Tôhoku Math. J. 43 (1991), 263-274

DECREASING NETS OF σ -ALGEBRAS AND THEIR APPLICATIONS TO ERGODIC THEORY

BRUNON KAMIŃSKI

(Received April 2, 1990, revised October 8, 1990)

Introduction. One of the important results in the classical ergodic theory is the following theorem of Rohlin and Sinai [10].

Let (X, \mathcal{B}, μ) be a Lebesgue probability space and let T be a measure preserving automorphism of it.

THEOREM A. There exists a sub- σ -algebra $\mathcal{A} \subset \mathcal{B}$ such that

(a)
$$T^{-1}\mathscr{A}\subset\mathscr{A}$$
,

(b)
$$\bigvee_{n=-\infty}^{+\infty} T^n \mathscr{A} = \mathscr{B}$$

(c)
$$\bigcap_{n=-\infty}^{+\infty} T^n \mathscr{A} = \pi(T) ,$$

(d)
$$h(T) = H(\mathscr{A} \mid T^{-1} \mathscr{A})$$

where $\pi(T)$ and h(T) denote the Pinsker σ -algebra and the entropy of T, respectively.

Every such σ -algebra is said to be perfect. Perfect σ -algebras have important applications to the investigations of mixing and spectral properties of automorphisms (cf. [9], [10]). Shimano [11], [12] investigated helices associated with a given perfect σ -algebra.

Theorem A has been generalized by the author in [3] as follows:

Let Z^d denote the group of d-dimensional integers, o the null vector of Z^d and \prec the lexicographical ordering of Z^d , $d \ge 2$.

An ordered pair (A, B) of nonempty subsets of \mathbb{Z}^d is called a cut if $A \cup B = \mathbb{Z}^d$ and for every $g \in A$ and $h \in B$ it holds $g \prec h$.

A cut (A, B) is said to be a gap if A does not contain the greatest element and B does not contain the lowest element.

Let Φ be a \mathbb{Z}^d -action on (X, \mathcal{B}, μ) , i.e., Φ is a homomorphism of \mathbb{Z}^d into the group of all measure preserving automorphisms of (X, \mathcal{B}, μ) . We denote by Φ^g the automorphism of (X, \mathcal{B}, μ) which is the image of $g \in \mathbb{Z}^d$ under Φ .

The following result, formulated in [3] in terms of measurable partitions, is an analogue of Theorem A for Z^d -actions.

THEOREM B. There exists a sub- σ -algebra $\mathcal{A} \subset \mathcal{B}$ such that

$$(a_1) \qquad \qquad \Phi^g \mathscr{A} \subset \mathscr{A} \qquad \text{for} \quad g \prec o ,$$

$$(b_1) \qquad \qquad \bigvee_{g \in \mathbf{Z}^d} \Phi^g \mathscr{A} = \mathscr{B} ,$$

$$(\mathbf{c}_1) \qquad \qquad \bigcap_{g \in \mathbf{Z}^d} \Phi^g \mathscr{A} = \pi(\Phi)$$

(d₁)
$$h(\Phi) = H(\mathscr{A} | \mathscr{A}^{-})$$
 where $\mathscr{A}^{-} = \bigvee_{g \prec o} \Phi^{g} \mathscr{A}$,

(e₁) for every gap (A, B) of Z^d it holds

$$\bigvee_{g \in A} \Phi^g \mathscr{A} = \bigcap_{g \in B} \Phi^g \mathscr{A} ,$$

where $\pi(\Phi)$ and $h(\Phi)$ denote the Pinsker σ -algebra and the entropy of Φ respectively.

Similarly as in the one-dimensional case \mathscr{A} is called a perfect σ -algebra of Φ . The essential difference between the one-dimensional and multidimensional concept of a perfect σ -algebra is contained in the condition (e₁) which one may call a continuity condition. It is shown in [5] that there exist σ -algebras satisfying (a₁)–(d₁) but not (e₁).

The paper [3] also contains applications of Theorem B. It would be interesting to know whether the results of Shimano have multidimensional analogues.

The definition of a perfect σ -algebra admits a more accessible form if we represent the considered action Φ by a *d*-tuple of natural automorphisms associated with Φ . For simplicity we will do this only in the case d=2.

Let T and S be automorphisms which are images under Φ of the vectors (1, 0) and (0, 1), respectively. Hence for $g = (m, n) \in \mathbb{Z}^2$ we have $\Phi^g = T^m \circ S^n$. Obviously, T and S commute. Then the conditions (a_1) - (e_1) may be written as follows:

$$(a_2) S^{-1}\mathscr{A} \subset \mathscr{A}, T^{-1}\mathscr{A}_S \subset \mathscr{A},$$

(b₂)
$$\bigvee_{n=-\infty}^{+\infty} T^n \mathscr{A}_S = \mathscr{B},$$

(c₂)
$$\bigcap_{n=-\infty}^{+\infty} T^n \mathscr{A}_S = \pi(\Phi)$$

$$(d_2) h(\Phi) = H(\mathscr{A} | S^{-1} \mathscr{A})$$

(e₂)
$$\bigcap_{n=-\infty}^{+\infty} S^n \mathscr{A} = T^{-1} \mathscr{A}_S,$$

where $\mathscr{A}_{S} = \bigvee_{n=-\infty}^{+\infty} S^{n} \mathscr{A}$.

Theorem B has been sharpened in [5] (see also [4]) in the following manner.

