
Dedalus: Datalog in Time and Space

Peter Alvaro1, William R. Marczak1, Neil Conway1,
Joseph M. Hellerstein1, David Maier2, and Russell Sears3

1 University of California, Berkeley
{palvaro,wrm,nrc,hellerstein}@cs.berkeley.edu

2 Portland State University
maier@cs.pdx.edu

3 Yahoo! Research
sears@yahoo-inc.com

Abstract. Recent research has explored using Datalog-based languages to ex-
press a distributed system as a set of logical invariants. Two properties of dis-
tributed systems proved difficult to model in Datalog. First, the state of any such
system evolves with its execution. Second, deductions in these systems may be
arbitrarily delayed, dropped, or reordered by the unreliable network links they
must traverse. Previous efforts addressed the former by extending Datalog to in-
clude updates, key constraints, persistence and events, and the latter by assuming
ordered and reliable delivery while ignoring delay. These details have a semantics
outside Datalog, which increases the complexity of the language and its interpre-
tation, and forces programmers to think operationally. We argue that the missing
component from these previous languages is a notion of time.

In this paper we present Dedalus, a foundation language for programming and
reasoning about distributed systems. Dedalus reduces to a subset of Datalog with
negation, aggregate functions, successor and choice, and adds an explicit notion
of logical time to the language. We show that Dedalus provides a declarative
foundation for the two signature features of distributed systems: mutable state,
and asynchronous processing and communication. Given these two features, we
address two important properties of programs in a domain-specific manner: a no-
tion of safety appropriate to non-terminating computations, and stratified mono-
tonic reasoning with negation over time. We also provide conservative syntactic
checks for our temporal notions of safety and stratification. Our experience im-
plementing full-featured systems in variants of Datalog suggests that Dedalus
is well-suited to the specification of rich distributed services and protocols, and
provides both cleaner semantics and richer tests of correctness.
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1 Introduction

In recent years, there has been a resurgence of interest in Datalog as the foundation
for applied, domain-specific languages in a wide variety of areas, including network-
ing [20], distributed systems [2,5,8], natural language processing [11], robotics [4],
compiler analysis [15], security [14,18,32] and computer games [31]. The resulting
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languages have been promoted for their compact and natural representations of tasks
in their respective domains, in many cases leading to code that is orders of magni-
tude shorter than equivalent imperative programs. Another stated advantage of these
languages is their ability to directly capture intuitive specifications of protocols and
programs as executable code.

While most of these efforts were intended to be “declarative” languages, many chose
to extend Datalog with operational features natural to their application domain. These
operational aspects limit the ability of the language designers to leverage the rich liter-
ature on Datalog: program checks such as safety and stratifiability, and optimizations
such as magic sets and incremental maintenance of materialized views. In addition, in
many of these languages the blend of operational and declarative constructs leads to
semantic ambiguities. These aspects are of particular interest to us in the context of
networking and other distributed systems, both because we have considerable practical
experience with these languages [2,20], and because others have examined the semantic
ambiguities of these languages in some depth [23,26].

In this paper we reconsider declarative programming for distributed systems from
a model-theoretic perspective. We introduce a declarative language called Dedalus1

that enables the specification of rich distributed systems concepts without recourse to
operational constructs. Dedalus is a subset of a language with well-studied features:
Datalog enhanced with negation, aggregate functions, choice, and a successor relation.
Dedalus provides a model-theoretic foundation for the two key features of distributed
systems: mutable state, and asynchronous processing and communication. We show
how these features are captured in Dedalus via the incorporation of time as an attribute
of Datalog predicates.

Given the ability to express programs with these two features, we address two impor-
tant properties of Dedalus programs: a temporal notion of safety appropriate to long-
running services and protocols, and stratified monotonic reasoning with negation over
time. We also provide conservative syntactic checks for our temporal notions of safety
and stratification.

We begin by defining Dedalus0, a restricted sublanguage of Datalog (Section 2).
We show how Dedalus0 supports state update in Section 3, and prove temporal safety
and stratifiability properties of Dedalus0 in Section 4. Finally, we introduce Dedalus
by adding support for asynchrony to Dedalus0 in Section 5. Throughout, we demon-
strate the expressivity and practical utility of our work with specific examples, includ-
ing a number of building-block routines from classical distributed computing, such as
sequences, queues, distributed clocks, and reliable broadcast. We also discuss the corre-
spondence between Dedalus and our prior work implementing full-featured distributed
services in more operational Datalog variants [2,20].

1 Dedalus is intended as a precursor language for Bloom, a high-level language for program-
ming distributed systems that will replace Overlog in the BOOM project [2]. As such, it is
derived from the character Stephen Dedalus in James Joyce’s Ulysses, whose dense and pre-
cise chapters precede those of the novel’s hero, Leopold Bloom. The character Dedalus, in turn,
was partly derived from Daedalus, the greatest of the Greek engineers and father of Icarus. Un-
like Overlog, which flew too close to the sun, Dedalus remains firmly grounded.
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2 Dedalus0

We take as our foundation the language Datalog¬ [30]: Datalog enhanced with negated
subgoals. We will be interested in the classes of syntactically stratifiable and locally
stratifiable programs [27], which we revisit below. For conciseness, when we refer to
“Datalog” below our intent is to admit negation—i.e., Datalog¬.

