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Abstract

Background: Visualization and analysis of molecular profiling data together with biological networks are able to

provide new mechanistic insights into biological functions. Currently, it is possible to visualize high-throughput data

on top of pre-defined network layouts, but they are not always adapted to a given data analysis task. A network layout

based simultaneously on the network structure and the associated multidimensional data might be advantageous for

data visualization and analysis in some cases.

Results: We developed a Cytoscape app, which allows constructing biological network layouts based on the data

from molecular profiles imported as values of node attributes. DeDaL is a Cytoscape 3 app, which uses linear and

non-linear algorithms of dimension reduction to produce data-driven network layouts based on multidimensional

data (typically gene expression). DeDaL implements several data pre-processing and layout post-processing steps

such as continuous morphing between two arbitrary network layouts and aligning one network layout with respect

to another one by rotating and mirroring. The combination of all these functionalities facilitates the creation of

insightful network layouts representing both structural network features and correlation patterns in multivariate data.

We demonstrate the added value of applying DeDaL in several practical applications, including an example of a large

protein-protein interaction network.

Conclusions: DeDaL is a convenient tool for applying data dimensionality reduction methods and for designing

insightful data displays based on data-driven layouts of biological networks, built within Cytoscape environment.

DeDaL is freely available for downloading at http://bioinfo-out.curie.fr/projects/dedal/.

Background
One of the major challenges in systems biology is to com-

bine in a meaningful way the large corpus of molecular

biology knowledge recapitulated in the form of large inter-

action networks together with high-throughput omics

data [1].

There exist numerous methods using biological net-

works for making insightful high-throughput data anal-

ysis [1]. These methods can be separated in three large

groups, concentrating on: (1) mapping the data on top

of a pre-defined biological network layout, (2) identify-

ing subnetworks from a global network possessing certain
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properties computed from the data (such as subnetworks

enriched with differentially expressed genes), and (3)

using biological network structure for pre-processing the

high-throughput data (for example, for “smoothing” the

discrete mutation data).

Quantitative omics data can be mapped on top of a

pre-defined biological network layout. Currently, most

of the pathway databases (such as KEGG [2], Reactome

[3]) already provide these features using simple and

advanced data visualization tools. Omics data visual-

ization tools onto networks are constantly improving

and become more elaborated [4]. For example, the

VANTED tool [5] creates a classification tree accord-

ing to the KEGG pathway hierarchy and shows a

biological network with omics data as barplots or pie-

charts attached to the nodes allowing the visualiza-

tion of complex data with other means than simple
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node coloring. NaviCell [6, 7] and related pathway

database Atlas of Cancer Signalling Network (ACSN)

together with standard heat maps and barplots pro-

vide more flexible data visualization tools such as glyphs

(symbols with configurable shape, size and color) andmap

staining (using the network background for visualization)

[8, 9]. An interesting approach for data visualization using

biological networks was developed in NetGestalt online

tool [10]. This tool is based on a NetSAM R package to

create modules by hierarchical ordering of the network

in one dimension and visualizes high-throughput data

according to a chosen track as a combination of barplots

and heat maps.

Omics data are used to identify overexpressed or

enriched subnetworks. For example, in [11], expression

data were combined with network information in order to

identify under- or overexpressed subnetworks in Hunting-

ton’s disease and breast cancer. Inspired by this method,

several Cytoscape plug-ins were developed and applied

to various omics data in order to find connected sub-

components where most of the genes were differen-

tially expressed or co-expressed [12, 13]. A recent review

presents the integration of molecular profiles with net-

works in order to find “network modules” [14].

Projection of the high-throughput data into the basis of

smooth functions defined on a biological network graph

was suggested in [15]. Recently, biological networks were

used to regularize the genome-wide mutational land-

scapes (which are sparse) in cancer, applying network

smoothing methods [16].