THEOREM C. If $\mathscr{H} \subset \mathscr{B}$ is a sub- σ -algebra which is a factor of Φ , i.e., $\Phi^{\theta} \mathscr{H} = \mathscr{H}$, $g \in \mathbb{Z}^d$, then there exists a sub- σ -algebra $\mathscr{A} \supset \mathscr{H}$ satisfying $(a_1), (b_1), (e_1)$ and

(c₃)
$$\bigcap_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A} = \pi(\Phi \big| \mathscr{H}) ,$$

$$h(\Phi|\mathscr{H}) = H(\mathscr{A}|\mathscr{A}^{-}),$$

where $\pi(\Phi | \mathcal{H})$ and $h(\Phi | \mathcal{H})$ denote the relative Pinsker σ -algebra and the relative entropy of Φ with respect to \mathcal{H} (for the definitions see Section 2).

A sub- σ -algebra \mathscr{A} satisfying the properties given in Theorem C is said to be relatively perfect with respect to \mathscr{H} . It is clear that a relatively perfect σ -algebra with respect to the trivial σ -algebra is perfect.

Theorem C has been used in [5] (see also [4]) to give an axiomatic definition of the entropy of a Z^{d} -action.

In this paper we use this theorem to show that the concept of a relative K-action given by Thouvenot [13] is an extension of the concept of a K-action in the sense of Kolmogorov. Using this fact, we prove that if \mathscr{H} is a factor having an independent complement \mathscr{H}^c such that the restriction of Φ to the space (X, \mathscr{H}^c, μ) is a K-action, then Φ is a relative K-action with respect to \mathscr{H} . We also show a formula for the direct product of relative Pinsker σ -algebras which implies that the product of relative K-actions is a relative K-action. This formula is an extension of that of Pollit [9] to \mathbb{Z}^d -actions. These results are obtained due to the property of the exchangeability of the order of taking suprema and intersections of nets of σ -algebras.

1. Decreasing nets of σ -algebras. Let (X, \mathcal{B}, μ) be a probability space, Sub \mathcal{B} the family of all sub- σ -algebras of \mathcal{B} and $\mathcal{N} = \mathcal{N}(X)$ the trivial sub- σ -algebra. All equalities between sets, functions, transformations and σ -algebras are to be interpreted up to a set of measure zero. For $\mathcal{A} \in \text{Sub } \mathcal{B}$ we denote by $L^2(\mathcal{A})$ the subspace of $L^2(X, \mu)$ consisting of functions measurable with respect to \mathcal{A} . The conditional probability of a set $A \in \mathcal{B}$ with respect to \mathcal{A} is denoted by $\mu(A | \mathcal{A})$. For $f \in L^1(X, \mu)$ we put

$$Ef = \int_X f d\mu$$
 and $||f|| = E|f|$.

Now, let P be a countable measurable partition of X and let \hat{P} be the sub- σ -algebra generated by P. We define the conditional entropy of P under \mathscr{A} as

$$H(P|\mathscr{A}) = E\left(-\sum_{A \in P} \mu(A|\mathscr{A}) \log \mu(A|\mathscr{A})\right)$$

and the entropy of *P* as $H(P) = H(P|\mathcal{N})$.

If $\mathscr{C} \in \operatorname{Sub} \mathscr{B}$, then we define the conditional entropy of \mathscr{C} under \mathscr{A} by the formula

$$H(\mathscr{C}|\mathscr{A}) = \sup H(P|\mathscr{A}),$$

where the supremum is taken over all countable measurable partitions P such that $\hat{P} \subset \mathscr{C}$ and $H(P) < \infty$.

It is easy to check that the last definition is equivalent to that of Jacobs [2].

If $\mathscr{A}_1, \mathscr{A}_2 \in \text{Sub} \mathscr{B}$, then the symbol $\mathscr{A}_1 \vee \mathscr{A}_2 (\mathscr{A}_1 \vee \mathscr{A}_2)$ means the smallest algebra (σ -algebra) containing \mathscr{A}_1 and \mathscr{A}_2 .

In the sequel we use the following two elementary properties of the conditional probability.

Let $\mathscr{C} \in \text{Sub } \mathscr{B}$ be fixed.

(1) For every $\mathscr{A} \in \operatorname{Sub} \mathscr{B}$ with $\mathscr{A} \supset \mathscr{C}$, $A \in \mathscr{B}$ and $C \in \mathscr{C}$, it holds

$$\mu(A \cap C \mid \mathscr{A}) = \mu(A \mid \mathscr{A}) \cdot \mathbf{1}_{C}.$$

(2) If \mathscr{A} , $\mathscr{D} \in \text{Sub } \mathscr{B}$ are such that $\mathscr{A} \vee \mathscr{D}$ and \mathscr{C} are independent, then for every $A \in \mathscr{A}$ it holds

$$\mu(A | \mathscr{C} \vee \mathscr{D}) = \mu(A | \mathscr{D}) .$$

Let *I* be a countable set directed by an ordering relation <. A net $(\mathscr{B}_t)_{t \in I}$ ((\mathscr{B}_t) for short) in Sub \mathscr{B} is said to be decreasing (resp. increasing) if $\mathscr{B}_s \supset \mathscr{B}_t$ (resp. $\mathscr{B}_s \subset \mathscr{B}_t$) for s < t.

