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Decreasing the spectral radius of a graph by link removals
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The decrease of the spectral radius, an important characterizer of network dynamics, by removing links is
investigated. The minimization of the spectral radius by removing m links is shown to be an NP-complete
problem, which suggests considering heuristic strategies. Several greedy strategies are compared, and several
bounds on the decrease of the spectral radius are derived. The strategy that removes that link l = i ∼ j with
largest product (x1)i(x1)j of the components of the eigenvector x1 belonging to the largest adjacency eigenvalue
is shown to be superior to other strategies in most cases. Furthermore, a scaling law where the decrease in spectral
radius is inversely proportional to the number of nodes N in the graph is deduced. Another sublinear scaling law
of the decrease in spectral radius versus the number m of removed links is conjectured.
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I. INTRODUCTION

The largest eigenvalue λ1(A) of the adjacency matrix A,
called the spectral radius of the graph, plays an important
role in dynamic processes on graphs, such as, e.g., virus
spread [1]. In a susceptible-infectious-susceptible (SIS) type of
network infection, the steady-state1 infection of the network is
determined by a phase transition at the epidemic threshold
τc = 1

λ1(A) : When the effective infection rate τ > τc, the
network is infected, whereas below τc, the network is virus
free. Beside virus spread, the same type of phase-transition
threshold [2] in the coupling strength gc ∼ 1

λ1(A) occurs in a
network of coupled oscillators.

Motivated by a 1
λ1(A) threshold separating two different

phases of a dynamic process on a network, we want to
change the network in order to enlarge the network’s epidemic
threshold τc, or, equivalently, to lower λ1(A). Removing
nodes is often too drastic,2 and, therefore, we concentrate
here mainly on the problem of removing m links from a
graph G with N nodes and L links. We are searching for
a strategy so that, after removing m links, λ1 is minimal.
Earlier Restrepo et al. [4] have initiated an instance of this
problem: “How does λ1 decrease when links are removed?”
They introduced a new graph metric, called the dynamical
importance Ix = λ1(A)−λ1(A\{x})

λ1(A) , where x denotes the removal
either of a link x = l or of a node x = n. The dynamical
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1In the exact SIS model, the steady state is the healthy state, which
is the only absorbing state in the Markov process. However, in
networks of realistic size N , this steady state is reached only after
an unrealistically long time. The steady state in the N -intertwined
virus spread model refers to the metastable state, which is reached
exponentially rapidly and which reflects real epidemics more closely.

2The influence of the addition of a node in G to the spectrum of A

is discussed in Ref. [3], art. 60].

importance was further investigated by Milanese et al. [5].
Both Restrepo et al. and Milanese et al. have approached the
problem by using perturbation theory. However, they did not
consider optimality of their removal strategy.

In this paper, we complement their study by first showing
in Sec. II that the Link Spectral Radius Minimization (LSRM)
problem and the Nodal Spectral Radius Minimization (NSRM)
problem, defined in Problem 1 and Problem 3, are NP-hard,
which means in practice that an optimal solution in a large
network cannot be computed and that good approximate algo-
rithms or heuristics need to be devised. The NP-completeness
of LSRM and NSRM is demonstrated by reducing the problem
to an equivalent problem, namely, finding a Hamiltonian
path in a graph that is known to be NP-complete [6]. Since
LSRM and NSRM are NP-complete, we cannot hope to
find exact analytic formulas for the decrease in the spectral
radius. However, in Sec. III we provide a general analytic
description, bounds, and several lemmas, and we study the
effect of node and link removal on closed walks and the
influence of assortativity on the spectral radius. This developed
theory direct us to find good heuristics. Section IV proposes
eight different strategies (or heuristics) for removing one link
in a network, and these strategies are benchmarked with
the optimal strategy via extensive simulations. The removal
of the link l between nodes i and j with highest product
(x1)i(x1)j of the eigenvector components belonging to the
largest eigenvalue λ1(A) of the adjacency A is demonstrated
to be the best heuristic. However, it is not always the best
heuristic when more than one link is removed, as illustrated in
Figs. 1–3. The scaling law (18) for removing one link in Sec. V
demonstrates, presumably for all graphs, that a decrease in λ1
is inversely proportional to the size N of the graph. Hence,
small graphs show the effect of link removals on λ1 more
clearly than large graphs. The scaling law (15) is much less
accurately known but indicates a sublinear decrease in λ1 with
the number m of removed links. We also claim that the optimal
way to remove m links is to make the resulting graph as regular
as possible, because a regular graph has the lowest spectral
radius among all graphs with N nodes and L links.

Another type of strategy to prevent the outbreak of a
virus is to quarantine infected nodes. Omic et al. [7] have
studied immunization via modularity partitioning, where
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FIG. 1. (Color online) An example of a graph with N = 10 nodes,
where none of the links in the greedy approach appears in the optimal
set of links. The numbers indicate the change in largest eigenvalue
λ1(A) − λ1(A\{l}) after removal of link l.
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FIG. 2. (Color online) An example of a graph with N = 10 nodes,
where only 1 link in the greedy approach appears in the optimal set
of links.
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FIG. 3. (Color online) An example of a graph with N = 10 nodes,
wheretwo links in the greedy approach appear in the optimal set of
links.

inter-community links are removed such that intracommu-
nity communication is preserved. Taylor and Restrepo [8]
investigated the effect of adding a subgraph to a network
on its largest adjacency eigenvalue λ1. Inspired by network
synchronization, Watanabe and Masuda [9] have investigated
a similar problem as the NSRM but with a different object
function: remove nodes in a graph to maximize the second
smallest eigenvalue of the Laplacian of the graph, also
coined the algebraic connectivity [3]. They have presented
several strategies comparable to ours and also found that the
eigenvector strategy performed overall the best. Related to
Ref. [9], but based on a weighted, asymmetric Laplacian of
a graph, Nishikawaa and Mottera [10] point to the nontrivial
effect of link removals on network synchronization.

II. THE SPECTRAL RADIUS MINIMIZATION PROBLEM
IS NP-HARD

In this section we prove that optimally decreasing the
largest adjacency eigenvalue (the spectral radius) of a graph
by a fixed number of link removals is NP-hard. It is widely
believed that NP-hard problems cannot be solved exactly in
a time complexity that is upper bounded by a polynomial
function of the relevant input parameters (N and L). Let us
first formulate the Link Spectral Radius Minimization (LSRM)
problem precisely:

Problem 1 (Link Spectral Radius Minimization (LSRM)
problem). Given a graph G(N ,L) with N nodes and L links,
spectral radius λ1(G), and an integer number m < L, which
m links from the graph G need to be removed, such that the
spectral radius of the reduced graph Gm of L − m links has
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the smallest spectral radius out of all possible graphs that can
be obtained from G by removing m links?