As a matter of notation, we refer to a countably infinite universe of constants C—in
which C1,C2, . . . are representations of individual constants—and a countably infinite
universe of variable symbolsA = A1, A2, . . .. We will capture time in Dedalus0 via an
infinite relation successor isomorphic to the successor relation on the integers; for con-
venience we will in fact refer to the domain Z when discussing time, though no specific
interpretation of the symbols in Z is intended beyond the fact that successor(x,y) is
true exactly when y = x + 1.

2.1 Syntactic Restrictions

Dedalus0 is a restricted sublanguage of Datalog. Specifically, we restrict the admissible
schemata and the form of rules with the four constraints that follow.

Schema: We require that the final attribute of every Dedalus0 predicate range over the
domain Z. In a typical interpretation, Dedalus0 programs will use this final attribute to
connote a “timestamp,” so we refer to this attribute as the time suffix of the correspond-
ing predicate.

Time Suffix: In a well-formed Dedalus0 rule, every subgoal must use the same exis-
tential variable T as its time suffix. A well-formed Dedalus0 rule must also have a time
suffix S as its rightmost head attribute, which must be constrained in exactly one of the
following two ways:

1. The rule is deductive if S is bound to the value T ; that is, the body contains the
subgoal S = T .

2. The rule is inductive ifS is the successor ofT ; that is, the body contains the subgoal
successor(T, S).

In Section 5, we will define Dedalus as a superset of Dedalus0 and introduce a third
kind of rule to capture asynchrony.

Example 1. The following are examples of well-formed deductive and inductive rules,
respectively.

deductive: p(A, B, S) ← e(A, B, T), S = T;

inductive: q(A, B, S) ← e(A, B, T), successor(T, S);

Positive and Negative Predicates: For every extensional predicate r in a Dedalus0
program P, we add to P two distinguished predicates r pos and r neg with the same
schema as r. We define r pos using the following rule:
r pos(A1, A2,[...],An,S)←
r(A1, A2,[...],An,T ), S=T ;
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That is, for every extensional predicate r there is an intensional predicate r pos that
contains at least the contents of r. Intuitively, this rule allows extensional facts to serve
as ground for r pos, while enabling other rules to derive additional r pos facts.

The predicate r pos may be referenced in the body or head of any Dedalus0 rule.
We will make use of the predicate r neg later to capture the notion of mutable state; we
return to it in Section 3.2. Like r pos, the use of r neg in the heads and bodies of rules
is unrestricted.

Guarded EDB: No well-formed Dedalus0 rule may involve any extensional predicate,
except for a rule of the form above.

2.2 Abbreviated Syntax and Temporal Interpretation

We have been careful to define Dedalus0 as a subset of Datalog; this inclusion allows
us to take advantage of Datalog’s well-known semantics and the rich literature on the
language.

Dedalus0 programs are intended to capture temporal semantics. For example, a fact,
p(C1 . . .Cn, Cn+1), with some constant Cn+1 in its time suffix can be thought of as a
fact that is true “at time Cn+1.” Deductive rules can be seen as instantaneous statements:
their deductions hold for predicates agreeing in the time suffix and describe what is true
“for an instant” given what is known at that instant. Inductive rules are temporal—their
consequents are defined to be true “at a different time” than their antecedents.

To simplify Dedalus0 notation for this typical interpretation, we introduce some syn-
tactic “sugar” as follows:

– Implicit time-suffixes in body predicates: Since each body predicate of a well-formed
rule has an existential variable T in its time suffix, we optionally omit the time suf-
fix from each body predicate and treat it as implicit.

– Temporal head annotation: Since the time suffix in a head predicate may be either
equal to T or equal to T ’s successor, we omit the time suffix from the head—and
its relevant constraints from the body—and instead attach an identifier to the head
predicate of each temporal rule, to indicate the change in time suffix. A temporal
head predicate is of the form:
r(A1,A2,[...],An)@next

The identifier @next stands in for successor(T,S) in the body.
– Timestamped facts: For notational consistency, we write the time suffix of facts

(which must be given as a constant) outside the predicate. For example:
r(A1,A2,[...],An)@C

Example 2. The following are “sugared” versions of deductive and inductive rules from
Example 1, and a temporal fact:

deductive: p(A, B) ← e(A, B);

inductive: q(A, B)@next ← e(A, B);

fact: e(1, 2)@10;
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3 State in Logic

Time is a device that was invented to keep everything from happening at once.2

Given our definition of Dedalus0, we now address the persistence and mutability of
data across time—one of the two signature features of distributed systems for which we
provide a model-theoretic foundation.

The intuition behind Dedalus0’s successor relation is that it models the passage of
(logical) time. In our discussion, we will say that ground atoms with lower time suffixes
occur “before” atoms with higher ones. The constraints we imposed on Dedalus0 rules
restrict how deductions may be made with respect to time. First, rules may only refer
to a single time suffix variable in their body, and hence subgoals cannot join across dif-
ferent “timesteps.” Second, rules may specify deductions that occur concurrently with
their ground facts or in the next timestep—in Dedalus0, we rule out induction “back-
wards” in time or “skipping” into the future.

This notion of time allows us to consider the contents of the EDB—and hence a
perfect model of the IDB—with respect to an “instant in time”: we simply bind the time
suffixes (T ) of all body predicates to a constant. Because this produces a sequence of
models (one per timestep), it gives us an intuitive and unambiguous way to declaratively
express persistence and state changes across time. In this section, we give examples
of language constructs that capture state-oriented motifs such as persistent relations,
deletion and update, sequences, and queues.

