case of multicollinearity.

In the first two columns of Table 2 are the OLS coefficients
and their standard errors from the regression of Y on Xi, X2,
and X3. At least two aspects of these results are of interest. First,
the partial coefficients for both log energy consumption per
capita and democratic performance indicate that these variables
have negative effects on income equality; and yet the zero-order
correlations, the estimates for the additive model containing
only /30, 01, and /32, other research, and common sense all strongly
suggest that their effects are positive. One suspects that we have
an instance of &dquo;bouncing betas.&dquo; Second, the standard errors
of the coefficients are all quite large relative to the coefficients,
even though the regression as a whole is significant well beyond
the 0.001 level (F = 14.750). The coefficient for the function X3 is
just significant at the 0.05 level (F = 4.016); that for X2 has a
descriptive significance of 0.065 (F = 3.555). The absolute value
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TABLE 1

Means, Variances (on Diagonal), Covariances (above Diagonal), and
Correlations (below Diagonal) for (Y) Schutz Coefficient, (X1) 1
Log Energy Consumption, (X2) Democratic Performance, (X3)

Raw Product of X1and Xz, (X4) Product with Minimum Variance,
and (X4’) Product Using Means

~~ .--

SOURCES The data for these calculations were taken Tram Jackman (1975 210-

211, 216-218) and Taylor and Hudson (1972 326-328).
N = 60 countries.

of the coefficient for log energy consumption per capita is only
about three-fourths the value of its standard error (p = .475).
We know that using X4 with some central values for c and d,

rather than X3, would keep the estimates for /31 and /32 (now (3;
and /32) positive, as they are in the simple additive model. Further-
more, in the literature discussed by Jackman, there is at least

partial support for basing the multiplicative function on devia-
tions from some central values. For instance, he quotes Cutright
(1965: 547; quote from Jackman, 1974: 39) as saying: &dquo;Again,
it is seen that nations with the lowest level of economic develop-
ment are not introducing social insurance programs even when
they have a positive PRI [Political Representativeness Index]
change.&dquo; This sentence implies that countries with negative
deviations for energy consumption and positive ones for demo-
cratic performance are likely to have less income equality than
would be expected from a simple additive model, and the func-
tion X4 in such a case would be negative. It should be noted,
however, that other consequences of incorporating X4 into the
model are not suggested by Jackman’s discussion. Do a positive
deviation for energy consumption and a negative one for demo-
cratic performance also tend to deflate income equality relative
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TABLE 2

Regressions of Schutz Coefficient of Income Equality, 1960, on
Log Energy Consumption, Democratic Performance, and

Three Alternative Multiplicative Functions

N = 60.

to that expected from an additive model; do two negative devia-
tions have the same positive interaction effect as do two positive
ones (they will, of course, have opposite additive effects in the
model)? Clearly, a serious substantive investigation using X4 to
represent an interaction effect shouid include a careful analysis
of the residuals. Such an analysis, however, is beyond the pur-
view of this article.

First, let us examine the regression results when the constants
c and d are set to the values that will minimize the multicol-

linearity. Using equations 23 and 24 and the figures in Table 1,
these values are c = 6.186 and d = 69.661. (These and the following
calculations were made with more significant figures than are
reported here and then rounded.) The variance, correlations, and
covariances for X4 using these values of c and d are given in the
fifth row and column of Table 1. The variance of X4 (388.003) is
considerably less than that of X3 (36,139.113); and, as expected,
the correlations of X4 with XI and X2 are both zero. The deter-
minant of the correlation matrix of XI, X2, and X4 is 0.677, and
the value of Haitovsky’s chi-square statistic is 64.657, a vast
improvement over the value of 0.417 for the matrix with X3.
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The results from the regression including this minimizing
X4 are given in the second pair of columns in Table 2. First, note
that the multiple R-square and the mean-square error are indeed
the same as in the first regression. Second, the coefficients for
log energy consumption per capita and for democratic per-
formance now have the expected signs. Also, their standard
errors have been reduced by more than a factor of four. The
coefficient for log energy consumption per capita is now very
significant with an F value of 24.833. The coefficient for demo-
cratic performance, however, has an F value of only 0.159, which
is consistent with Jackman’s findings. As noted briefly in the
section entitled &dquo;Reducing the Variance of the Multiplicative
Function,&dquo; the coefficients for these two variables are exactly
the same as those obtained in the regression of Y on just XI and
X2, without any multiplicative function.~ Their standard errors
in Table 2, however, are less since the addition of X4 has de-
creased the mean-square error.