Theorem 1. The LSRM problem is NP-hard.
To prove this theorem, we rely on the following lemmas, but

first we need the definition of a path Ph with h hops or links.
A path Ph with h hops starting from a node n0 and ending at
node nh is defined as Ph = n0 ∼ n1 ∼ n2 ∼ · · · ∼ nh−1 ∼ nh,
where each link ni ∼ nj between nodes ni and nj as well
as each node ni occurs once in the sequence defining the
path Ph, in contrast to a walk Wh = n0 ∼ n1 ∼ n2 ∼ · · · ∼
nh−1 ∼ nh with h hops, where a node ni can appear more than
once.

Lemma 1. The path PN−1 visiting N nodes has a strictly
smaller spectral radius than all other connected graphs with N
nodes. Furthermore, λ1(PN−1) = 2 cos( π

N+1 ).
Proof: Ref. [11], p. 21], Ref. [3], p. 125] !
Lemma 2. The eigenvalues of a disconnected graph are

composed of the eigenvalues (including multiplicities) of its
connected components.

Proof: Ref. [3], art. 80, pp 73–74] !
Lemma 3. Among all possible graphs of N nodes and N − 1

links, the path PN−1 visiting N nodes has the smallest spectral
radius.

Proof: A connected graph of N nodes and N − 1 links
is a tree, of which the path is a special case. According to
Lemma 1 the path has a spectral radius strictly smaller than
2, which is the smallest spectral radius possible in connected
graphs. Hence, we need to demonstrate that the lemma also
holds for disconnected graphs. For ease of presentation, we
assume that the disconnected graph consists of two connected
components A1 and A2: A1 of x nodes and A2 of N − x nodes.
Our arguments also apply to multiple connected components.
Now, A1 contains at least x − 1 links, otherwise it is not a
connected component, and A2 contains at least N − x − 1
links. Since the sum of these links equals N − 2, either A1
or A2 must contain one extra link, thereby creating a cycle in
that component. A graph that contains a cycle (i.e., which is
not a tree) has a spectral radius larger than or equal to two.
This component will, according to Lemma 2, contribute to an
overall spectral radius that is larger than that of a path, which
is smaller than 2. !

To prove Theorem 1, we will use the NP-complete Hamil-
tonian path problem [6].

Problem 2 (Hamiltonian path problem). Given a graph
G(N ,L) with N nodes and L links, a Hamiltonian path is
a path that visits every node exactly once. The Hamiltonian
path problem is to determine if G contains a Hamiltonian path.

We are now ready to prove Theorem 1:
Proof: In our proof we will demonstrate that if we could

solve the LSRM problem in polynomial time, then we would
also be able to settle the NP-complete Hamiltonian path
problem. Assume we have a graph G of L = N − 1 + m links.
Removing m links will result in a graph Gm of N − 1 links.
According to Lemma 3, a path is the only graph structure of
N − 1 links that has the smallest largest adjacency eigenvalue
and that eigenvalue equals λ1 = 2 cos( π

N+1 ). Moreover, a path
of N − 1 links in a graph of N nodes, is a Hamiltonian path. If,
after solving the LSRM problem, we obtain λ1 = 2 cos ( π

N+1 )
(smaller is not possible), then we have found a Hamiltonian
path (Gm). If λ1 > 2 cos( π

N+1 ), then the original graph G

does not contain a Hamiltonian path. The LSRM problem
is therefore at least as hard as the Hamiltonian path problem.!

We have to interpret Theorem 1 with care. Computing
the largest eigenvalue can be done in polynomial time.
Consequently the number of possible combinations ( L

m
of

m links that we could check (by computing in polynomial
time the largest eigenvalue of the graph Gm resulting after the
removal of that specific set of links) is bounded by O(Lm),
which is a polynomial function in L. For instance, if m = 1,
by checking the spectral radius reduction induced by the
removal of each of the L links, we can obtain a solution with a
complexity of L times the complexity of computing the largest
eigenvalue. However, in that case m is fixed and not part of
the input N,L,m as defined in problem 1. In other words, m
should have been replaced with a fixed integer number in the
problem definition to make it clear that m is not part of the
input and that its fixed value holds for all problem instances.
In problem 1, m is part of the input and, as in our proof,
may, for instance, depend on the number of nodes and links
(it makes sense to remove more links in larger networks).
The previous argument therefore does not apply to problem
1, which is NP-hard as proved in Theorem 1. In fact, in our
proof m = L − N + 1 so that the worst-case complexity of
checking all possibilities is O(LL−N+1), which is now clearly
nonpolynomial in the input N,L,m. Similar NP-complete
problems, in which the input does not only rely on N and L,
but also on another metric k, are the Independent Set problem
(defined in problem 4 below) and the Disjoint Connecting
Paths problem [6], where k mutually node-disjoint paths need
to be found between k corresponding source-destination pairs.
This problem also can be solved in polynomial time if k is fixed
and thus not part of the input [12], while it is NP-complete if
k is part of the input. In general, NP-complete problems that
can be solved by algorithms, which are exponential only in
the size of a fixed parameter while polynomial in the size of
the (remaining) input, are called fixed-parameter tractable,
because those problems can be solved efficiently for small
values of the fixed parameter.

As an example to illustrate the NP-completeness of the
LSRM problem, Figs. 1–3 show, in a topology of N = 10
nodes and m = 3 link removals, that the “best single step
strategy” is not always optimal in the end. The “best single step
strategy” consists of removing the link that lowers λ1(A) −
λ1(A1) = y1 most in the first step. Next, in the second step, the
link that lowers λ1(A1) − λ1(A2) = y2 most is removed, and
finally, in the third step, the link that lowersλ1(A2) − λ1(A3) =
y3 most is removed. The optimal situation depicts the removal
of m = 3 for which λ1(A) − λ1(A3) = y∗ is maximal. Hence,
y1 + y2 + y3 " y∗.

In addition, 106 instances of Erdős-Rényi (ER) random
graphs with N = 10 and link density p = 2 ln N

N
have been

generated. In each instance, the “best single step strategy”
and the global optimum have been computed. In 63 185
(6.3%) instances, there was no overlap in links, in 332 262
(33.2%) ER graphs, there was one link in common, in 97 944
(9.8%) ER graphs, we found two links in common, and in
the remaining 506 609 (50.7%) ER graphs, all three links in
the “best single step strategy” were the same as in the global
optimum. Moreover, Fig. 4 illustrates that the global optimum
is not always unique. The global optimum may not be unique,
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FIG. 4. (Color online) An example where the global optimum is
not unique. The original λ1(A) = 5.065310, and, after removal of
three links, the smallest largest eigenvalue is λ1(A3) = 4.312414.
Consequently, the largest λ1(A) − λ1(A3) = 0.752896 is obtained
after removal of the three red links.

as it is possible that the removals of different sets of m links
will lead to cospectral or even isomorphic smaller graphs, as
indicated in Fig. 4.