3.1 Simple Persistence

A fact in predicate p at time T may provide ground for deductive rules at time T , as
well as ground for deductive rules in timesteps greater than T , provided there exists a
simple persistence rule of the form:
p pos(A1,A2,[...],An)@next ← p pos(A1,A2,[...],An);

A simple persistence rule of this form ensures that a p fact true at time i will be true
∀ j ∈ Z : j ≥ i.

3.2 Mutable State

To model deletions and updates of a fact, it is necessary to break the induction in a
simple persistence rule. Adding a p neg subgoal to the body of a simple persistence rule
accomplishes this:
p pos(A1, A2, [...], An)@next←
p pos(A1, A2, [...], An),
¬ p neg(A1, A2, [...], An);

If, at any time k, we have a fact p neg(C1,C2,[...],Cn)@k, then we do not
deduce a p pos(C1,C2,[...],Cn)@k+1 fact. Furthermore, we do not deduce a
p pos(C1,C2,[...],Cn)@j fact for any j > k, unless this p pos fact is re-derived at
some timestep j > k by another rule. This behavior corresponds to the intuition that a
persistent fact, once stated, remains true until it is retracted.

2 Graffiti on a wall at Cambridge University [1].
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Example 3. Consider the following Dedalus0 program and ground facts:

p pos(A, B) ← p(A, B);
p pos(A, B)@next ← p pos(A, B), ¬p neg(A, B);

p(1,2)@101;
p(1,3)@102;
p neg(1,2)@300;

The following facts are true: p(1,2)@200, p(1,3)@200, p(1,3)@300. However, p(1,2)
@301 is false because p(1,2) was “deleted” at timestep 300.

Since mutable persistence occurs frequently in practice, we provide the persist macro,
which takes three arguments: a predicate name, the name of another predicate to hold
“deleted” facts, and the (matching) arity of the two predicates. The macro expands to
the corresponding mutable persistence rule. For example, the above p pos persistence
rule may be equivalently specified as persist[p pos, p neg, 2].

Mutable persistence rules enable updates. For some time T , an update is any pair of
facts:
p neg(C1,C2, [...],Cn)@T ;
p pos(D1,D2, [...],Dn)@T + 1;

Intuitively, an update represents deleting an old value of a tuple and inserting a new
value. Every update is atomic across timesteps, meaning that the old value ceases to
exist at the same timestep in which the new value is derived—timestep T + 1 in the
above definition.

3.3 Sequences

One may represent a database sequence—an object that retains and monotonically in-
creases a counter value—with a pair of inductive rules. One rule increments the current
counter value when some condition is true, while the other persists the value of the se-
quence when the condition is false. We can capture the increase of the sequence value
without using arithmetic, because the infinite series of successor has the monotonicity
property we require:

seq(B)@next ← seq(A), successor(A,B), event(_);
seq(A)@next ← seq(A), ¬event(_);
seq(0);

Note that these three rules produce only a single value of seq at each timestep, but they
do so in a manner slightly different than our standard persistence template.

3.4 Queues

While sequences are useful for imposing an ordering on tuples, programs will in some
cases require that tuples are processed in a particular (partial) order associated with
specific timesteps. To this end, we introduce a queue template, which employs inductive
persistence and aggregate functions in rule heads to process tuples according to a data-
dependent order, rather than as a set.
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Aggregate functions simplify our discussion of queues. Mumick and Shmueli ob-
serve correspondences in the expressivity of Datalog with stratified negation and strati-
fied aggregation functions [25]. Adding aggregation to our language does not affect its
expressive power, but is useful for writing natural constructs for distributed computing
including queues and ordering.

In Dedalus0 we allow aggregate functions to appear in the heads of deductive rules
in the form:

p(A1, . . . , An, ρ1(An+1), . . . , ρm(An+m))

In such a rule (whose body must bind A1, . . . , An+m), the predicate p contains one row
for each satisfying assignment of A1, . . . , An—akin to the distinct “groups” of SQL’s
“GROUP BY” notation.

Consider a predicate priority queue that represents a series of tasks to be performed
in some predefined order. Its attributes are a string representing a user, a job, and an
integer indicating the priority of the job in the queue:

priority queue(‘bob’, ‘bash’, 200)@123;
priority queue(‘eve’, ‘ls’, 1)@123;
priority queue(‘alice’, ‘ssh’, 204)@123;
priority queue(‘bob’, ‘ssh’, 205)@123;

Observe that all the time suffixes are the same. Given this schema, we note that a
program would likely want to process priority queue events individually in a data-
dependent order, in spite of their coincidence in logical time.

In the program below, we define a tablem priority queue that serves as a queue to feed
priority queue. The queue must persist across timesteps because it may take multiple
timesteps to drain it. At each timestep, for each value of A, a single tuple is projected
into priority queue and deleted (atomic with the projection) from m priority queue,
changing the value of the aggregate calculated at the subsequent step:

persist[m priority queue pos, m priority queue neg, 3]

omin(A, min<C>) ←
m priority queue(A, _, C);

priority_queue(A, B, C)@next ←
m priority queue(A, B, C),
omin(A, C);

m priority queue neg(A, B, C) ←
m priority queue(A, B, C),
omin(A, C);

Under such a queueing discipline, deductive rules that depend on priority queue are
constrained to consider only min-priority tuples at each timestep per value of the vari-
able A, thus implementing a per-user FIFO discipline. To enforce a global FIFO order-
ing over priority queue, we may redefine omin and any dependent rules to exclude the
A attribute.