Let (\mathcal{B}_t) be a decreasing net in Sub \mathcal{B} and let $\mathcal{B}_t \supset \mathcal{C}$ for all $t \in I$. Proceeding in the same way as in the proof of Lemma 2 in [6] we have:

LEMMA 1. $\bigcap_{t \in I} \mathscr{B}_t = \mathscr{C}$ if and only if for every $B \in \bigvee_{t \in I} \mathscr{B}_t$ it holds

 $\lim_{t \in I} \sup_{A \in \mathcal{B}_t} \| \mu(A \cap B | \mathscr{C}) - \mu(A | \mathscr{C}) \cdot \mu(B | \mathscr{C}) \| = 0,$

i.e., for any $\varepsilon > 0$ there exists $t_0 \in I$ such that

$$\| \mu(A \cap B | \mathscr{C}) - \mu(A | \mathscr{C}) \mu(B | \mathscr{C}) \| < \varepsilon$$

for each $t < t_0$.

The following result is a sharpening of Theorem 2 in [6].

THEOREM 1. If (\mathcal{A}_t) is a decreasing net in Sub \mathcal{B} such that $\bigvee_{t \in I} \mathcal{A}_t$ and \mathcal{C} are independent, then

$$\bigcap_{t\in I}(\mathscr{A}_t\vee\mathscr{C})=\bigcap_{t\in I}\mathscr{A}_t\vee\mathscr{C}.$$

PROOF. We define

$$\mathscr{A}_{\infty} = \bigcap_{t \in I} \mathscr{A}_{t}, \quad \mathscr{C}_{\infty} = \mathscr{A}_{\infty} \lor \mathscr{C}$$

and

$$\mathscr{B}_{t}^{\circ} = \mathscr{A}_{t} \underline{\vee} \mathscr{C} , \quad \mathscr{B}_{t} = \mathscr{A}_{t} \vee \mathscr{C}$$

for each $t \in I$. Let $s \in I$ be fixed. For any $B \in \mathscr{B}_s^\circ$, there exist sets F_1, \ldots, F_q from \mathscr{A}_s and pairwise disjoint sets D_1, \ldots, D_q from \mathscr{C} such that

$$B = \bigcup_{j=1}^q F_j \cap D_j \, .$$

First we shall prove that

(3)
$$\lim_{t \in I} \sup_{A \in \mathscr{B}_{t}^{\circ}} \| \mu(A \cap B | \mathscr{C}_{\infty}) - \mu(A | \mathscr{C}_{\infty}) \cdot \mu(B | \mathscr{C}_{\infty}) \| = 0.$$

Let $t \in I$ be fixed. Similarly as above for any $A \in \mathscr{B}_t^{\circ}$ there exist sets E_1, \ldots, E_p from \mathscr{A}_t and pairwise disjoint sets C_1, \ldots, C_p from \mathscr{C} such that

$$A = \bigcup_{i=1}^p E_i \cap C_i \; .$$

It follows from (1), (2) and the independence assumption that

$$\begin{split} \| \mu(A \cap B \big| \mathscr{C}_{\infty}) - \mu(A \big| \mathscr{C}_{\infty}) \cdot \mu(B \big| \mathscr{C}_{\infty}) \, \| \\ &= \left\| \sum_{i=1}^{p} \sum_{j=1}^{q} \left\{ \mu(E_{i} \cap F_{j} \cap C_{i} \cap D_{j} \big| \mathscr{C}_{\infty}) - \mu(E_{i} \cap C_{i} \big| \mathscr{C}_{\infty}) \mu(F_{j} \cap D_{j} \big| \mathscr{C}_{\infty} \right\} \right\| \\ &= \left\| \sum_{i=1}^{p} \sum_{j=1}^{q} \left\{ \mu(E_{i} \cap F_{j} \big| \mathscr{A}_{\infty}) - \mu(E_{i} \big| \mathscr{A}_{\infty}) \cdot \mu(F_{j} \big| \mathscr{A}_{\infty}) \right\} \mathbf{1}_{C_{i} \cap D_{j}} \right\| \\ &\leq \sum_{i=1}^{p} \sum_{j=1}^{q} \| \mu(E_{i} \cap F_{j} \big| \mathscr{A}_{\infty}) - \mu(E_{i} \big| \mathscr{A}_{\infty}) \cdot \mu(F_{j} \big| \mathscr{A}_{\infty}) \| \mu(C_{i} \cap D_{j}) \\ &\leq \max_{1 \leq j \leq q} \sup_{E \in \mathscr{A}_{t}} \| \mu(E \cap F_{j} \big| \mathscr{A}_{\infty}) - \mu(E \big| \mathscr{A}_{\infty}) \cdot \mu(F_{j} \big| \mathscr{A}_{\infty}) \| . \end{split}$$

Therefore for every $B \in \mathscr{B}_s^\circ$ and $t \in I$ it holds

$$\sup_{A \in \mathscr{B}_{t}^{\circ}} \| \mu(A \cap B | \mathscr{C}_{\infty}) - \mu(A | \mathscr{C}_{\infty}) \cdot \mu(B | \mathscr{C}_{\infty}) \|$$

$$\leq \max_{1 \leq j \leq q} \sup_{E \in \mathscr{A}_{t}} \| \mu(E \cap F_{j} | \mathscr{A}_{\infty}) - \mu(E | \mathscr{A}_{\infty}) \cdot \mu(F_{j} | \mathscr{A}_{\infty}) \| .$$

Hence using Lemma 1 we get (3). Now, let $B \in \bigvee_{t \in I} \mathscr{B}_t$ and let $\varepsilon > 0$ be arbitrary. Then there exists $s \in I$ and a set $B_{\varepsilon} \in \mathscr{B}_s^{\circ}$ such that $\mu(B \div B_{\varepsilon}) < \varepsilon/5$. If follows from (3) that there exists $t_0 \in I$ such that for $t < t_0$ and any $E \in \mathscr{B}_t^{\circ}$ it holds