The minimum number m of links that need to be removed
from G to ensure that λ1 in Gm is lowered below some given
value ξ is

m " L − ξ 2 + N − 1
2

,

which is derived from the bound [3], (3.48) on p. 54], due to
Yuan Hong [13],

λ1 "
√

2L − N + 1 (1)

for connected graphs; else λ1 "
√

2L(1 − 1
N

).

A. Link versus node removal

Removing nodes to maximally lower the largest eigenvalue
may seem an easier problem than removing links. For, when
we remove the highest degree node, λ1(A) is likely reduced
most (because L is reduced most). This suggestion follows
from bounds in Ref. [3], p. 48] and the bounds

2L

N

√

1 + Var[D]
(E[D])2

" λ1 " min

{√
2L(N − 1)

N
,dmax

}

, (2)

where D is the degree of an arbitrary node in G. Unfortunately,
this intuition is wrong. The eigenvalues of the adjacency matrix
Al(G) of the line graph l(G) of G and A are related [3], (2.9)
on p. 20]. Since links in G are nodes in l(G), and since there is
a one-to-one relation between l(G) and G, removing nodes in
l(G) according to a certain strategy results in a corresponding
strategy for removing links in G. Since the link spectral radius

minimization (LSRM) problem is NP-hard (Theorem 1), the
problem of removing m nodes from a graph G is NP-hard
as well. We will provide a proof for general graphs and
subsequently demonstrate that it is also NP-complete in the
subclass of line graphs. Let us first formally define the problem:

Problem 3 (Nodal Spectral Radius Minimization (NSRM)
problem). Given a graph G(N ,L) with N nodes and L links,
spectral radius λ1(G), and an integer number m < N , which
m nodes from the graph G need to be removed, such that the
spectral radius of the reduced graph Gm of N − m nodes has
the smallest spectral radius out of all possible graphs that can
be obtained from G by removing m nodes?

Theorem 2. The NSRM problem is NP-hard.
We provide a proof by reducing the NP-complete indepen-

dent set problem [6] to NSRM.
Problem 4 (Independent set problem) Given a graph

G(N ,L) with N nodes and L links and a positive integer
k " N , is there a subset N ′⊆ N , such that |N ′| # k and such
that no two nodes in N ′ are joined by a link in L?

Proof of Theorem 2: The lowest spectral radius of a graph
equals λ1(G) = 0, which is obtained for a graph without any
links. Removing nodes that are not part of an independent
set will result in an independent set of nodes that are not
linked to each other. Hence, to solve the independent set
problem it suffices to remove m = N − k nodes from the
graph G, such that the spectral radius of the reduced graph
Gm is smallest possible. If we get λ1(Gm) = 0, then Gm

constitutes an independent set of k nodes. If λ1(Gm) > 0, then
no independent set with at least k nodes exists. !

Line graphs are a specific class of graphs, and not all
problems that are NP-complete for general graphs are also
NP-complete for line graphs (e.g., according to Roussopoulos
[14], the clique problem is not hard in line graphs, while it is
an NP-complete problem in general). Hence, we proceed to
demonstrate that the NSRM problem remains NP-hard in line
graphs. We use similar arguments as for the proof of Theorem
1. A Hamiltonian path in the graph G corresponds to a path
of N − 1 nodes in the line graph l(G) of G. A line graph
l(G) contains L nodes and can be generated in polynomial
time from G. According to Lemma 1, the graph structure of
N − 1 nodes that has the smallest largest eigenvalue is the path.
Hence, removing L − N + 1 nodes from the line graph l(G)
such that the spectral radius is reduced most should correspond
to a path of N − 1 nodes (if it exists), which corresponds to a
Hamiltonian path in G. Solving the NSRM problem in a line
graphs l(G) is therefore as hard as finding Hamiltonian paths
in the corresponding graph G.

Finally, let l be the removed link that maximizes λ1(G) −
λ1(G\{l}). Let the node n be the transform of link l in the line
graph l(G). Then λ1(l(G)) − λ1(l(G)\{n}) is not always the
maximum. Simulations on 100 Erdős-Rényi random graphs
show the “success rate,”the percentage of graphs in which the
best link l in G corresponds to the best node n in l(G) in
Table I.

III. SPECTRAL GRAPH THEORY

We derive a theoretical underpinning to deduce the best
heuristic for the LSRM problem. We first introduce the
notation. Let x1 be the eigenvector of A belonging to λ1(A) in
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TABLE I. Success rate in line graphs.

p

N 0.1 0.2 0.3

10 67% 80% 83%
20 65% 76% 81%
30 59% 76% 81%
40 70% 79% 81%
50 63% 75% 82%
60 67% 82% 86%

the original graph G and normalized such that xT
1 x1 = 1. The

graph G contains N nodes and L links. Let Mm denote the
set of the m links that are removed from G and Gm = G\Mm

is the resulting graph after the removal of m links from G.
We denote the adjacency matrix of Gm by Am, which is
still a symmetric matrix. Similarly, let w1 be the normalized
eigenvector of Am corresponding to λ1(Am) in the graph Gm.
By the Perron-Frobenius theorem [3], all components of x1
and w1 are nonnegative (positive if the corresponding graph is
connected).

Let ej be a base vector in the N -dimensional space, where
the ith component equals (ej )i = δij and δij is the Kronecker
delta, i.e., δij = 1 if i = j , and otherwise, δij = 0. Then the
adjacency matrix that represents the single link between nodes
i and j equals

Âij = eie
T
j + ej e

T
i . (3)

Thus, Âij equals the zero matrix, except that (Âij )ij =
(Âij )ji = 1. Clearly, det(Âij − λI ) = (−1)NλN−2(λ2 − 1),
such that the largest eigenvalue of Âij is 1. Also, for any
vector z,

zT Âij z = zT
(
eie

T
j + ej e

T
i

)
z

= zT eie
T
j z + zT ej e

T
i z = 2zizj . (4)

By invoking 0 " (zi − zj )2, we observe that 2zizj " z2
i +

z2
j " ∑N

i=1 z2
i = zT z. Hence, when considering normalized

vectors such that zT z = ‖z‖2
2 = 1, we obtain the upper bound

2zizj " 1.

After these preliminaries, we now embark on the problem.