However, none of the methods cited above had the

purpose to visualize high-throughput data by com-

puting a specific network layout based on the omics

data themselves, which would combine both the net-

work structure and the data associated to the net-

work node attributes. Some of the existing Cytoscape

layout algorithms (such as Group Attributes Layout)

allow exploiting the values of single node attributes, but

this possibility is currently under-developed. We believe

that using networks for visualizing and analyzing data

requires methods that would be able to create more suit-

able biological network layouts adapted for a particular

task.

Mathematically speaking, molecular entities exist in two

metric spaces. The first one is the space of biological

functions, where the distance between two molecules can

be defined by the number of steps (edges) in a graph

defining pairwise functional relations (such as protein-

protein interactions) along the shortest path connecting

them. The other metric space is the data space, where the

distance between two molecules is defined by the prox-

imity of the corresponding numerical descriptors (such

as expression profiles). The network distances are usually

visualized by designing a 2D or 3D layout, representing

the network structure. Visualization of distances in data

space is achieved by data dimension reduction methods

(such as PCA) projecting multidimensional vectors in 2D

or 3D space.

Dimension reduction techniques were already used

for producing biological network layouts. For exam-

ple, GOlorize Cytoscape plugin computes the layout of

a biological network using the results of GO enrich-

ment analysis [17]. Some existing methods apply mul-

tidimensional scaling to the distance matrix defined by

the graph path distance [18]. These methods have the

purpose to construct more appealing network layouts.

However, they usually do not use the multidimensional

data attached to the network nodes. Therefore, they can

not be adapted for visualization of a particular dataset.

On the other hand, there exist a number of convenient

software allowing the construction and visualization of

the structure of correlation graphs, computed from mul-

tidimensional data, e.g., BioLayout Express3D [19] or

Arena3D [20]. However, these representations do not

use the knowledge of the structure of real biological

networks since they are not inferred from the data by

correlation analysis.

We believe that in certain analyses, it could be insightful

to construct the biological network layout based simul-

taneously on the network structure and the associated

multidimensional data. One possible solution consists in

applying data dimension reduction techniques. In order

to allow Cytoscape users to conveniently apply linear and

non-linear dimension reduction methods accompanied

by network-based data regularization, we have developed

DeDaL, a Cytoscape 3 app for computing and mixing

data-driven and structure-driven network layouts. Unlike

many other methods, the purpose of DeDaL is not to

improve the visual appeal of the biological network lay-

out, but to modify it in such a way that the trends in the

associated data and exceptions from these trends would

be detectable more easily.

Implementation
DeDaL is a simplified Cytoscape 3 app implemented in

Java language. For computing linear and non-linear prin-

cipal manifolds, DeDaL uses VDAOEngine Java library

(http://bioinfo-out.curie.fr/projects/elmap/). For comput-

ing the eigenvectors of a symmetric Laplacian matrix, the

parallelized Colt library has been used (http://acs.lbl.gov/

ACSSoftware/colt/). Internal graph implementation is re-

used from BiNoM Cytoscape plugin [21–23]. The source

code of DeDaL is available at http://bioinfo-out.curie.fr/

projects/dedal/.

Producing data-driven network layouts

Data-driven network layout (DDL) is produced by DeDaL

by positioning the nodes of the network according

http://bioinfo-out.curie.fr/projects/elmap/
http://acs.lbl.gov/ACSSoftware/colt/
http://acs.lbl.gov/ACSSoftware/colt/
http://bioinfo-out.curie.fr/projects/dedal/
http://bioinfo-out.curie.fr/projects/dedal/
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to their projection from the multidimensional data

space of associated numerical vectors into a 2D space.

DeDaL implements three algorithms for performing this

dimension reduction: (1) projection onto a plane of two

selected principal components; (2) projection onto a

non-linear 2D surface approximating the multidimen-

sional data distribution, i.e. principal manifold, computed

by the method of elastic maps [24–28]; and (3) use

of (1) or (2) preceded by network-based regularization

(smoothing) of the data, based on computing the k first

eigenvectors of the Laplacian matrix of the network graph

and projecting data into this subspace (as suggested

in [15]).