(4)
$$\| \mu(E \cap B_{\varepsilon} | \mathscr{C}_{\infty}) - \mu(E | \mathscr{C}_{\infty}) \cdot \mu(B_{\varepsilon} | \mathscr{C}_{\infty}) \| < \varepsilon/5 .$$

Let $t < t_0$ and let $A \in \mathscr{B}_t$. Then there exists $A_{\varepsilon} \in \mathscr{B}_t^{\circ}$ such that $\mu(A \div A_{\varepsilon}) < \varepsilon/5$. It follows from (4) and basic properties of the conditional probability that

 $\| \mu(A \cap B \big| \mathscr{C}_{\infty}) - \mu(A \big| \mathscr{C}_{\infty}) \cdot \mu(B \big| \mathscr{C}_{\infty}) \| \leq 2\mu(A \div A_{\varepsilon}) + 2\mu(B \div B_{\varepsilon}) + \varepsilon/5 < \varepsilon .$

Thus for every $B \in \bigvee_{t \in I} \mathscr{B}_t$ it holds

$$\lim_{t\in I}\sup_{A\in\mathscr{B}_t}\|\mu(A\cap B\big|\mathscr{C}_{\infty})-\mu(A\big|\mathscr{C}_{\infty})\cdot\mu(B\big|\mathscr{C}_{\infty})\|=0.$$

Using again Lemma 1 we obtain the desired result.

REMARK 1. It is worth noting that Weizsacker [14] characterized decreasing sequences (\mathscr{A}_n) in Sub \mathscr{B} for which it holds

$$\bigcap_{n=0}^{\infty} (\mathscr{A}_n \vee \mathscr{C}) = \bigcap_{n=0}^{\infty} \mathscr{A}_n \vee \mathscr{C} .$$

Now, let (X, \mathscr{B}, μ) and $(\tilde{X}, \tilde{\mathscr{B}}, \tilde{\mu})$ be probability spaces and let $(X \times \tilde{X}, \mathscr{B} \otimes \tilde{\mathscr{B}}, \mu \times \tilde{\mu})$ be the direct product.

COROLLARY 1. If (\mathcal{A}_t) is a decreasing net in Sub \mathcal{B} and $\tilde{\mathcal{C}} \in \text{Sub } \tilde{\mathcal{B}}$, then

$$\bigcap_{t \in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{C}}) = \bigcap_{t \in I} \mathscr{A}_t \otimes \widetilde{\mathscr{C}}$$

PROOF. It is easy to see that the above equality is valid for $\tilde{\mathscr{C}} = \mathscr{N}(\tilde{X})$. Let now $\tilde{\mathscr{C}}$ be arbitrary. It follows from Theorem 1 that

$$\bigcap_{t \in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{C}}) = \bigcap_{t \in I} (\mathscr{A}_t \otimes \mathscr{N}(\widetilde{X}) \vee \mathscr{N}(X) \otimes \widetilde{\mathscr{C}}) = \bigcap_{t \in I} (\mathscr{A}_t \otimes \mathscr{N}(\widetilde{X})) \vee (\mathscr{N}(X) \otimes \widetilde{\mathscr{C}}) = \bigcap_{t \in I} \mathscr{A}_t \otimes \widetilde{\mathscr{C}} .$$

REMARK 2. The results given in Corollary 1 and the following lemma are announced in [9] without proofs.

LEMMA 2. For arbitrary $\mathcal{A} \in \operatorname{Sub} \mathcal{B}$ and $\widetilde{\mathcal{A}} \in \operatorname{Sub} \tilde{\mathcal{B}}$ it holds $(\mathcal{A} \otimes \tilde{\mathcal{B}}) \cap (\mathcal{B} \otimes \tilde{\mathcal{A}}) = \mathcal{A} \otimes \tilde{\mathcal{A}}$.

PROOF. It is enough to show that

$$L^2(\mathscr{A}\otimes\widetilde{\mathscr{B}}\cap\mathscr{B}\otimes\widetilde{\mathscr{A}})\subset L^2(\mathscr{A}\otimes\widetilde{\mathscr{A}}).$$

There exist orthonormal basis $(f_{\alpha})_{\alpha \in I}$ in $L^2(X, \mu)$, $(g_{\beta})_{\beta \in J}$ in $L^2(\tilde{X}, \tilde{\mu})$ and subsets $I_0 \subset I$, $J_0 \subset J$ such that $(f_{\alpha})_{\alpha \in I_0}$ is an orthonormal basis in $L^2(\mathcal{A})$, $(g_{\beta})_{\beta \in J_0}$ is an orthonormal basis in $L^2(\tilde{\mathcal{A}})$.

We put $h_{\alpha\beta} = f_{\alpha} \cdot g_{\beta}$, $(\alpha, \beta) \in I \times J$. It is clear that the sets $(h_{\alpha\beta}, \alpha \in I_0, \beta \in J)$, $(h_{\alpha\beta}, \alpha \in I, \beta \in J_0)$ and $(h_{\alpha\beta}, \alpha \in I_0, \beta \in J_0)$ are orthonormal basis in $L^2(\mathscr{A} \otimes \widetilde{\mathscr{A}})$, $L^2(\mathscr{B} \otimes \widetilde{\mathscr{A}})$ and $L^2(\mathscr{A} \otimes \widetilde{\mathscr{A}})$, respectively.