A. The difference λ1(A)− λ1(Am)

With the normalization xT
1 x1 = 1 and wT

1 w1 = 1, the
Rayleigh relations [3] become

λ1(A) = xT
1 Ax1,

λ1(Am) = wT
1 Amw1.

Writing out the quadratic form

λ1(A) = xT
1 Ax1 =

N∑

i=1

N∑

j=1

aij (x1)i(x1)j

= 2
N∑

i=1

N∑

j=i+1

aij (x1)i(x1)j

= 2
∑

l=(i∼j )∈L
(x1)i(x1)j = 2

L∑

l=1

(x1)l+(x1)l− , (5)

where a link l joins the nodes l+ and l− and shows that λ1(A)
can be written as a sum of positive products over all links in
the graph G.

We now provide a general bound on the difference between
the largest eigenvalues in G and Gm = G\Mm, where m links
are removed.

Lemma 4. For any graph G and Gm = G\Mm, it holds that

2
∑

l∈Mm

(w1)l+(w1)l− " λ1(A) − λ1(Am)

" 2
∑

l∈Mm

(x1)l+(x1)l− , (6)

where x1 and w1 are the eigenvectors of A and Am correspond-
ing to the largest eigenvalues λ1(A) and λ1(Am), respectively,
and where a link l joins the nodes l+ and l−.

Proof: Since Am = A −
∑

l∈Mm
Âl+l− where the left-hand

side (or start) of the link l is the node l+ and the right-hand side
(or end) of the link l is the node l− and with the normalization
xT

1 x1 = 1, the Rayleigh relations [3] yield

λ1(A) = xT
1 Ax1 = xT

1



Am +
∑

l∈Mm

Âl+l−



 x1

= xT
1 Amx1 +

∑

l∈Mm

xT
1 Âl+l−x1.

Using (4) yields xT
1 Âl+l−x1 = 2(x1)l+(x1)l− , and we arrive at

λ1(A) = xT
1 Amx1 + 2

∑

l∈Mm

(x1)l+(x1)l− .

The Rayleigh principle states that, for any normalized vector
w with wT w = 1, it holds that wT Aw " λ1(A) and equality
is attained only if w equals the eigenvector of A belonging
to λ1(A). Since x1 is not the eigenvector of Am belonging to
λ1(Am), we have that xT

1 Amx1 " λ1(Am) and

λ1(A) = xT
1 Amx1 + 2

∑

l∈Mm

(x1)l+(x1)l−

" λ1(Am) + 2
∑

l∈Mm

(x1)l+(x1)l−

from which the upper bound in (6) is immediate. When
repeating the analysis from the point of view of Am rather
than from A, then

λ1(Am) = wT
1 Amw1 = wT

1



A −
∑

l∈Mm

Âl+l−



 w1

= wT
1 Aw1 − 2

∑

l∈Mm

(w1)l+(w1)l− .

By invoking the Rayleigh principle again, we arrive at the
lower bound. !

For connected graphs G and Gm, it is known that
λ1(A) − λ1(Am) > 0 (see Lemma 7 in Ref. [3]). The same
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conclusion also follows from Lemma 4 because the Perron-
Frobenius theorem [3] states that all vector components of
w1 (and x1) are positive in a connected graph Gm. Lemma 4
indicates that, when those m links are removed that maximize
2
∑

l∈Mm
(x1)l+(x1)l− , then the upper bound in (6) is maximal,

which may lead to the largest possible difference λ1(A) −
λ1(Am). However, those removed links do not necessarily also
maximize the lower bound 2

∑
l∈Mm

(w1)l+(w1)l− . Hence, the
greedy strategy of removing consecutively the link l with the
highest product (x1)l+ (x1)l− is not necessarily guaranteed to

lead to the overall optimum. The fact that the SRM problem is
NP-hard, as proved in Sec. II, underlines this remark.

Lemma 8 in Ref. [3] states that

λ1(A) − λ1(Am) " λ1(A − Am).

Since A − Am =
∑

l∈Mm
Âl+l− , it remains to find a close upper

bound for λ1(
∑

l∈Mm
Âl+l−). Using the bounds [3], (3.48) on

p. 54] gives

λ1




∑

l∈Mm

Âl+l−



 " min(
√

2m − N + 1,dmax(A − Am))1{A−Am is a connected graph}

+ min

(√
2m − 2m

N
,dmax(A − Am)

)

1{A−Am is not a connected graph}.

In general, it is difficult to find sharper bounds (see, e.g.,
Refs. [15,16]). If m = 2, then λ1(

∑
l∈M2

Âl+l− ) =
√

2 when
the two links are connected, and λ1(

∑
l∈M2

Âl+l−) = 1 when
the two links are disconnected. If m = 1, then λ1(Âl+l− ) = 1,
and we obtain

λ1(A) − λ1(A1) " 1. (7)

Lemma 5. For m = 1 link removed from G, equality in (7)
is attained only for the graph consisting of the complete graph
KN with N = 2 nodes and a set of disjoint nodes.

Proof: Equality in (7) combined with (6) in Lemma 4
implies that

1 = λ1(A) − λ1(A1) " 2(x1)l+ (x1)l− .

Next, from 2(x1)l+(x1)l− " (x1)2
l+ + (x1)2

l− " xT
1 x1 = 1, we

conclude that the equality in (7) holds if and only if (x1)l+ =
(x1)l− = 1/

√
2. Since in such a case (x1)2

l+ + (x1)2
l− = 1, we

conclude that all other components of the eigenvector x1 are
equal to zero. Recall that x1 is the principle eigenvector, which,
according to the Perron-Frobenius Theory, is positive if G is a
connected graph. If G has more than two nodes (N > 2), the
above argument shows that G must be disconnected, with
K2 being the unique component with the largest spectral
radius. Therefore, the remaining components must be isolated
nodes. !

1. Application of perturbation theory to m link removals

Let λ1 > λ2 # · · · # λn be the eigenvalues of A, with
x1,x2, . . . ,xn the corresponding eigenvectors, which form an
orthonormal basis. We apply the general perturbation formulas
[17]

x(ζ ) = x1 + ζ

N∑

k=2

xT
k Bx1

λ1 − λk

xk + ζ 2
N∑

m=2

[(
xT

1 Bx1
)(

xT
mBx1

)

λ1 − λm

−
N∑

k=2

(
xT

k Bx1
)(

xT
mBxk

)

λ1 − λk

]
xm

λm − λ1
+ O(ζ 3). (8)

λ(ζ ) = λ1 + ζxT
1 Bx1 + ζ 2

N∑

k=2

(
xT

k Bx1
)2

λ1 − λk

+ ζ 3
N∑

m=2

[(
xT

mBxm

)
−

(
xT

1 Bx1
)] (

xT
1 Bxm

λ1 − λm

)2

+ 2ζ 3
N∑

m=2

m−1∑

k=2

(
xT

1 Bxm

)(
xT

mBxk

)(
xT

k Bx1
)

(λ1 − λm)(λ1 − λk)
+ O(ζ 4)

(9)

for the matrix A(ζ ) = A + ζB by using B =
∑m

l=1 Âl+l− and
ζ = −1. We remark that |ζ | = 1 is large for a perturbation to
be effective in general.