DeDaL implements specific data pre-processing and

resulting layout post-processing steps. Pre-processing

steps include (1) selecting only nodes whose associated

numerical vectors (imported as tables into Cytoscape) are

sufficiently complete and (2) optional double centering

of the data matrix. Post-processing of the resulting lay-

out includes (1) avoiding overlap between node posi-

tions by moving them in a random direction at a small

distance; (2) moving the outliers (nodes positioned too

distantly from other nodes) closer to the barycenter of

the data distribution; and (3) placing the nodes with

missing data into the mean point of the position of their

network neighbours.

In future work, an effort will be made to project the

data in the three dimensional space, or exploit the con-

cept of multi-level 2.5D network representation [29]. We

would like to let the user rotate the network layout in

order to better visualize the network substructures which

are difficult to represent in 2D space, as it is done in

BioLayout 3D software [19]. We also plan to implement

in DeDaL more flexible dimension reduction algorithms

such as multidimensional scaling which will extend the

data representation possibilities, better answering to spe-

cific user’s needs (for example, by using non-Euclidean

metrics for comparing the molecular profiles). Finally,

more sophisticated strategies of network layout morph-

ing will be developed, taking into account the data. We

will also improve the function for avoiding extensive node

overlapping.

Manipulating network layouts in DeDaL

In order to allow the comparison of the resulting

DDLs with standard layouts produced by Cytoscape

and to transform one into another, DeDaL imple-

ments simple layout morphing and aligning methods.

Morphing of two network layouts is performed by

a linear transformation, moving matched nodes along

straight lines. DeDaL provides a convenient user dia-

log for morphing one layout into another so that the

user can immediately appreciate the morphing result.

The morphing operation provides poor results if one

layout is systematically rotated or flipped with respect

to the node positions in another one. DeDaL allows

aligning two network layouts by rotating, mirroring,

and minimizing the Euclidean distance between two

layouts.

Double-centering the data matrix

The data matrix is optionally double-centered by sub-

tracting from each matrix entry the mean value calcu-

lated over the corresponding matrix row and the mean

value calculated over the matrix column, followed by

adding the global mean value computed over all matrix

entries. This procedure eliminates some global biases

in the data such as the global differences in average

fluorescence intensity of different probes in microarray

data.

Network-based smoothing of data

DeDal perfoms Network data smoothing, as suggested in

[15]. For a graph representing the biological network, its

Laplacian and all its eigenvectors are computed. These

vectors define a new orthonormal basis in the multidi-

mensional data space. To smooth the values of the data

matrix, the initial multidimensional vector associated to

a datapoint is projected into the subspace spanned by

the first smallest k eigenvectors of the graph’s Laplacian.

DeDaL smoothing parameter is defined by pns = 1 −

k−(nc+2)
N−(nc+2) , pns ∈ [ 0; 1], where nc is the number of con-

nected components in the graph and N is the number

of nodes on the graph. Therefore, pns = 0 corresponds

to k = N , i.e. when no smoothing is performed and

all eigenvectors are used, while pns = 1 corresponds to

k = (nc + 2) and the first two non-degenerated eigenvec-

tors are used to smooth the data. In the latter case, the

data become effectively three-dimensional, with the first

dimension corresponding to the average value of the data

matrix computed over each connected component of the

graph.