Let $f \in L^2(\mathscr{A} \otimes \widetilde{\mathscr{B}} \cap \mathscr{B} \otimes \widetilde{\mathscr{A}})$ and let $c_{\alpha\beta}$ denote the Fourier coefficient of f with

respect to $h_{\alpha\beta}$, i.e.,

$$c_{\alpha\beta} = E(f \cdot \overline{h}_{\alpha\beta}), \qquad (\alpha, \beta) \in I \times J.$$

Since $f \in L^2(\mathscr{A} \otimes \widetilde{\mathscr{B}}) \cap L^2(\mathscr{B} \otimes \widetilde{\mathscr{A}})$ we have $c_{\alpha\beta} = 0$ for $\alpha \notin I_0$, $\beta \in J$ or $\alpha \in I$, $\beta \notin J_0$, and f has the following Fourier expansions:

$$\sum c_{\alpha\beta} \cdot h_{\alpha\beta} = f = \sum c_{\alpha\beta} \cdot h_{\alpha\beta}$$

where the first sum is taken over all $(a, b) \in I_0 \times J$ and the second over all $(\alpha, \beta) \in I \times J_0$. Hence $c_{\alpha\beta} = 0$ for $(\alpha, \beta) \notin I_0 \times J_0$ and so $f = \sum c_{\alpha\beta} \cdot h_{\alpha\beta}$, where the sum is taken over all $(\alpha, \beta) \in I_0 \times J_0$. This means that $f \in L^2(\mathscr{A} \otimes \widetilde{\mathscr{A}})$ and the lemma is proved.

COROLLARY 2. If (\mathcal{A}_t) and $(\tilde{\mathcal{A}}_t)$ are decreasing nets in Sub \mathcal{B} and Sub $\tilde{\mathcal{B}}$, respectively, then

$$\bigcap_{t\in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{A}}_t) = \bigcap_{t\in I} \mathscr{A}_t \otimes \bigcap_{t\in I} \widetilde{\mathscr{A}}_t \ .$$

PROOF. If follows from Corollary 1 that

$$\bigcap_{t \in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{A}}_t) \subset \bigcap_{t \in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{B}}) = \bigcap_{t \in I} \mathscr{A}_t \otimes \widetilde{\mathscr{B}}$$

and similarly

$$\bigcap_{t\in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{A}}_t) \subset \mathscr{B} \otimes \bigcap_{t\in I} \widetilde{\mathscr{A}}_t .$$

Hence using Lemma 2 we get

$$\bigcap_{t\in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{A}}_t) \subset \bigcap_{t\in I} \mathscr{A}_t \otimes \bigcap_{t\in I} \widetilde{\mathscr{A}}_t .$$

Since the opposite inclusion is obvious, we get the desired result.

REMARK 3. It is not difficult to show that Corollary 2 is also valid for increasing nets of sub- σ -algebras.

We will also use in the sequel a property analogous to that given in Corollary 2, for increasing nets of σ -algebras.

REMARK 4. If (\mathscr{A}_t) and $(\widetilde{\mathscr{A}}_t)$ are increasing nets in Sub \mathscr{B} and Sub $\widetilde{\mathscr{B}}$ respectively, then

$$\bigvee_{t\in I} (\mathscr{A}_t \otimes \widetilde{\mathscr{A}}_t) = \bigvee_{t\in I} \mathscr{A}_t \otimes \bigvee_{t\in I} \widetilde{\mathscr{A}}_t ,$$

as can be easily proved.

2. Relative Kolmogorov Z^d -actions. Investigating measure preserving automor-

phisms of a Lebesgue space with the strong Pinsker property, Thouvenot has introduced in [13] an interesting class of factors of automorphisms—the so called entropy maximal factors. These factors have been also objects of investigations of Ornstein [8]. Lind used them in [7] for studying skew products on compact groups.

Now we recall the definition of these factors. Let T be an automorphism of a Lebesgue space (X, \mathcal{B}, μ) with $h(T) < \infty$.

A factor $H_T = \bigvee_{n=-\infty}^{+\infty} T^n H$ of T, where H is a finite partition of X, is said to be entropy maximal if for every finite partition P of X, the conditions

$$P_T \supset H_T$$
 and $h(P, T) = h(H, T)$

imply $P_T = H_T$.

Instead of saying that H_T is entropy maximal one says in [13] that T is a relative K-system with respect to H_T .

At first glance the concept of a relative K-system seems to have no connection with the traditional meaning of a Kolmogorov system (automorphism) for which there should exist some special exhaustive σ -algebras for the automorphism.

However, we will show that such a connection exists, not only for single automorphisms with finite entropy, but also for arbitrary Z^{d} -actions. In order to do so we introduce some concepts concerning Z^{d} -actions.

Let Φ be a \mathbb{Z}^d -action on a Lebesgue space (X, \mathcal{B}, μ) . Let $\mathcal{H} \in \text{Sub } \mathcal{B}$ be a factor of Φ . For a countable measurable partition P of X with $H(P) < \infty$ we put

$$h(P, \Phi | \mathscr{H}) = H(P | P^{-} \vee \mathscr{H}),$$

where $P^- = \hat{P}^-$.

For a given factor $\mathscr{C} \supset \mathscr{H}$ we define

$$h(\Phi/\mathscr{C}|\mathscr{H}) = \sup h(P, \Phi|\mathscr{H}),$$

where the supremum is taken over all partitions P with $\hat{P} \subset \mathscr{C}$ and $H(P) < \infty$.

By the relative entropy of Φ with respect to \mathscr{H} we mean $h(\Phi | \mathscr{H}) = h(\Phi / \mathscr{B} | \mathscr{H})$.

The smallest sub- σ -algebra containing all sub- σ -algebras \hat{P} , where P is a countable measurable partition such that $H(P) < \infty$ and $h(P, \Phi | \mathcal{H}) = 0$ is called the relative Pisker σ -algebra with respect to \mathcal{H} and is denoted by $\pi(\Phi | \mathcal{H})$.