Using the definition (3) of the matrix Âl+l− , we obtain

xT
k Âl+l−xq = xT

k el+eT
l−xq + xT

k el−eT
l+xq

= (xk)l+(xq)l− + (xk)l− (xq)l+

and

xT
k Bxq =

m∑

l=1

xT
k Âl+l−xq =

m∑

l=1

[(xk)l+(xq)l− + (xk)l−(xq)l+ ],

where xk denotes the eigenvector of A belonging to eigenvalue
λk . From (8), the first-order perturbation for the eigenvector of
Am is

x1(ζ ) ) x1 −
N∑

k=2

m∑

l=1

(xk)l+(xq)l− + (xk)l−(xq)l+
λ1 − λk

xk,

and from (9) the corresponding eigenvalue perturbation, up to
second order, is

λ1(ζ ) = λ1(A) − 2
m∑

l=1

(x1)l+(x1)l−

+
N∑

k=2

{∑m
l=1[(xk)l+(x1)l− + (xk)l− (x1)l+ ]

}2

λ1 − λk

.
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Since λ1(ζ ) = λ1(Am), the difference in largest eigenvalues
equals approximately

λ1(A) − λ1(Am) ) 2
m∑

l=1

(x1)l+(x1)l− −
N∑

k=2

×
{ ∑m

l=1[(xk)l+(x1)l− + (xk)l−(x1)l+]
}2

λ1(A) − λk(A)
.

(10)

Of course, we can also apply the perturbation formula to
Am and add m links so that ζ = 1. The difference in largest
eigenvalues equals approximately

λ1(A) − λ1(Am) ) 2
m∑

l=1

(w1)l+(w1)l− +
N∑

k=2

×
{ ∑m

l=1[(wk)l+(w1)l− + (wk)l− (w1)l+]
}2

λ1(Am) − λk(Am)
.

(11)

The proof of Lemma 4 indicates that the difference between
the largest eigenvalues is

λ1(A) − λ1(Am) = xT
1 Amx1 − wT

1 Amw1

+ 2
∑

l∈Mm

(x1)l+(x1)l− ,

which, since Am and A are symmetric, also can be written as

λ1(A) − λ1(Am) = (x1 − w1)T Am(x1 + w1)

+ 2
∑

l∈Mm

(x1)l+(x1)l− (12)

or as

λ1(A) − λ1(Am) = (x1 − w1)T A(x1 + w1)

+ 2
∑

l∈Mm

(wT
1 )l+(w1)l− . (13)

The Perron-Frobenius theorem [3] implies that there is at least
one component in x1 − w1 that is negative (because xT

1 x1 =
wT

1 w1 = 1).
The expansions (10) and (11) should be compared with the

exact expressions (12) and (13), respectively. Moreover, they
lead to a second proof of Lemma 4, provided a second-order
perturbation is accurate enough. Since the sum in (11), as well
as in (10), is positive and all components w1 and x1 are positive
when G is connected, comparison with (12) and (13) suggests
(provided a second-order perturbation is accurate enough), for
connected graphs, that

(x1 − w1)T A(x1 + w1) > 0,

while

(x1 − w1)T Am(x1 + w1) < 0.

For large graphs, where λ1 = O(N ), the expansion up to
second order, thus ignoring terms of O(ζ 3) in (8) and (9), can
already be good. This is the approach of Restreppo et al. [4]
and verified numerically by Milanese et al. [5].

B. Closed walks in subgraphs

Let G be a connected graph with adjacency matrix A. From
the decomposition [3], art. 156 on p. 226]

A =
∑

i=1

λixix
T
i ,

using xT
i xj = 0 for i += j and xT

i xi = 1 for any i, we have that

Ak =
n∑

i=1

λk
i xix

T
i .

When k → ∞, the most important term in the sum above is
λk

1x1x
T
1 , provided that G is nonbipartite.3 In such a case, we

have λ1 > |λi | for i = 2, . . . ,n, and so, for any two nodes u,v
of G,

lim
k→∞

(Ak)uv

λk
1(x1)u(x1)v

= lim
k→∞

∑n
i=1 λ

k
i (xi)u(xi)v

λk
1(x1)u(x1)v

= 1 +
n∑

i=2

(xi)u(xi)v
(x1)u(x1)v

(
λi

λ1

)k

= 1.

In view of the above, we will deliberately resort to the
following approximation:

For large k : (Ak)uv ≈ λk
1(x1)u(x1)v.

Under such approximation, the total number of closed walks
of large length k in G is

∑

u∈V (G)

(Ak)uu )
∑

u∈V (G)

λk
1(x1)u(x1)u = λk

1

∑

u∈V (G)

(x1)2
u = λk

1.

We will demonstrate that removing the node u or the link
u ∼ v with highest vector component (x1)u or highest vector
component product (x1)u(x1)v will decrease λ1(A) most.

1. Node removal

In order to find the node whose deletion reduces λ1 most,
we will consider the equivalent question: Which deleted node
u reduces the number of closed walks in G for some large
length k most?

Of course, the number of closed walks of length k that start
at node u is equal to (Ak)uu ≈ λk

1(x1)2
u. When we delete node

u from G, then, besides the closed walks that start at u, we
also destroy the closed walks that start at another node v, but

3In case G is bipartite, let (U,V ) be the bipartition of nodes of
G. Then λn = −λ1, (xn)u = (x1)u for u ∈ U and (xn)v = −(x1)v for
v ∈ V . Both λ1 and λn are simple eigenvalues, so that λ1 > |λi | for
i = 2, . . . ,n − 1. Similarly as above we get

lim
k→∞

(Ak)u,v

λk
1(x1)u(x1)v

= 1 + lim
k→∞

(−1)k
(xn)u(xn)v
(x1)u(x1)v

.

Obviously, the limit above exists if we restrict k to range over odd or
even numbers only, in which case the limit is either 0 or 2, depending
on whether u and v belong to the same or different parts of the
bipartition. This suggests that the same strategy will extend to bipartite
graphs as well, except that the argument will have to take into account
the nonexistence of odd closed walks.
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that contain u as well. Any such closed walk that starts at v
may contain several occurrences of u.