Exporting the pre-processed data

The results of pre-processing the data for a given net-

work can be exported to a file. Actually, two files are

created: one in a simple tab-delimited format suitable for

further analyses in most of statistical software packages

and another file in the “.dat” format, suitable for anal-

yses in ViDaExpert multidimensional data visualization

tool [30]. That way, network smoothing of an expression

dataset can be done for further application in anymachine

learning algorithms (clustering, classification). For this

purpose, DeDaL can be also used in a command linemode

(see examples on the website, http://bioinfo-out.curie.fr/

projects/dedal/).

http://bioinfo-out.curie.fr/projects/dedal/
http://bioinfo-out.curie.fr/projects/dedal/
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Computing principal components and principal manifolds

The principal components in DeDaL are computed using

singular value decomposition by the method that allows

the treatment of missing data values without pre-imputing

them, as it is described in [31]. Data points, containing

more than 20% of missing values are filtered out from the

analysis. DeDaL computes the 10 first principal compo-

nents if there aremore than 10 data points, and k principal

components if there are k + 1 data points, with k < 10.

After computing the principal components, DeDaL

reports the amount of variance explained by each of the

principal components.

Time-efficient method of elastic maps for comput-

ing principal manifolds [24–28] also allows dealing with

missing data without pre-imputing them. In this case, a

2D rectangular manifold is computed, and the amount of

variance explained by it is reported.

Continuous layout morphing

Morphing two network layouts is performed by a simple

linear transformation. A node having position (x11, x12)

in the initial layout and the position (x21, x22) in the tar-

get layout is placed during the morphing procedure in the

position (p × x21 + (1 − p)x11, p × x22 + (1 − p)x12),

where p ∈ [ 0; 1] is the morphing parameter representing

the fraction of distance between the initial and target node

positions along the straight line.

Aligning two network layouts by rotation andmirroring

Morphing between two network layouts might be mean-

ingless if all nodes in one layout are systematically rotated

or flipped with respect to the node positions in another

layout. This situation is often the case when producing

the pure data-driven layout and comparing it to the ini-

tial structure-driven layout. In this case, DeDaL allows

minimizing the Euclidean distance between two lay-

outs defined as the sum of squared Euclidean distances

between all matched nodes with respect to all possible

rotations and mirroring of one of the layouts. DeDaL

provides an option to align networks before morphing

them. Also, a user can align several network layouts to

one chosen reference network layout, using a separate

“Layout aligning” dialog. For example, it is usually use-

ful to align the structure-driven layouts to the PCA-based

data-driven layout.

Using DeDaL in command line mode

DeDaL can be used separately from the Cytoscape envi-

ronment, in the command line mode, as it is explained

on the DeDaL website with several examples. This is

especially recommended for computing data-driven lay-

outs for large networks containing more than ten thou-

sand nodes. Command line mode allows applying all data

pre-processing steps, including double-centering and net-

work smoothing, saving the resulting network layout as a

XGMML file and saving the eigenvector decomposition of

the Laplacian of the network graph for future use.

Results
Using TCGA transcriptome data and HPRD network

We used The Cancer Genome Atlas (TCGA) transcrip-

tomic dataset for breast cancer (548 patients)[32] and

Human Protein Reference Database (HPRD) database [33]

as a source of protein-protein interaction network.

Firstly, as an example of a small subnetwork, we selected

proteins involved in Fanconi DNA repair pathway [34]

as it is defined in Atlas of Cancer Signaling Network

[8, 9]. For node coloring, we mapped the value of the t-test

computed for the gene expression difference between the

basal-like (one of the molecular subtypes of breast cancer,

significantly contributing to the intertumoral variability)

and non basal-like breast tumors. We have imported the

TCGA data in Cytoscape and applied DeDaL for the

transcription levels of the genes in the subnetwork (Fig. 1).

One can see (Fig. 1, top right) that the first prin-

cipal component sorts the nodes according to the

t-test, because in this case the first principal component

is associated with the basal-like breast cancer subtype.

The second principal component gives additional infor-

mation such as the fact that the expression levels of

BRCA2 and FANCE are differently modulated, though

both are upregulated in the basal-like subtype. Morph-

ing the organic network layout (Fig. 1, top left) with the

PCA-based layout moves the position of some of the

genes, keeping the general pattern of PCA preserved,

while better reflecting the network structure (Fig. 1, top

middle).