It is clear that the sub- σ -algebra $\pi(\Phi|\mathscr{H})$ is a factor of Φ with $h(\Phi/\pi(\Phi|\mathscr{H})|\mathscr{H}) = 0$. We shall use in the sequel the following two results.

LEMMA 3 (cf. [5]). For every factor $\mathscr{C} \supset \mathscr{H}$ it holds

$$h(\Phi/\mathscr{C}) = h(\Phi/\mathscr{H}) + h(\Phi/\mathscr{C}|\mathscr{H})$$
.

DEFINITION 1. A σ -algebra $\mathscr{A} \in \operatorname{Sub} \mathscr{B}$ is said to be exhaustive if it satisfies the properties (a_1) , (b_1) and (e_1) of perfect σ -algebras.

LEMMA 4. If $\mathcal{A} \supset \mathcal{H}$ is exhaustive, then

$$\bigcap_{g\in\mathbf{Z}^d}\Phi^g\mathscr{A}\supset\pi(\Phi\big|\mathscr{H}).$$

If, in addition, $H(\mathscr{A} | \mathscr{A}^{-}) = h(\Phi | \mathscr{H}) < \infty$, then

$$\bigcap_{g \in \mathbf{Z}^d} \Phi^g \mathscr{A} = \pi(\Phi \big| \mathscr{H}) \; .$$

PROOF. The first part of the lemma is proved in [5]. Now let us suppose $h(\Phi|\mathscr{H}) < \infty$. Let P, Q be countable measurable partitions of X with $H(P) < \infty$, $H(Q) < \infty$, $\hat{P} \subset \mathscr{A}$ and $\hat{Q} \subset \bigcap_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A}$. The following equality is a relativized version of the Pinsker formula for \mathbb{Z}^d -actions.

(5)
$$h(P \lor Q, \Phi | \mathscr{H}) = h(Q, \Phi | \mathscr{H}) + H(P | P^{-} \lor Q_{\Phi} \lor \mathscr{H}),$$

where $Q_{\phi} = \bigvee_{g \in \mathbb{Z}^d} \Phi^g Q$. The proof of (5) is analogous to that given in [1] in the case $\mathscr{H} = \mathscr{N}$. Using (5) and the inclusions $\hat{P} \subset \mathscr{A}$, $Q_{\phi} \subset \mathscr{A}$, $\mathscr{H} \subset \mathscr{A}$ we get

$$h(\Phi|\mathcal{H}) \ge h(P \lor Q, \Phi|\mathcal{H}) = h(Q, \Phi|\mathcal{H}) + H(P|P^- \lor Q_{\Phi} \lor \mathcal{H})$$
$$\ge h(Q, \Phi|\mathcal{H}) + H(P|\mathcal{A}^-).$$

Hence

$$h(\Phi|\mathscr{H}) \ge h(Q, \Phi|\mathscr{H}) + H(\mathscr{A}|\mathscr{A}^{-}).$$

It follows from our assumption that $h(Q, \Phi | \mathcal{H}) = 0$, i.e., $\hat{Q} \subset \pi(\Phi | \mathcal{H})$. Thus we have shown the inclusion

$$\bigcap_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A} \subset \pi(\Phi \,\Big| \,\mathscr{H})$$

which completes the proof.

Now we formulate an extension of the definition of Thouvenot to Z^{d} -actions in our notation.

DEFINITION 2. A \mathbb{Z}^d -action Φ is called a relative Kolmogorov action (K-action for short) with respect to a factor \mathcal{H} of Φ (or \mathcal{H} is entropy maximal) if for every factor $\mathscr{C} \supset \mathcal{H}$ with $h(\Phi/\mathscr{C}|\mathcal{H}) = 0$ it holds $\mathscr{C} = \mathcal{H}$.

It follows immediately from Lemma 3 that in the case d=1 and $h(\Phi) < \infty$ our definition reduces to that of Thouvenot. It is clear that in the absolute case $(\mathcal{H} = \mathcal{N})$ it coincides with the definition of a \mathbb{Z}^d -action $(d \ge 1)$ with completely positive entropy and therefore (see [10] for d=1 and [3] for $d\ge 2$) with the definition of a K-action.

THEOREM 2. Φ is a relative K-action with respect to \mathcal{H} if and only if there exists an exhaustive sub- σ -algebra $\mathcal{A} \supset \mathcal{H}$ with $\bigcap_{a \in \mathbb{Z}^d} \Phi^g \mathcal{A} = \mathcal{H}$.

PROOF. Since $h(\Phi/\pi(\Phi|\mathscr{H})|\mathscr{H}) = 0$ our assumption implies $\pi(\Phi|\mathscr{H}) = \mathscr{H}$. It fol-

lows from Theorem C that there exists an exhaustive sub- σ -algebra $\mathscr{A} \supset \mathscr{H}$ with

$$\bigcap_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A} = \pi(\Phi \big| \mathscr{H}) \; .$$

Now, let us suppose $\mathscr{A} \supset \mathscr{H}$ is an exhaustive sub- σ -algebra with

$$\bigcap_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A} = \mathscr{H}$$

It follows from Lemma 4 that

$$\bigcap_{g\in\mathbf{Z}^d}\Phi^g\mathscr{A}\supset\pi(\Phi\big|\mathscr{H}),$$

i.e., $\pi(\Phi | \mathcal{H}) = \mathcal{H}$. If $\mathscr{C} \supset \mathcal{H}$ is a factor such that $h(\Phi / \mathscr{C} | \mathcal{H}) = 0$, then $\mathscr{C} \subset \pi(\Phi | \mathcal{H})$ and therefore $\mathscr{C} \subset \mathcal{H}$, i.e., $\mathscr{C} = \mathcal{H}$. Thus Φ is a relative K-action with respect to \mathcal{H} .