A queue establishes a mapping between Dedalus0’s timesteps and the priority-ordering
attribute of the input relation. By doing so, we take advantage of the monotonic property
of timestamps to enforce an ordering property over our input that is otherwise difficult
to express in a logic language. We return to this idea in our discussion of temporal “en-
tanglement” in Section 5.5.
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4 Stratification and Safety

In the previous section we demonstrated that Dedalus0 can capture intuitive notions
of persistence and mutability of state via a stylized use of Datalog. However, the alert
reader will note that even simple Dedalus0 programs make for unusual Datalog: among
other concerns, persistence rules produce derivations for an infinite number of values
of the time suffix. Traditional Datalog interpreters, which work against static databases,
would attempt to enumerate these values, making this approach impractical.

However, in the context of distributed systems and networks, the need for non-
terminating “services” or “protocols” is very common. In this section we show that
expressing distributed systems properties such as persistence and mutable state in logic
does not require dispensing with familiar notions of safety and stratification: we take tra-
ditional notions of acceptable Datalog programs, and extend them in a way that admits
sensible non-terminating programs.

4.1 Stratification in Dedalus0

We first turn our attention to the semantics of programs with negation. As we will see,
the inclusion of time enables a syntactic stratification condition for programs, and the
existence of a unique model that corresponds to intuition [27].

Lemma 1. A Dedalus0 program without negation has a unique minimal model.

Proof. A Dedalus0 program without negation is a pure Datalog program. Every pure
Datalog program has a unique minimal model.

We define syntactic stratification of a Dedalus0 program the same way it is defined for
a Datalog program:

Definition 1. A Dedalus0 program is syntactically stratifiable if there exists no cycle
with a negative edge in the program’s predicate dependency graph.

We may evaluate such a program in stratum order as described in the Datalog liter-
ature [30]. It is easy to see that any syntactically stratified Dedalus0 instance has a
unique perfect model [27] because it is a syntactically stratified Datalog program.

However, many programs we are interested in expressing are not syntactically strat-
ifiable. Fortunately, we are able to define a syntactically checkable notion of temporal
stratifiability of Dedalus0 programs that maps to a subset of locally stratifiable Datalog
programs.

Definition 2. The deductive reduction of a Dedalus0 program P is the subset of P con-
sisting of exactly the deductive rules in P.

Definition 3. A Dedalus0 program is temporally stratifiable if its deductive reduction
is syntactically stratifiable.

Lemma 2. Any temporally stratifiable Dedalus0 instance P has a unique perfect model.
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Proof. Every temporally stratifiable Dedalus0 instance is locally stratifiable [27], and
thus has a unique perfect model.

Example 4. A simple temporally stratifiable Dedalus0 program that is not syntactically
stratifiable.
persist[p pos, p neg, 3]

p_pos(A, B, T) ←
insert p(A, B, T);

p_neg(A, B, T) ←
p_pos(A, B, T),
delete p(T);

In the Dedalus0 program above, insert p and delete p are captured in EDB relations.
This reasonable program is unstratifiable because p pos � p neg∧ p neg � p pos. But
because the successor relation is constrained such that ∀A, B, successor(A, B)→ B > A,
any such program is locally stratified on time suffixes. Therefore, we have p posn �

+

p negn �
+ p posn+1; informally, earlier values do not depend on later values.

4.2 Temporal Safety

Next we consider the issue of infinite results raised in the introduction to this section. In
traditional Datalog, this concern is well studied. A Datalog program is considered safe
if it has a finite minimal model, and hence has a finite execution. Safety in Datalog is
traditionally ensured through the following syntactic constraints:

1. No functions are allowed.
2. Variables are range restricted: all attributes of the head goal appear in a non-negated

body subgoal.
3. The EDB is finite.

These constraints ensure that the Herbrand Universe is finite: any atom that may be
deduced by a safe program may only take its attributes from the set of all constant
symbols appearing in the program and EDB. In fact, the set of all possible assignments
of these constants to predicate attributes, representing every possible interpretation, is
itself finite.

Since our definition of successor violates these rules, and indeed leads to an infinite
set of facts, Dedalus0 programs violate this definition of safety. However, successor
models time, not computation; later sections explain how Dedalus implementations
avoid enumerating the contents of successor at runtime. This section introduces a no-
tion of termination that allows us to reason about the safety of Dedalus0 programs.

A Dedalus0 program containing only deductive rules is informally equivalent to a
Datalog program in which all predicates have no time suffix. If all the rules in such a
program meet the conditions above, then clearly we would like them to meet Dedalus0’s
definition of safety.

Definition 4. A rule is instantaneously safe if it is deductive, function-free and range-
restricted. A Dedalus0 program is instantaneously safe if its deductive reduction is in-
stantaneously safe.
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The successor relation complicates the discussion of safety, as it introduces the
countably infinite set Z to our universe of constants.

Consider the following Dedalus0 program, which derives a single, persistent fact:

Example 5. An unsafe Dedalus0 instance?
persist[p pos, p neg, 2]
p(1, 2)@123;

The single ground fact will cause one deduction for each tuple in successor. Since
successor is infinite, the corresponding Datalog program is unsafe.

However, observe that each of these deductions produces a tuple that changes only in
its time suffix. We find it useful to distinguish between unsafe programs and programs
that, given a finite EDB, eventually derive only tuples that are equivalent except in their
time suffixes.

Definition 5. Two sets of ground atoms Γ and Γ′ are equivalent modulo time if each
atom γ ∈ Γ has a corresponding atom γ′ ∈ Γ′ such that γ and γ′ have the same
predicate symbol, and the same assignment of constants to attributes for all attributes
except the time suffix.