We have also applied PCA-based DDL to the subset

of basal-like breast tumors (Fig. 1, bottom left) which

showed the specific role of BRCA1 gene in this subtype

confirming a known fact. Also, the position of USP1 gene

has significantly changed with respect to the PCA-based

DDL produced for the whole set of samples. This demon-

strates the ability of DeDaL to produce network layouts

specific for a particular cancer subtype.

Application of network smoothing is demonstrated in

Fig. 1, bottom middle. The layout preserves the general

pattern of the PCA-based DDL, while better visualizing

the network structure, and moving some proteins into a

different position. For example, BRCA1 gene is moved

to the left because it is connected to several genes over-

expressed in basal-like breast cancer subtype. Figure 1,

bottom right, shows the application of non-linear PCA

to data dimension reduction. This network layout better

resolves the relations between some gene expression lev-

els such as FANCF and HES1 and the roles of BRCA1 and

BRCA2 in Fanconi DNA repair pathway.
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Fig. 1 Using DeDaL for visualizing Fanconi pathway in breast cancer. Top row: standard organic layout (left), PCA-based DDL (right), morphing two

previous layouts at half-distance (middle). Bottom row from left to right: PCA-based DDL computed only for basal-like tumors (note change in

position of BRCA1 gene), PCA applied to network-smoothed profile, DDL computed using elastic map (elmap) algorithm for computing non-linear

principal manifold. Red color denotes larger positive values of the t-test computed for the difference between basal-like and non basal-like groups

of samples, green color corresponds to negative values of the t-test

Visualizing RNA-Seq tissue expression data onto the

network of tissue-specific genes

In order to illustrate the added value of DeDaL for visu-

alizing expression data on top of relatively large net-

works, we constructed a tissue-specific subnetwork from

HPRD global network of protein-protein interactions

(PPIs) using the following approach. RNA-Seq data con-

taining transcriptomes for 27 healthy human tissues were

obtained from [35]. Replicate measurements were aver-

aged in order to obtain a single transcriptomic profile

per tissue. In each profile, the genes were ranked accord-

ing to their expression and the most significant largest

connected component (LCC) of the global PPI network

directly connecting the top ranked genes (OFTEN sub-

network) was identified using BiNoM plugin [21, 22] (see

detailed methodology description in [36]). After this step,

the tissue-specific subnetworks that showed a significant

score for the size of LCC were merged. This resulted in

a network containing 1047 nodes, representing the top

genes that are highly expressed in at least one tissue type,

and 1986 edges representing direct PPIs between them.

DeDaL was applied to this network and the whole set

of tissue transcriptomes. Double-centering and network

smoothing with retaining only 5% of smallest eigenvectors

was applied at the pre-processing step, and the non-

linear principal manifold was computed for dimension

reduction. Even without application of morphing to a

structure-driven network layout, this procedure produced

an insightful visualization of the network containing sev-

eral clusters and connections between them (Fig. 2, left

top and bottom). Mapping transcriptomes of different

tissues (spleen and brain) clearly highlights different net-

work clusters with this layout. The configuration of the

clusters reflects the proximity of them in the data space of

healthy tissue transcriptomes.

In order to objectively evaluate the advantage of using

DeDaL for data visualization, we quantified how well

the distances between the genes in the multidimensional
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DeDaL layout

Force-directed layoutDeDaL layout

o - multidimensional  distance 

+ - distance in DeDaL layout  

      (r=0.3, p-value=10-23) 

x – distance in force-directed  

      layout (r=0.1, p-value=10-5) 

Fig. 2 Using DeDaL for visualizing the network and RNA-Seq expression data of tissue-specific genes. RNA-Seq dataset for 27 healthy human tissues

was used to defined a subnetwork of HPRD PPI database enriched in tissue-specific genes (see the text for explanations). Network smoothing

followed by computation of principal manifold was applied to produce the data-driven network layout (DDL). Patterns of gene expression for two

selected tissues (brain and spleen) are shown on top the constructed DDL, red color denotes higher expression, green color corresponds to lower

expression. The sizes of the nodes are proportional to their connectivity degree in this network. On the left top panel application of the Force