COROLLARY 1. Every Z^{d} -action Φ is a relative K-action with respect to the Pinsker σ -algebra $\pi(\Phi)$.

It is enough to take as \mathscr{A} in Theorem 2 an arbitrary perfect σ -algebra of Φ .

It is shown in [3] that if $h(\Phi) = 0$ then \mathscr{B} is the only exhaustive σ -algebra. Therefore in this case there are no nontrivial factors with respect to which Φ is a relative K-action. Now, let Φ be a \mathbb{Z}^d -action with $h(\Phi) > 0$.

COROLLARY 2. If \mathcal{H} is a factor such that there exists a factor \mathcal{H}^c independent of $\mathcal{H}, \mathcal{H} \vee \mathcal{H}^c = \mathcal{B}$ and the action Φ restricted to the space (X, \mathcal{H}^c, μ) is a K-action, then Φ is a relative K-action with respect to \mathcal{H} .

PROOF. It follows from Theorem 2 that there exists $\mathscr{C} \in \text{Sub } \mathscr{B}$ which is exhaustive in (X, \mathscr{H}^c, μ) and such that

(6)
$$\bigcap_{g \in \mathbf{Z}^d} \Phi^g \mathscr{C} = \mathscr{N} .$$

Let $\mathscr{A} = \mathscr{C} \lor \mathscr{H}$. It is clear that

$$\Phi^{g}\mathscr{A} \subset \mathscr{A}$$
 for $g \prec \circ$ and $\bigvee_{g \in \mathbb{Z}^{d}} \Phi^{g}\mathscr{A} = \mathscr{B}$

Let a cut (A, B) of \mathbb{Z}^d be a gap. Applying Theorem 1 in the preceding section to the directed set (B, \prec) and to the net $(\Phi^{g} \mathscr{A})_{g \in B}$ we get

$$\bigcap_{g \in B} \Phi^g \mathscr{A} = \bigcap_{g \in B} (\Phi^g \mathscr{C} \vee \mathscr{H}) = \bigcap_{g \in B} \Phi^g \mathscr{C} \vee \mathscr{H} = \bigvee_{g \in A} \Phi^g \mathscr{C} \vee \mathscr{H} = \bigvee_{g \in A} \Phi^g \mathscr{A} .$$

This means that \mathscr{A} is an exhaustive sub- σ -algebra. In the same way using (6), we get

$$\bigcap_{g \in \mathbf{Z}^d} \Phi^g \mathscr{A} = \bigcap_{g \in \mathbf{Z}^d} \Phi^g \mathscr{C} \vee \mathscr{H} = \mathscr{H}$$

It follows from Thorem 2 that Φ is a relative K-action with respect to \mathcal{H} .

Now, let (X, \mathcal{B}, μ) , $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu})$ be Lebesgue probability spaces and let Φ , $\tilde{\Phi}$ be Z^{d} -actions on (X, \mathcal{B}, μ) and $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu})$, respectively. We denote by $\Phi \times \tilde{\Phi}$ the product action of Φ and $\tilde{\Phi}$, i.e.,

$$(\Phi \times \tilde{\Phi})^g(x, y) = (\Phi^g x, \tilde{\Phi}^g y), \qquad (x, y) \in X \times \tilde{X}, \quad g \in \mathbb{Z}^d$$

Our next aim is to show the following:

THEOREM 3. For any factors \mathcal{H} and $\tilde{\mathcal{H}}$ of Φ and $\tilde{\Phi}$, respectively, it holds

$$\pi(\Phi \times \tilde{\Phi} | \mathscr{H} \times \tilde{\mathscr{H}}) = \pi(\Phi | \mathscr{H}) \otimes \pi(\tilde{\Phi} | \tilde{\mathscr{H}}) .$$

PROOF. Let \mathscr{A} and $\widetilde{\mathscr{A}}$ be relatively perfect sub- σ -algebras for Φ and $\widetilde{\Phi}$ with respect to \mathscr{H} and $\widetilde{\mathscr{H}}$, respectively. It is clear by Theorem C that

$$\mathscr{H} \otimes \widetilde{\mathscr{H}} \subset (\Phi \times \widetilde{\Phi})^{g} (\mathscr{A} \otimes \widetilde{\mathscr{A}}) \subset \mathscr{A} \otimes \widetilde{\mathscr{A}} , \qquad g \prec o$$

and

$$\bigvee_{g \in \mathbb{Z}^d} (\Phi \times \tilde{\Phi})^g (\mathscr{A} \otimes \tilde{\mathscr{A}}) = \mathscr{B} \otimes \tilde{\mathscr{B}} .$$

Let (A, B) be a cut of \mathbb{Z}^d which is a gap. It follows from Corollary 2 to Theorem 1 and Remark 4 that

$$\begin{split} \bigcap_{g \in B} (\Phi \times \tilde{\Phi})^g (\mathscr{A} \otimes \widetilde{\mathscr{A}}) &= \bigcap_{g \in B} (\Phi^g \mathscr{A} \otimes \tilde{\Phi}^g \widetilde{\mathscr{A}}) = \bigcap_{g \in B} \Phi^g \mathscr{A} \otimes \bigcap_{g \in B} \tilde{\Phi}^g \widetilde{\mathscr{A}} \\ &= \bigvee_{g \in A} \Phi^g \mathscr{A} \otimes \bigvee_{g \in A} \tilde{\Phi}^g \widetilde{\mathscr{A}} = \bigvee_{g \in A} (\Phi \times \tilde{\Phi})^g (\mathscr{A} \otimes \widetilde{\mathscr{A}}) \;. \end{split}$$