Definition 6. We say a Dedalus0 instance is quiescent at time T if the set of all atoms
with time suffix T is equivalent modulo time to the set of all atoms with time suffix T −1.

Lemma 3. A Dedalus0 instance that is quiescent at time T will be quiescent until times-
tamp of the next EDB fact V, i.e. for all U ∈ Z : V > U ≥ T. If no EDB fact has a
timestamp greater than T , then the instance will be henceforth quiescent.

Proof. A Dedalus0 program admits only deductive and inductive rules, which derive
new tuples at the same time as their ground tuples or in the immediate next timestep.
Thus, the set of tuples true at time T is completely determined by any tuples true at time
T − 1, and any EDB facts true at time T . Observe that the integer value of the timestep
does not influence the derivation.

If the instance is quiescent at T , then given A, the set of atoms with timestamp T − 1,
and the EDB at T , the program entails A at timestamp T . Thus in the absence of EDB
facts at T + 1, it entails A at T + 1.

Definition 7. A Dedalus0 instance with finite EDB is temporally safe if it is henceforth
quiescent after some time T .

Definition 8. Given the depends-on relation � and its transitive closure �∗, an inten-
sional predicate e in a program P is called an instantaneous predicate if for every pred-
icate p for which e �∗ p (ie, e depends transitively on p), either p appears in the head
of no inductive rules, or the body of each inductive rule with head p contains at least
one positive instantaneous predicate.

We propose the following conservative test for temporal safety. A program is guaranteed
to be temporally safe if every rule is either:
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1. An instantaneously safe rule, or
2. An inductive rule in which the head predicate occurs also in the body with the same

variable bindings for all attributes save the time suffix, or
3. An inductive rule that has at least one instantaneous predicate as a positive subgoal

in the body.

While a temporally safe program is henceforth quiescent after some time T , a tempo-
rally unsafe program changes infinitely. Note that the Dedalus0 program in Example 5
is temporally safe because the basic persistence macro creates a rule that satisfies the
second condition above.

Lemma 4. A temporally stratifiable Dedalus0 instance is temporally safe if it has a
finite EDB and every rule is one of the kinds 1-3 above.

Proof. Assume the program is temporally unsafe. That is, there exists no time T such
that ∀U ≥ T , the set of all atoms with timestamp U is equivalent modulo time to the set
of all atoms with timestamp T − 1. Let E be the maximum timestamp of any fact in the
EDB.

Observe that every rule r of kind 3 may only entail a finite number of facts—as the
EDB is finite—and thus may entail no facts at a timestamp greater than some maximum
timestamp Vr ≤ E + 1 ∈ Z. Since a Dedalus0 program has a finite set of rules we know
∃V ∈ Z : ∀r : V ≥ Vr, and thus V ≤ E + 1.

We now consider times T such that T > E + 1. By the argument above, no rules of
kind 3 entail any facts with a timestamp greater than E + 1. Recall that no EDB atoms
are true at any timestamp greater than E. Thus, any facts with timestamp greater than
E + 1 must be entailed by rules of kind 1 or 2.

Consider the set of equivalence classes modulo time of all possible atoms, A, given
the Herbrand Universe. We know A is finite, as the Herbrand Universe is finite. There-
fore, if the program is temporally unsafe, then B, the set of atoms entailed by the pro-
gram, both contains and excludes infinitely many members of at least one equivalence
class in A (i.e., something “infinitely oscillates in time” between being true and false).
Since the program has finitely many rules, at least one rule must entail infinitely many
atoms (from at least one of the equivalence classes from A). Thus, it is easy to see that
there must be a cycle that contains some predicate P and ¬P.

We show there exists such a cycle containing only rules of kind 1, which implies
that the program is temporally unstratifiable. In order for such a cycle to exist, P must
transitively depend on ¬P, and ¬P must transitively depend on P. Thus, the program
contains a rule J1 with ¬P in its body, and some predicate R in its head, as well as a
rule J2 that is transitively dependent on R, with P in its head.

Case 1: P � R. In this case, J1 must be of kind 1, as for any Q � P, a rule of kind 2
with P in the head may not directly entail Q given P. J2 must also be of kind 1—if it
is of kind 2, then it necessarily contains P in its body, so it cannot entail P unless P is
entailed by some other rule. If J2 contains R in its body, then the program is syntactically
unstratifiable. But if J2 does not contain R in its body, then it contains some predicate
S transitively entailed by R; without loss of generality, the body contains R. Thus, the
program is syntactically unstratifiable.



Dedalus: Datalog in Time and Space 273

Case 2: P = R. In this case, J1 and J2 are the same rule: P← ¬P. Thus, the program is
syntactically unstratifiable.

Thus, the program is temporally unstratifiable, which contradicts our assumption.

Example 6. A Dedalus0 instance with a temporally unsafe deductive rule.

p(A, B) ← q(A);

The program above has a temporally unsafe deductive rule that corresponds to an unsafe
rule in Datalog: it is not range-restricted. The head variable B could range over an
infinite set of constants.

Example 7. A Dedalus0 instance that is temporally unsafe due to infinite oscillation.

flip flop(B, A)@next ← flip flop(A, B);
flip flop(0, 1)@1;

The above program exemplifies temporally unsafe induction. Even though it contains
no function symbols and all variables are range-restricted, it entails infinite oscillation
of the flip flop predicate.

We can imagine interesting examples of temporally unsafe programs, and do not
forbid them in Dedalus0.