Directed layout is shown for comparison. On the left bottom panel results of quantitative comparison between multidimensional distance

representation in DeDaL and Force Directed layout are shown. The most representative distances between the genes in the initial multidimensional

space (see [28] for details) are ranked here from the largest to the smallest values

space were reproduced on the 2D plane. We computed

the correlations between gene pair-wise Euclidean dis-

tances in multidimensional space and in their config-

uration in a 2D network layout. We compared DeDaL

with Force Directed layout frequently used to layout

large networks. Since the full distance matrix contains

many dependent distance values, one has to select the

most representative distances for computing these cor-

relations (pair of the most distant points, then pair of

the points most distant from the first pair, etc.). Such
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approach was applied before to quantify the goodness

of between-point distance representation after projecting

them into a low-dimensional space (Quality of Distance

Mapping criterion) [28]. Application of this approach

in this case study showed improved Pearson correlation

between the distances from 0.1 (Force Directed layout)

to 0.3 (DeDaL layout), leading to increase of correlation

coefficient statistical significance by 18 orders of magni-

tude (Fig. 2, right bottom panel). The absolute value of

the correlation remains moderate because projection of

multidimensional data into 2D leads to significant loss

of information. Force Directed layout produces signifi-

cant (though much less than DeDaL) correlation because

in this case, the biological network was specifically con-

structed to match the variance in the dataset. The later

underlines the importance of carefull biological network

selection for data visualization purposes.

Visualizing genetic interactions

Genetic interaction between two genes reflects their syn-

ergistic (negative interactions) or mutually alleviating

(positive interactions) functions The strength of genetic

interactions is characterized by an epistatic score which

quantifies deviation from a simple multiplicative model

[37]. In the global network of genetic interactions, each

gene can be characterized by its epistatic profile, i.e., a

vector of epistatic scores with all other genes [38]. It is

shown that the genes with similar epistatic profiles tend to

have similar cellular functions.

We applied DeDaL to create a DDL layout for a group of

yeast genes involved in DNA repair and replication. The

genetic interactions between these genes and the epistatic

profiles (computed only with respect to this group of

genes) were used from [38]. The definitions of DNA repair

pathways were taken from KEGG database [2]. Figure 3

shows the difference between application of the standard

organic layout for this small network of genetic interac-

tions and PCA-based DDL (computed here without apply-

ing data matrix double-centering to take into account

tendencies of genes to interact with smaller or larger num-

ber of other genes). PCA-based DDL, in this case, groups

the genes with respect to their epistatic profiles. Firstly,

local hub genes RAD27 and POL32 have distinct posi-

tion in this layout. Secondly, PCA-based DDL roughly

groups the genes accordingly to the DNA repair pathway

in which they are involved. For example, it shows that

Non-homologous end joining (NHEJ) DNA repair path-

way is closer to Homologous recombination (HR) pathway

than to the Mismatch repair (MR) pathway. It also under-

lines that some homologous recombination genes (such as

RDH54) are characterized by a different pattern of genetic

interactions than the “core” HR genes RAD51, RAD52,

RAD54, RAD55, RAD57.

Visualizing attractors of a Boolean model

In this example, we used the Boolean model of cell fate

decisions between survival, apoptosis and non-apoptotic

cell death (such as necrosis) published in [39], to group

the nodes of the influence diagram according to their co-

activation patterns in the logical stable states. The table

of stable states was taken from [39] (Fig. 4, top right) and

used to compute the PCA-based DDL (Fig. 4, bottom left).

In this DDL, nodes in close positions have similar pattern

of activation in stable states (such as RIP1 and RIP1K).