This means that $\mathscr{A} \otimes \widetilde{\mathscr{A}}$ is exhaustive. Therefore using Lemma 4 and the fact that \mathscr{A} and $\widetilde{\mathscr{A}}$ are relatively perfect, we get

$$\pi(\Phi \times \tilde{\Phi} \big| \mathscr{H} \otimes \widetilde{\mathscr{H}}) \subset \bigcap_{g \in \mathbb{Z}^d} (\Phi \times \tilde{\Phi})^g (\mathscr{A} \otimes \widetilde{\mathscr{A}}) = \bigcap_{g \in \mathbb{Z}^d} \Phi^g \mathscr{A} \otimes \bigcap_{g \in \mathbb{Z}^d} \tilde{\Phi}^g \widetilde{\mathscr{A}} = \pi(\Phi \big| \mathscr{H}) \otimes \pi(\tilde{\Phi} \big| \widetilde{\mathscr{H}}) \ .$$

In order to show the opposite inclusion let us suppose that $E \in \pi(\Phi | \mathscr{H})$ and $\tilde{E} \in \pi(\tilde{\Phi} | \widetilde{\mathscr{H}})$. We consider the partitions *P* and \tilde{P} of *X* and \tilde{X} respectively such that

$$P = \{E, E^c\}, \quad \tilde{P} = \{\tilde{E}, \tilde{E}^c\}$$

where $E^c = X \setminus E$ and $\tilde{E}^c = \tilde{X} \setminus \tilde{E}$. It follows from the definition of the relative Pinsker σ -algebra that $h(P, \Phi | \mathcal{H}) = 0$ and $h(\tilde{P}, \tilde{\Phi} | \tilde{\mathcal{H}}) = 0$. It is easy to check that

$$h(P \times \tilde{P}, \Phi \times \tilde{\Phi} | \mathcal{H} \otimes \tilde{\mathcal{H}}) = h(P, \Phi | \mathcal{H}) + h(\tilde{P}, \tilde{\Phi} | \tilde{\mathcal{H}})$$

where $P \times \tilde{P}$ is the partition of $X \times \tilde{X}$ defined by

 $P \times \tilde{P} = \{ E \times \tilde{E}, E^c \times \tilde{E}, E \times \tilde{E}^c, E^c \times \tilde{E}^c \} .$

Therefore we have $h(P \times \tilde{P}, \Phi \times \tilde{\Phi} | \mathcal{H} \otimes \tilde{\mathcal{H}}) = 0$ which implies $A \times \tilde{A} \in \pi(\Phi \times \tilde{\Phi} | \mathcal{H} \otimes \tilde{\mathcal{H}})$. Hence, by the definition of a product σ -algebra, we get the desired inclusion.

COROLLARY. If Φ and $\tilde{\Phi}$ are relative K-actions with respect to \mathcal{H} and $\tilde{\mathcal{H}}$, respectively, then $\Phi \times \tilde{\Phi}$ is a relative K-action with respect to $\mathcal{H} \otimes \tilde{\mathcal{H}}$.

Assuming $\mathscr{H} = \mathscr{N}(X)$ and $\widetilde{\mathscr{H}} = \mathscr{N}(\widetilde{X})$ we get an extension of the Pollit formula (cf. [9]) to \mathbb{Z}^d -actions.

References

- J. P. CONZE, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30.
- [2] K. JACOBS, Lecture notes on ergodic theory, Part II, Matematisk Institute, Aarhus Universitet, 1962–1963.
- B. KAMIŃSKI, The theory of invariant partitions for Z^d-actions, Bull. Polish Acad. Sci. Math. 29 (1981), 349–362.
- B. KAMIŃSKI, Facteurs principaux d'un action de Z^d, C. R. Acad. Sci. Paris, 307, Série I (1988), 979–980.
- [5] B. KAMIŃSKI, An axiomatic definition of the entropy of a Z^d-action on a Lebesgue space, Studia Math. 96 (1990), 135–144.
- [6] B. KAMIŃSKI AND M. KOBUS, Regular generators for multidimensional dynamical systems, Colloq. Math. 50 (1986), 263-270.
- [7] D. LIND, The structure of skew products with ergodic group automorphisms, Israel J. Math. 28 (1977), 205-248.
- [8] D. S. ORNSTEIN, Factors of Bernoulli shifts, Israel J. Math. 21 (1975), 145-153.
- [9] W. PARRY, Tropics in ergodic theory, Cambridge Univ. Press, 1981.
- [10] V. A. ROHLIN AND Y. G. SINAI, Construction and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR, 144 (1961), 1038–1041.
- [11] T. SHIMANO, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337–350.
- [12] T. SHIMANO, The multiplicity of helices for a regularly increasing sequence of σ -fields, Tôhoku Math. J. 36 (1984), 141–148.
- [13] J. P. THOUVENOT, Un classe de systemes pour lesquels la conjecture de Pinsker est vraie, Israel J. Math. 21 (1975), 208–214.
- [14] H. WEIZSÄCKER, Exchanging the order of taking suprema and countable intersections of σ -algebras, Ann. Inst. H. Poincaré Probab. Statist., Sect. B 19 (1) (1983), 91–100.

Institute of Mathematics Nicholas Copernicus University ul. Chopina 12/18 87–100 Toruń Poland