For fixed u, k, and v, let Wt denote the number of closed
walks of length k that start at v and that contain u at least
t times, t # 1. Suppose that in such a walk, node u appears
after l1 steps, after l1 + l2 steps, after l1 + l2 + l3 steps, and
so on, the last appearance counted after l1 + · · · + lt steps.
Here l1, . . . ,lt # 1. Moreover, u must appear for the last time
after at most k − 1 steps (after k steps we are back at v); thus
we may also introduce lt+1 = k − (l1 + · · · + lt ) and ask that
lt+1 # 1. Then we have

Wt =
∑

l1,...,lt+1

(Al1 )vu(Al2 )uu · · · (Alt )uu(Alt+1 )uv

)
∑

l1,...,lt+1

λk
1(x1)2

v(x1)2t
u = λk

1(x1)2
v(x1)2t

u

∑

∑t+1
j=1 lj =k;lj #1

1.

Introducing l′1 = l1 − 1, . . . ,l′t+1 = lt+1 − 1, the last sum is
equal to the number of nonnegative solutions to

l′1 + l′2 + · · · + l′t + l′t+1 = k − t − 1,

which is, in turn, equal to ( (k−1−t)+t
t

) = ( k−1
t

). Therefore,

Wt )
(

k − 1
t

)
λk

1(x1)2
v(x1)2t

u .

Consider now a closed walk of length k starting at v, which
contains u exactly j times. Such a walk is counted j times in
W1, ( j

2 ) times in W2, ( j
3 ) times in W3, . . . , ( j

j
) times in Wj ,

and using the well-known equality

1 =
∑

t#1

(−1)t−1
(

j

t

)
,

we see that this closed walk is counted exactly once in the
expression

Wv = W1 − W2 + W3 − · · · + (−1)t−1Wt + · · · .

Thus, Wv represents the number of closed walks of length k
starting at v, which will be affected by deleting u. From the
above expression for Wt , we have

Wv )
∑

t#1

(−1)t−1
(

k − 1
t

)
λk

1(x1)2
v(x1)2t

u

= −λk
1(x1)2

v

∑

t#1

(
k − 1

t

) [
− (x1)2

u

]t

= λk
1(x1)2

v

{
1 −

[
1 − (x1)2

u

]k−1}
.

Therefore, the total number of closed walks of length k
destroyed by deleting u is equal to

W ) λk
1(x1)2

u +
∑

v +=u

Wv

= λk
1(x1)2

u + λk
1

∑

v +=u

(x1)2
v

{
1 −

[
1 − (x1)2

u

]k−1}

= λk
1

(
(x1)2

u +
[
1 − (x1)2

u

]{
1 −

[
1 − (x1)2

u

]k−1})

= λk
1

(
1 −

[
1 − (x1)2

u

]k)
.

The last function is increasing in (x1)u in the interval [0,1],
and so we conclude that most closed walks are destroyed when
we remove the node with the largest principal eigenvector
component. Hence, the spectral radius [see (5)] is decreased
the most in such a case as well.

2. Link removal

Similarly as in the previous section, we want to find out the
deletion of which link u ∼ v mostly reduces the number of
closed walks in G of some large length k?

For fixed u, v, and k, let Wt denote the number of closed
walks of length k that start at some node w and contain the
link u ∼ v at least t times, t # 1. Suppose that in such a walk,
the link u ∼ v appears at positions 1 " l1 " l2 " · · · " lt " k
in the sequence of links on the walk, and let ui,0 and ui,1 be
the first and the second nodes of the ith appearance of uv in
the walk. Obviously, either (ui,0,ui,1) = (u,v) or (ui,0,ui,1) =
(v,u). Then

Wt =
∑

w∈V

∑

l1"···"lt

(Al1−1)wu1,0

×
[

t∏

i=2

(Ali−li−1−1)ui−1,1ui,0

]

(Ak−lt−1)ut,1w

)
∑

w∈V

∑

l1"···"lt

λl1−1
1 (x1)w(x1)u1,0

×
[

t∏

i=2

λ
li−li−1−1
1 (x1)ui−1,1 (x1)ui,0

]

λ
k−lt−1
1 (x1)ut,1 (x1)w

=
∑

w∈V

(x1)2
w

∑

l1"···"lt

λk−t
1

t∏

i=1

[
(x1)ui,0 (x1)ui,1

]2

=
(

k

t

)
λk−t

1 (2(x1)u(x1)v)t .

The term 2(x1)u(x1)v appears in the last equation because there
are two ways to choose (xui,0 ,xui,1 ) for each i = 1, . . . ,t .

Now, the number of walks affected by deleting the link
u ∼ v is equal to

Wuv =
∑

t#1

(−1)t−1Wt

=
∑

t#1

(−1)t−1
(

k

t

)
λk−t

1 [2(x1)u(x1)v]t

= λk
1 −

∑

t#0

(−1)t
(

k

t

)
λk−t

1 [2(x1)u(x1)v]t

= λk
1 − [λ1 − 2(x1)u(x1)v]k.

The last function is increasing in (x1)u(x1)v in the interval
[0,λ1/2], and so most closed walks are destroyed when
we remove the link with the largest product of principal
eigenvector components. Thus, the spectral radius is decreased
the most in such a case as well.

C. Assortativity and lower bounds for λ1

A lower bound of the largest adjacency eigenvalue λ1 # N3
N2

has been proved in Ref. [18], where Nk is the total number of
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walks of length k. The lower bound N3
N2

appeared earlier as an
approximation in Ref. [19] of the largest adjacency eigenvalue
λ1, and it is a perfect linear function of assortativity ρD [18].

Let us first look at the decrease of N3
N2

by a link removal. We
know [18] that

N3

N2
=

∑N
i=1 d3

i −
∑

i∼j (di − dj )2

∑N
i=1 d2

i

.

We denote N3 and N ′
3 as the number of three hop walks in

the original graph G and in the graph G\{lij } with one link
l = i ∼ j less, respectively. Then we have that

(3 = N3 − N ′
3

= d3
i + d3

j − (di − 1)3 − (dj − 1)3 − (di − dj )2

−
∑

l∈N (i),l +=j

(dl − di)2 − (dl − di + 1)2

−
∑

l∈N (j ),l +=i

(dl − dj )2 − (dl − dj + 1)2,

where di is the degree of node i in the original graph G and
N (i) is the set of the neighbors of node i. The decrease (3
can be simplified as

(3 = 2 − 3(di + dj ) + 3
(
d2

i + d2
j

)
− (di − dj )2

+
∑

l∈N (i),k +=j

(2dl − 2di + 1) +
∑

l∈N (j ),l +=i

(2dl − 2dj + 1)

= 2
(
d2

i + d2
j

)
+ 2didj + 2 − 3(di + dj )

+ (di + dj − 2) − 2di(di − 1) − 2dj (dj − 1)

+
∑

l∈N (i),k +=j

2dl +
∑

l∈N (j ),k +=i

2dl

= 2didj +
∑

l∈N (i),k +=j

2dl +
∑

l∈N (j ),k +=i

2dl

= 2didj + 2(si + sj ) − 2(di + dj ),

where

si =
∑

l∈N (i)

dl (14)

is the total degree of all the direct neighbors of a node i.
Similarly, the decrease in the number of two hop walks is
denoted as

(2 = N2 − N ′
2 = 2(di + dj − 1).