We used morphing PCA-based DDL and the initial lay-

out of the model (as it was designed in [39]) to visualize

several stable states corresponding to different cell fates

(Fig. 5). In this layout co-activated nodes tend to form

compact groups. Therefore, DeDaL can be used to design

layouts of mathematical models of biological networks,
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Fig. 3 Using DeDaL for visualizing network of genetic interactions between yeast genes involved in DNA repair. Red and green edges denote

positive and negative genetic interactions correspondingly. Different node colors indicate three distinct DNA repair pathways in yeast
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Fig. 4 Using DeDaL for visualizing results of a Boolean model simulation. Table of computed stable states is used to group the nodes with similar

states in similar conditions (shown in top right corner). In the influence diagram green edges signify inhibitory and red edges - activating relations.

The model network layout is produced by applying morphing of a data-driven layout with the initial layout suggested by modeler

using the solutions of the model. Applying DeDaL in this

analysis highlighted the functional importance of different

interactions in the model and identified dynamical mod-

ules composed of variables participating in the same fate

decision.

Scalability of DeDaL for large networks

DeDaL scales very well with respect to computing data

projections into 2D space (see Fig. 6). Even for the net-

works containing ten thousand nodes and more (such as

the whole HPRD graph), DeDaL computes linear and non-

linear data projections for few hundreds of samples in less

than few tens of seconds on an ordinary laptop.

However, the network smoothing data pre-processing

step implemented in DeDaL requires eigenvector decom-

position of the Laplacian matrix of the network graph

which scales in time as the third power of the number of

nodes. While this computation remains relatively fast for

relatively large networks (several minutes for a network

of 2000 nodes, in our benchmark example), it drastically

slows down when the size of the network grows above

several thousands of nodes. In our benchmark example,

eigenvector decomposition of the Laplacian of the whole

HPRD PPI database required 7 hours on a regular laptop,

which makes application of network smoothing data pre-

processing not convenient for large networks. However,
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Fig. 5 Using DeDaL for visualizing results of a Boolean model simulation. Visualization of three stable states of the model, with green and red

denoting inactive (FALSE) and active (TRUE) states of the node correspondingly

eigenvector decomposition of the Laplacian for a large

graph can be done once and saved on the disk for future

reuse. For example, on the DeDaL website we provide the

pre-computed eigenvector decomposition for the Lapla-

cian of the graph representing the whole HPRD database,

and other decompositions for large PPI networks will be

provided in the future. Using pre-computed eigenvector

decomposition allows applying data network smoothing

with large networks containing tens of thousands nodes in

a reasonable time (few minutes).

Use of DeDaL with large networks containing tens of

thousands of nodes is recommended in command line

mode (see Implementation section). The computed net-

work layout can be imported into Cytoscape environment

and used for mapping high-throughput data on top of

them.

Conclusions
DeDaL Cytoscape plugin combines the classical and

advanced data dimension reduction methods with the

algorithms of network layouting inside Cytoscape envi-

ronment. This ability can be used in a number of ways

and for many applications, some of them are suggested in

this paper.

Fig. 6 Scalability of DeDaL for large networks. The figure shows the number of seconds needed for DeDaL to compute network smoothing (red line,

circles), first ten principal components (blue line, rhombes) and the principal manifold (brown line, crosses) for a set of 100 ovarian cancer

transcriptomes and a series of networks with increasing number of nodes (up to 10000 nodes in the whole HPRD PPI database). Network smoothing

scaling is separately shown for the case of de-novo computation of the eigenvector decomposition of the network Laplacian (red line, circles) and

for the case of using the pre-computed eigenvector decomposition (green line, squares). The benchmarking was done in the command line mode

of DeDaL
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The application of DeDaL is not limited to producing

data-driven network layouts. More generally, DeDaL

allows the application of dimension reduction of the mul-

tivariate data associated with the nodes of any Cytoscape

network, optionally using the structure of the network,

and exports the results for further analyses by any suitable

algorithms.
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