Turning to the coefficient for X4, we see that the effect of X4
is larger than the additive effect of X2 (the standardized regression
coefficient for X4 is 0.200; that for X2 is 0.048). This is particularly
interesting in light of the fact that X4 is, in effect, working with
only the residual variance in Y left after X, and X2 have accounted
for all they can. The coefficient for X4 is again just significant
at the 0.05 level, suggesting that the possibility of an interaction
between log energy consumption per capita and democratic
performance should be explored more thoroughly, starting
probably with a careful analysis of residuals. Is there indeed
an interaction of a functional form that is only being partially
captured by this multiplicative function? It may be of interest to
note that adding X4 to an additive model provides a better fit
with the observed values of Y than does a logarithmic interaction
model (Jackman, 1974: 39-40).

Alternatively, since the coefficient for X2 is clearly insig-
nificant in the model with X4 (with c and d equal to either their
minimizing value or their sample means, as discussed next),
one might instead wish to explore the residuals from the model
including just Xl and X4.6 

6
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We can also set c and d equal to the means of Xi and X2 re-
spectively. Not much needs to be said about this exercise since
these data happen to be one of those instances in which the
means of XI and X2 (6.430 and 66.000 from Table 1) are very
close to the minimizing values of c and d (6.186 and 69.661). To
confirm that basing X4 on deviations from the means will reduce
the multicollinearity, we can check conditions 25 and 26. Using
the figures in Table 1, X2SIl + KIS12 = 216.519 and XIS22 + X2SI2 =
3341.870, which are very close to the values of S13 and S23 re-
spectively.
The product of deviations from means is identified in Table 1

as X4. Its variance, correlations, and covariances are given in the
sixth row and column of that table. Although its correlations with
Xl and X2 are not zero, they are close to it and are considerably
less than those for X3. Note also that the variance of X4 is only
fractionally greater than that of X4. The results of the regression
including this X4 are given in the last pair of columns in Table 2.
Not surprisingly, these results give essentially the same picture
as the regression with the minimizing values of c and d. The fact
that the coefficient for the multiplicative function is the same in
all three regressions, as is its standard error, merely illustrates
the algebraic equivalences developed in equations 8 and 30.

Finally, we can express all three sets of estimates in Table 2
in terms of the general model 9. Substituting the OLS estimates
into the equivalencies 10 to 13, our estimate of this general
model is

Y = 76.698 + 0.121 (X, - 5.937) (X:! - 25.787) + e.

Thus, in this restatement of our three four-term models, we
estimate 5.937 to be the &dquo;threshold&dquo; for log normal energy con-
sumption. Above this level, it contributes positively to the
multiplicative effect of it and democratic performance, and below
this level it contributes negatively. Likewise, 25.787 is our esti-
mate of the threshold for the democratic performance index.
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NOTES

1. Mosteller and Tukey (1977. 285-287) recommend a similar centering transforma-
tion to decrease collinearity in polynomial models

2. We are indebted to an anonymous reviewer for this proof, which is simpler and
more elegant than the one in our original manuscript.

3. Of course, in the case where X1 is an exact linear function of X2 and S is singular,
then &verbar;R&verbar; = &verbar;R*&verbar; = 0 regardless of the relative values of s33 and s44. But there is probably
something wrong with the conceptualization of the analysis if two variables that are

exact linear functions of each other are in the same regression model, and it is not reason-
able to expect any numerical procedure to rescue one from the muddle. We are concerned
here with high multicollinearity and very small determinants, not with singularity and
algebraically zero determinants.

4. John W. Tukey (personal communication) has suggested that one could decrease
the multicollinearity even more by using, instead of X2, X’2 = X2 + fX1, where f is chosen
to make zero for correlation of X’2 and X1, and then to use X4 = (X1 - c) (X’2 - d). We would
then have a complete hierarchical ordering of effects; the estimate of the effect for X1
would be unaffected by the addition of X’2 to the model, and the estimates for both X1 and

X’2 would be unaffected by the addition of X4. Since the substitution of X’2 for X2 is simply
a further linear transformation of model 3, one could readily calculate estimates of the
parameters for models 1, 3, or 9 from this one. If X1 and X2 were highly correlated, this
extension of the procedure would be useful. Since the extension is straightforward, there
is no need to explore it further here.

5. Our results do not agree exactly with Jackman’s ( 1974: 38; compare also 1975: 08)
because of rounding in the published data.

6. Using X’4 with c and d equal to the means, the fitted equation for just X1 and X’4
is Y = 44.771 + 5.358X1 + 0.112X’4 + e. Using equations 10 to 13 with &beta;2* = 0, this can be
restated in the threshold form of model 9: Y = 79.224 + 0.112(X1 - 6.430)(X2 - 18.144) + e.
For this model, the values of c and d that one uses do make a difference because, in ex-

panded form, the coefficient for X2 is constrained to be -c times the coefficient for the

product X1X2. The OLS function being fitted is, following the notation for model 3,
b0* + b1*X1 + b4*(X1 - c)(X2 - d). Expanded, this becomes (b0* + b4*cd) + (b1* - b4*d)X1 -
b4*cX2 + b4*X1X2. The constraint is in the last two terms.
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