5 Asynchrony

In this section we introduce Dedalus, a superset of Dedalus0 that also admits the choice
construct [13] to bind time suffixes. Choice allows us to model the inherent nondeter-
minism in communication over unreliable networks that may delay, lose or reorder the
results of logical deductions. We then describe a syntactic convention for rules that
model communication between agents, and show how Dedalus can be used to imple-
ment common distributed computing idioms like Lamport clocks and reliable broadcast.

5.1 Choice

An important property of distributed systems is that individual computers cannot control
or observe the temporal interleaving of their computations with other computers. One
aspect of this uncertainty is captured in network delays: the arrival “time” of messages
cannot be directly controlled by either sender or receiver. In this section, we enhance
our language with a traditional model of nondeterminism from the literature to capture
these issues: the choice construct as defined by Greco and Zaniolo [13].

The subgoal choose((X1), (X2)) may appear in the body of a rule, where X1 and
X2 are vectors whose constituent variables occur elsewhere in the body. Such a subgoal
enforces the functional dependency X1 → X2, “choosing” a single assignment of values
to the variables in X2 for each variable in X1.

The choice construct is nondeterministic. In a model-theoretic interpretation of logic
programming, a nondeterministic program must have a multiplicity of stable models—
that is, it must be unstratifiable. Greco and Zaniolo define choice in precisely this fash-
ion: the choice construct is expanded into an unstratifiable strongly-connected compo-
nent of rules, and each possible choice is associated with a different model. Each such
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model has a unique, non-deterministic assignment that respects the given functional
dependencies. In our discussion, it may be helpful to think of one such model chosen
non-deterministically—a non-deterministic “assignment of timestamps to tuples.”

5.2 Distribution Model

The choice construct captures the non-determinism of communicating agents in a dis-
tributed system, but we want to use it in a stylized way to model typical notions of
distribution. To this end, Dedalus adopts the “horizontal partitioning” convention intro-
duced by Loo et al. [21]. To represent a distributed system, we consider some number
of agents, each running a copy of the same program against a disjoint subset (horizontal
partition) of each predicate’s contents. We require one attribute in each predicate to be
used to identify the partitioning for tuples in that predicate. We call such an attribute a
location specifier, and prefix it with a # symbol in Dedalus.

Finally, we constrain Dedalus rules in such a way that the location specifier variable
in each body predicate is the same—i.e., the body contains tuples from exactly one
partition of the database, logically colocated (on a single “machine”). If the head of
the rule has the same location specifier variable as the body, we call the rule “local,”
since its results can remain on the machine where they are computed. If the head has
a different variable in its location specifier, we call the rule a communication rule. We
now proceed to our model of the asynchrony of this communication, which is captured
in a syntactic constraint on the heads of communication rules.

5.3 Asynchronous Rules

In order to represent the nondeterminism introduced by distribution, we admit a third
type of rule, called an asynchronous rule. A rule is asynchronous if the relationship
between the head time suffix S and the body time suffix T is unknown. Furthermore,
S (but not T ) may take on the special value  which means “never.” Derivation at 
indicates that the deduction is “lost,” as time suffixes in rule bodies do not range over
.

We model network nondeterminism using the choice construct to choose from a
value in the special time predicate, which is defined using the following Datalog rules:

time();
time(S) ← successor(S, _);

Each asynchronous rule with head predicate p(A1, . . . , An) has the following additional
subgoals in its body:
time(S), choose((A1, . . . , An,T), (S)),

where S is the timestamp of the rule head. Note that our use of choose incorporates
all variables of each head predicate tuple, which allows a unique choice of S for each
head tuple. We further require that communication rules include the location specifier
appearing in the rule body among the functionally-determining attributes of the choose
predicate, even if it does not occur in the head.

Example 8. A well-formed asynchronous Dedalus rule:
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r(A, B, S) ←
e(A, B, T),
time(S),
choose((A, B, T), (S));

We admit a new temporal head annotation to sugar the rule above. The identifier async
implies that the rule is asynchronous, and stands in for the additional body predicates.
The example above expressed using async is:

Example 9. A sugared asynchronous Dedalus rule:

r(A, B)@async ← e(A, B);

5.4 Asynchrony and Distribution in Dedalus

As noted above, communication rules must be asynchronous. This restricts our model
of communication between agents in two important ways. First, by restricting bodies to
a single agent, the only communication modeled in Dedalus occurs via communication
rules. Second, because all communication rules are asynchronous, agents may only
learn about time values at another agent by receiving messages (with unbounded delay)
from that agent. Note that this model says nothing about the relationship between the
agents’ clocks; they could be non-monotonically increasing, or they could respect a
global order.

5.5 Temporal Monotonicity

Nothing in our definition of asynchronous rules prevents tuples in the head of a rule
from having a timestamp that precedes the timestamp in the rule’s body. This is a sig-
nificant departure from Dedalus0, since it violates the monotonicity assumptions upon
which we based our proof of temporal stratification. On an intuitive level, it may also
trouble us that rules can derive head tuples that exist “before” the body tuples on which
they are grounded; this situation violates intuitive notions of causality and admits the
possibility of temporal paradoxes.

We have avoided restricting Dedalus to rule out such issues, as doing so would re-
duce its expressiveness. Recall that simple monotonic Datalog (without negation) is
insensitive to the values in any particular attribute. Hence Dedalus programs without
negation are also well-defined regardless of any “temporal ordering” of deductions: in
monotonic programs, even if tuples with timestamps “in the future” are used to derive
tuples “from the past,” there is an unambiguous least minimal model. In Section 4.1
we showed that the monotonicity of time suffixes achieved by inductive rules ensures a
unique perfect model even for non-monotonic Dedalus0 programs.