Note that (2 and (3 are only functions of a local property,
i.e., the degree di and dj of the two end nodes of a link lij . The
complexity of computing (3 or (2 for all linked node pairs is
O(N2) in a dense graph, which is the worst case.

IV. STRATEGIES TO MINIMIZE THE LARGEST
EIGENVALUE BY LINK REMOVAL

This section discusses and compares various strategies in
Fig. 5, denoted by S.

FIG. 5. (Color online) Various strategies applied to 106 instances
of ER graphs with N = 20 and p = 2 ln N/N . The insert shows
two additional strategies “assortativity” and “betweenness” that are
clearly worse than the others.

The first strategy, as suggested in Sec. III, is to remove the
link with maximum product of the eigenvector components.
Specifically, this strategy is denoted by S = xixj instead of
S = (x1)i(x1)j to simplify the notation in the figures, and it
removes that link l = i ∼ j for which (x1)i(x1)j is maximal.

Section III C hints that the spectral radius is possibly
decreased the most by a link removal that reduces either
S = N3

N2
or the assortativity S = ρD the most. Strategy S = N3

N2

will remove the link such that N3−(3
N2−(2

is minimized.
The other considered strategies S = didj and S = di + dj

remove that link l = i ∼ j with the largest sum or product of
the degrees of the link’s end points, whereas the strategies
S = si + sj and S = sisj remove the link with the largest
sum or product of the total degree si of the neighbors at
both end points. Finally, we also considered the strategy
S = betweenness, which removes the link with highest link
betweenness, i.e., the number of shortest paths between all
node pairs that traverse the link.

We define the performance measure )S of a particular link
removal strategy S by

)S = [λ1(A) − λ1(A1)]optimal − [λ1(A) − λ1(A1)]Strategy S.

Figure 5 compares the above explained strategies. Figure 5
confirms that strategy S = xixj is superior to all other strate-
gies. There is a very small difference between the strategies
S = di + dj and S = didj and between S = si + sj and the
corresponding product S = sisj . In both cases the product
strategy is slightly better (but the difference is not observable
from Fig. 5).

Another strategy is to remove the link that possibly
disconnects the graph G into two disjoint graphs G1 and G2.
However, this strategy is not always optimal as illustrated in
Fig. 6.

Only when both G1 and G2 are the same did we find that
the removal of the connecting link induces the largest decrease
in (λ1. Since this strategy cannot always be applied, we have
ignored this strategy henceforth.
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∆λ1 = λ1( A) − λ1( A \ l1) = 0.3486

∆λ1 = λ1( A) − λ1( A \ l2 ) = 0.3145

∆λ1 = λ1( A) − λ1( A \ l3) = 0.0806

∆λ1 = λ1( A) − λ1( A \ l4 ) = 0.0167

∆λ1 = λ1( A) − λ1( A \ l5) = 0.0092
2l 1l

3l

4l 5l

∆λ1 = λ1( A) − λ1( A \ l1) = 0.3486

∆λ1 = λ1( A) − λ1( A \ l2 ) = 0.3145

∆λ1 = λ1( A) − λ1( A \ l3) = 0.0806

∆λ1 = λ1( A) − λ1( A \ l4 ) = 0.0167

∆λ1 = λ1( A) − λ1( A \ l5) = 0.0092
2l 1l

3l

4l 5l

FIG. 6. (Color online) All possible (λ1 are computed when one
link is removed.

A. Removing m > 1 links

In this section, we investigate the behavior of several
strategies when more than one link is removed. We generated
104 Erdős-Rényi graphs with N = 10 nodes and L = 20
links, of which about 2% are disconnected. From each of
the generated graphs, all the links are removed one by one
following the different “greedy” strategies. We compare the
decrease in λ1 for each strategy to the optimal solution found
by removing all possible combinations of m links. In Fig. 7
the percentage of agreement between the greedy strategies and
the optimal strategy is shown.

Figure 7 illustrates that strategy S = max1"(i,j )"N (x1)i(x1)j
is nearly always (except for m = 13) superior to strategy S =
N3/N2 and S = sisj , which agrees with the theory in Sec. III.
Figure 7 exhibits a regime change from m = 10 on, where the
connectivity of the graphs starts to decrease rapidly.

The peculiar regime for m > 10 can be understood as
follows. The optimal solution for m = 10 removals is a circuit,
if the original graph contains a single connected circuit on
N = 10 nodes. If strategy S = max1"(i,j )"N (x1)i(x1)j finds
the optimal solution for m = 10 removals, the only possible
solution for m = 11 removals is to cut the circuit to form a path.
This is also the optimal solution. The eigenvector components
of a path graph are symmetrical around the node(s) in the
middle of the path and are maximal for the center node(s).
Strategy S = max1"(i,j )"N (x1)i(x1)j will, for the next link
removal, cut the path in the middle. The resulting graph is also
the optimal solution. In the next step, however, the strategy will
cut one of the paths in two, resulting in three paths of lengths
one, two, and four links, respectively. The optimal solution for
m = 13 link removals consists of a graph with three paths of

FIG. 7. (Color online) Four strategies compared with the global
optimum as a function of the number m of removed links in ER
random graphs with N = 10 nodes and L = 20 links, where 104

instances are generated. The lines show the percentage of connected
graphs per strategy after the removal of m links.

lengths two and one of length three. This graph can never be
formed by strategy S = max1"(i,j )"N (x1)i(x1)j starting from
a circuit. The optimal solution for m = 14 consists of two
paths of length two and two paths of length one, which can be
obtained in many different ways, including cutting the longest
path of the solution for m = 13. In almost 98% of the cases
this solution is found by strategy S = max1"(i,j )"N (x1)i(x1)j .
The high success rate means, at the same time, that the optimal
solution for m = 15 is almost never found because it cannot
be reached from the optimal solution of m = 14 by another
link removal, regardless of the followed strategy. The weaker
performance of strategy S = sisj for m = 12 can be explained
by considering the optimal solution for m = 11, which is a
path of nine links. Strategy S = sisj removes the link that
has the maximum product of the one hop neighbors of its
endpoints. Since a path has an even degree distribution, except
for the endpoints, the five links that form the center of the path
have an equal probability of being removed. Consequently, the
optimal solution for m = 11 will result in the optimal solution
for m = 12 only one in five times. The other four possibilities
lead to a graph with either a combination of a path of length
two and a path of length six or a combination of a path of length
three and a path of length five. Both these graphs will give the
optimal solution for m = 13 link removals, which explains the
increased success rate for m = 13.

At m = 15, the graph consists of five links and N =
10 nodes, configured in separate “cliques” K2 (i.e., line
segments), and the largest eigenvalue is minimal at λ1 = 1.
For m > 15, the strategies are all the same: A clique K2 (i.e.,
disjoint link) is removed.

Figure 8 illustrates four strategies on a typical in-
stance of a network with N = 10 and L = 20 links. While
the strategy S = assortativity clearly underperforms, the
three other strategies S = xixj , S = N3/N2, and S = sisj are
competitive: For small m, the strategy S = xixj excels (as
shown in Fig. 7), but for larger m the others can outperform.
Again, this phenomenon is characteristic for an NP-complete
problem, where the whole previous history of links removals
affects the current link removal. The considered strategies
(except for the global optimum one) are greedy and optimize
only the current link removal, irrespective of the way in which
the current graph Gm is obtained previously.

FIG. 8. (Color online) The performance λ1(A) − λ1(Am) of four
strategies versus m link removals in a typical instance of a graph with
N = 10 and L = 20 links.
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V. SCALING LAW OF (λ1(A) − λ1(Am))optimal

Another observation from Fig. 8 is that

(λm|optimal = λ1(A) − λ1(Am)|optimal = O(mβ), (15)

where β " 1. In other words, we conjecture that the scaling
of λ1(A) − λ1(Am) with m is sublinear in m (for nonregular
graphs) and that the coefficient β is likely a function of the
type of graph. Obviously, (λm = 0, when m = 0. Applying
the upper bound (1) to λ1(Am) shows that

(λm # λ1(A) −
√

1 − 1
N

√
2L − 2m

# λ1(A) −
√

1 − 1
N

√
2L +

√
1 − 1

N

√
2m = O(m1/2).

On the other hand, if Gm is a regular graph, then

(λm = λ1(A) − 2L − 2m

N
= O(m).

In particular, if G and Gm are regular graphs, then

(λm = 2m

N
. (16)

These arguments illustrate that 1
2 < β " 1. Figure 8 shows that

λ1(A) − λ1(Am)|optimal is likely close to β = 1, which suggests
that the optimal way to remove m links is to make Gm as regular
as possible, because the lowest possible λ1(Am) with given N
and L − m is obtained for a regular graph [as follows from the
Rayleigh inequality λ1(A) # 2L

N
].

While the law (15) is difficult to prove in general, we
provide evidence by computing the decrease in λ1 when m
random links are removed in the class of Erdős-Rényi random
graphs Gp(N ). For sufficiently large Erdős-Rényi random
graphs Gp(N ), we know [3] that

E[λ1] = (N − 2)p + 1 + O

(
1√
N

)
.

When m random links are removed from Gp(N ), we again
obtain an Erdős-Rényi random graph with link density

p∗ = L − m
(

N
2

) .

FIG. 9. (Color online) The scaling law of (λ1(A) − λ1(A1))optimal

for ER random graphs as a function of N.

FIG. 10. (Color online) The scaling law of (λ1(A) − λ1(A1))optimal

for square lattices as a function of N.

Hence,

E[(λm] = E[λ1(Gp(N ))] − E[λ1(Gp∗ (N ))]

= (N − 2)(p − p∗) + Rp(N ),

where the error term Rp(N ) is unknown. Assuming that Rp(N )
is negligibly small, we find, for sufficiently high N ,

E[(λm] ) (N − 2)m
(

N
2

) = 2m

N
− 2m

N (N − 1)
.

Thus, the average decrease in λ1(A) − λ1(Am) after removing
m random links in Gp(N ) is approximately, for large N ,

E[(λm] ) 2m

N
, (17)

which is close to (16) for regular graphs.
For m = 1, simulations on various types of graphs in Figs. 9

and 10 suggest the scaling law

(λ1(A) − λ1(A1))optimal = α

N
, (18)

where α is graph specific. In other words, N(λ1 = α is
independent of the size of the graph.

Ignoring the asymptotic nature of the analysis that led
to (17), we observe that, for m = 1, a maximum occurs at
N = 2. Figure 11 shows the pdf of(λ for Erdős-Rényi random
graphs, where for each curve 106 ER graphs have been created

FIG. 11. (Color online) The probability density function of (λ1

for ER random graphs of several sizes N .
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in which one random link was removed. The simulations agree
with E[(λ] ) 2

N
and indicate that Var[(λ] ) 13 + 2E[(λ].

Since a random link removal is inferior to the removal of the
optimal link, Fig. 9 indeed illustrates that the coefficient of the
inverse N scaling law αGp(N) ) 2.75 > 2. Figure 10 shows
that αlattice ) 3.9 > αGp(N) ) 2.75, which may indicate that
deviations from regularity cause λ1 to decrease more.

VI. CONCLUSIONS

The spectral radius is both fundamental in graph theory
as well as in many dynamic processes in complex networks
such as epidemic spreading, synchronization, and reaching
consensus [3], p. 200]. We have shown that the spectral
radius minimization problem (for both link as node removals)
is an NP-hard problem, which opens the race to find the
best heuristic. In particular, in large infrastructures such as
transportation networks, where removing links can be very
costly, a near to optimal strategy is desirable. We have shown

that an excellent strategy is S = xixj : On average, this strategy
outperforms most other heuristics, but it does not beat them at
all times. In addition to graph theoretic bounds and arguments
that underline the goodness of the heuristic S = xixj , two
scaling laws (15) and (18) are found: These laws may help
to estimate the decrease in spectral radius as a function
of the number N of nodes and/or the number m of link
removals. It may be worthwhile that further investigations
compute or estimate the scaling parameters β in (15) as well as
α in (18).
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[11] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs:
Theory and Applications, 3rd. ed. (Johann Ambrosius Barth
Verlag, Heidelberg, 1995).

[12] N. Robertson and P. D. Seymour, J. Comb. Theory, Ser. B 63,
65 (1995).

[13] Y. Hong, Linear Algebra Appl. 108, 135 (1988).
[14] N. Roussopoulos, Inf. Process. Lett. 2, 108 (1973).
[15] M. Aouchiche, F. K. Bell, D. Cvetković, P. Hansen, P. Rowlinson,
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