Practical Implications. Given this discussion, in practice we are interested in three
asynchronous scenarios: (a) monotonic programs (even with non-monotonicity in time),
(b) non-monotonic programs whose semantics guarantee monotonicity of time suffixes
and (c) non-monotonic programs where we have domain knowledge guaranteeing mono-
tonicity of time suffixes. Each represents practical scenarios of interest.
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The first category captures the spirit of many simple distributed implementations
that are built atop unreliable asynchronous substrates. For example, in some Internet
publishing applications (weblogs, online fora), it is possible due to caching or failure
that a “thread” of discussion arrives out of order, with responses appearing before the
comments they reference. In many cases a monotonic “bag semantics” for the comment
program is considered a reasonable interface for readers, and the ability to tolerate tem-
poral anomalies simplifies the challenge of scaling a system through distribution.

The second scenario is achieved in Dedalus0 via the use of successor for the time
suffix. The asynchronous rules of Dedalus require additional program logic to guaran-
tee monotonic increases in time for predicates with dependencies. In the literature of
distributed computing, this constraint is known as a causal ordering and is enforced
by distributed clock protocols. We review one classic protocol in the Dedalus con-
text in Section 5.6; including this protocol into Dedalus programs ensures temporal
monotonicity.

Finally, certain computational substrates guarantee monotonicity in both timestamps
and message ordering—for example, some multiprocessor cache coherency protocols
provide this property. When temporal monotonicity is given, the proof of temporal strat-
ification applies.

Entanglement. Consider the asynchronous rule below:

p(A, B, N)@async ← q(A, B)@N;

Due to the async keyword in the rule head, each p tuple will take some unspecified
time suffix value. Note however that the time suffix N of the rule body appears also
in an attribute of p other than the time suffix, recording a binding of both the time
value of the deduction and the time value of its consequence. We call such a binding an
entanglement. Note that in order to write the rule it was necessary to not sugar away the
time suffix in the rule body.

Entanglement is a powerful construct. It allows a rule to reference the logical clock
time of the deduction that produced one (or more) of its subgoals; this capability sup-
ports protocols that reason about partial ordering of time across machines. More gen-
erally, it exposes the infinite successor relation to attributes other than the time suffix,
allowing us to express concepts such as infinite sequences.

5.6 Lamport Clocks

Recall that Dedalus allows program executions to order message timestamps arbitrar-
ily, violating intuitive notions of causality by allowing deductions to “affect the past.”
This section explains how to implement Lamport clocks [16] atop Dedalus, which al-
lows programs to ensure temporal monotonicity by reestablishing a causal order despite
derivations that flow backwards through time.

Consider a rule p(A,B)@async ← q(A,B). By rewriting it to:

persist[p pos, p neg, 2]
p wait(A, B, N)@async ← q(A, B)@N;
p wait(A, B, N)@next ← p wait(A, B, N)@M, N ≥ M;
p(A, B)@next ← p wait(A, B, N)@M, N < M;
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we place the derived tuple in a new relation p wait that stores any tuples that were “sent
from the future” with their sending time “entangled”; these tuples stay in the p wait
predicate until the point in time at which they were derived. Conceptually, this causes
the system to evaluate a potentially large number of timesteps (if N is significantly less
than the timestamp of the system when the tuple arrives). However, if the runtime is
able to efficiently evaluate timesteps when the database is quiescent, then instead of
“waiting” by evaluating timesteps, it will simply increase its logical clock to match that
of the sender. In contrast, if the tuple is “sent into the future,” then it is processed using
the timestep that receives it.

This manipulation of timesteps and clock values is equivalent to conventional de-
scriptions of Lamport clocks, except that our Lamport clock implementation effectively
“advances the clock” by preventing derivations until the clock is sufficiently advanced,
by temporarily storing incoming tuples in the p wait relation.

5.7 Reliable Broadcast

Distributed systems cope with unreliable networks by using mechanisms such as broad-
cast and consensus protocols, timeouts and retries, and often hide the nondeterminism
behind these abstractions. Dedalus supports these notions, achieving encapsulation of
nondeterminism while dealing explicitly with the uncertainty in the model. Consider
the simple broadcast protocol below:

sbcast(#Member, Sender, Message)@async ←
smessage(#Agent, Sender, Message),
members(#Agent, Member);

sdeliver(#Member, Sender, Message) ←
sbcast(#Member, Sender, Message);

Assume that members is a persistent relation that contains the broadcast membership list.
The protocol is straightforward: if a tuple appears in smessage (an EDB predicate), then
it will be sent to all members (a multicast). The interpretation of the non-deterministic
choice implied by the @async rule indicates that messaging order and delivery (i.e.,
finite delay) are not guaranteed.

The program shown below makes use of the multicast primitive provided by the
previous program and uses it to implement a basic reliable broadcast using a textbook
mechanism [24] that assumes any node that fails to receive a message sent to it has
failed. When the broadcast completes, all nodes that have not failed have received the
message.

Our simple two-rule broadcast program is augmented with the following rules, so
that if a node receives a message, it also multicasts it to every member before delivering
the message locally:

smessage(Agent, Sender, Message) ←
rmessage(Agent, Sender, Message);

buf_bcast(Sender, Me, Message) ←
sdeliver(Me, Sender, Message);
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smessage(Me, Sender, Message) ←
buf_bcast(Sender, Me, Message);

rdeliver(Me, Sender, Message)@next ←
buf_bcast(Sender, Me, Message);

Note that all network communication is initiated by the @async rule from the original
simple broadcast. The @next is required in the rdeliver definition in order to prevent
nodes from taking actions based upon the broadcast before it is guaranteed to meet the
reliability guarantee.

Implementing other disciplines like FIFO and atomic broadcast and consensus are
similar exercises, requiring the use of ordered queueing and sequences.

6 Related Work

6.1 Deductive Databases and Updateable State

Many deductive database systems, including LDL [7] and Glue-Nail [10], admit pro-
cedural semantics to deal with updates using an assignment primitive. In contrast, lan-
guages proposed by Cleary and Liu [9,19,22] retain a purely logical interpretation by
admitting temporal extensions into their syntax and interpreting assignment or update
as a composite operation across timesteps [19] rather than as a primitive. We follow
the approach of Datalog/UT [19] in that we use explicit time suffixes to enforce a strat-
ification condition, but differ in several significant ways. First, we model persistence
explicitly in our language, so that like updates, it is specified as a composite operation
across timesteps. Partly as a result of this, we are able to enforce stricter constraints on
the allowable time suffixes in rules: a program may only specify what deductions are
visible in the current timestep, the immediate next timestep, and some future timestep,
as opposed to the free use of intervals allowed in rules in Liu et al.

U-Datalog [6] addresses updates using syntax annotations that establish different in-
terpretations for the set of updated relations and the IDB, interpreting update atoms
as constraints and using constraint logic programming techniques to test for inconsis-
tent derivations. Similarly, Timed Concurrent Constraint Programming (TCCP) [28,29]
handles nonmonotonic constructs in a CLP framework by outputting a new (possibly
diminished) store and constraint program at each timestep.

Our temporal approach to representing state change most closely resembles the
Statelog language [12]. By contrast, our motivation is the logical specification and im-
plementation of distributed systems, and our principal contribution is the use of time to
model both local state change and communication over unreliable networks.

Lamport’s TLA+ [17] is a language for specifying concurrent systems in terms of
constraints over valuations of state and temporal logic that describes admissible transi-
tions. Two distinguishing features of Dedalus with respect to TLA+ are our minimalist
use of temporal constructs (next and async), and our unified treatment of temporal
and other attributes of facts; this enables the full literature of Datalog to be applied to
both temporal and instantaneous properties of programs.



Dedalus: Datalog in Time and Space 279

6.2 Distributed Systems

Significant recent work ([2,5,8,20], etc.) has focused on applying deductive database
languages to the problem of specifying and implementing network protocols and dis-
tributed systems. Implementing distributed systems entails a data store that changes
over time, so any useful implementation of such a language addresses the updateable
state issue in some manner. Existing distributed deductive languages such as NDlog and
Overlog adopt a chain of fixpoints interpretation. Evaluation proceeds in three phases:

1. Input from the external world, including network messages, clock interrupts and
host language calls, is collected.

2. Time is frozen, the union of the local store and the batch of events is taken as EDB,
and the program is run to fixpoint.

3. The deductions that cause side effects (e.g., deletions, updates, network messages
and host language callbacks) are dealt with.

Unfortunately, the language descriptions give no careful specification of how and when
deletions and updates should be made visible, so the third step is a “black box.” Loo
et al. [20] proved that classes of programs with certain monotonicity properties (i.e.,
programs without negation or fact deletion) are equivalent (specifically, eventually con-
sistent) when evaluated globally (via a single fixpoint computation) or in a distributed
setting in which the chain of fixpoints interpretation is applied at each participating node,
and no messages are lost. Navarro et al. [26] proposed an alternate syntax that addressed
key ambiguities in Overlog, including the event creation vs. effect ambiguity. Their so-
lution solves the problem by introducing procedural semantics to the interpretation of
the augmented Overlog programs. A similar analysis was offered by Mao [23].

7 Conclusion

Datalog has inspired a variety of recent applied work, which touts the benefits of declar-
ative specifications for practical implementations. We have developed substantial expe-
rience building distributed systems [2,3,8,20] using hybrid declarative/imperative lan-
guages such as Overlog [20]. While our experience with those languages was largely
positive, the combination of Datalog and imperative constructs often clouded our un-
derstanding of the “correct” execution of single-node programs that performed state
updates. This work developed in large part as a reaction to the semantic difficulties
presented by these distributed logic languages.

Through its reification of time as data, Dedalus allowed us to achieve the goal of a
purely declarative language, without sacrificing the ability to express two critical fea-
tures of practical distributed systems: mutable state and asynchronous communication.
We believe that Dedalus is as expressive as Overlog, but formalizing this intuition is dif-
ficult because the semantics of Overlog are not well specified. Instead, we are currently
validating the practicality of our work by “porting” many of our Overlog programs to
Dedalus.

In Dedalus, state update and communication differ from logical deduction only in
terms of timing. In the local case, this allows us to express state update without giving
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up the clean semantics of Datalog; unlike Datalog extensions that use imperative con-
structs to provide such functionality, each Dedalus rule expresses a logical invariant that
will hold over all program executions. However, interactions with external processes
and asynchronous communication introduce nondeterminism which Dedalus models
with choose. Our hope is that modeling external processes and events with a single
primitive will simplify efforts to formally verify the correctness of distributed systems
implemented using Dedalus. Two natural directions in this vein are to determine for
a given Dedalus program whether Church-Rosser confluence holds for all models pro-
duced by choice, or to capture finer-grained notions like serializability of such models
with respect to transaction identifiers embedded in EDB facts.
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