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Abstract— To improve the resolution of the Very Large Tele-
scope Interferometer (VLTI) a two-stage mechanical system, a
so called Differential Delay Line (DDL), is developed jointly
by the EPFL and the Observatory of Geneva. The system is
designed to reach nanometer accuracy at high bandwidth over
large displacements. The coarse stage features a permanent
magnet (PM) stepper motor driving a lead screw connected to a
double-parallelogram flexure with notch-hinges (blade) guiding
system, and the fine stage features a stacked piezoelectric device,
combine to one single measurable output.

This paper compares different control approaches for the
DDL with their respective advantages and disadvantages. The
developed control methods are based on modern linear and
nonlinear control theory. The performance of the control
schemes is illustrated via simulation and measurement on the
available prototype. The new developed methods are compared
to the currently implemented decoupled SISO design which
features a direct-coil controller for the coarse stage and a simple
PID-controller for the fine one.

I. INTRODUCTION

Earthbound astrometry is limited by atmospheric turbu-

lence, the reason for which extra-solar planets and other

faint objects are currently out of reach. Therefore, the

European Southern Observatory (ESO) is developing the

phase-referenced imaging and micro-arcsecond astrometry

(PRIMA) facility for the VLTI to solve this problem. To

enable full performance of PRIMA the Differential Delay

Line (DDL) is needed. It dynamically compensates for

the differential Optical Path Difference (∆OPD) to reduce

the effect of atmospheric disturbance and give stabilized

interference fringes for phase-referenced imaging [4], [5],

[7], [11].

The proposed design of the DDL corresponds to a dual-

stage double-input single-output (DISO) system, which is

also seen in hard-disk drives (HDD). Presently, a decoupled

SISO control scheme [13] is implemented on the DDL proto-

type. Without changing this structure, two knew approaches

for the coarse-stage control are introduced, one using a

flatness based controller [8], [6], [3] and the other a classical

PI controller. Furthermore, two global control structures will

be designed. One of them uses the PQ method dedicated

to dual-stage systems and mostly used in HDD control

[12], [14]. Furthermore, an optimal linear quadratic regulator

[10], [15], which controls both stages, is proposed. All the

new methods benefit from an exact feedback linearization

technique for the PM stepper motor similar to the Park

transformation [2], [1], [17].

The paper is organized as follows. In section II, a dynam-

ical model of the DDL is developed. Section III introduces

the different control laws to be applied to the DDL, followed

by some simulation and experimental results in section IV.

II. MODELING

The model of the DDL is divided into: i) the coarse

stage, formed by the PM stepper motor, ii) the lead screw

and iii) the blade guiding system (a double-parallelogram

flexure with notch hinges), and iv) the fine stage, featuring

the piezoelectric actuator.

A. Coarse stage

Mainly due to energy consumption issues, the project

hardware was modified from voltage control, as presented

in [13], to current control. The standard model for a PM

stepper motor can thus be reduced to:

dθ
dt

= ω
dω
dt

= −Km

J
ia sin(Nθ) + Km

J
ib cos(Nθ)

−
Ff

J
ω − TL

J

yc = γθ

(1)

Where ia and ib are the two inputs applied on phases a and

b of the motor; Km is the electromagnetic coefficient; N

the number of steps per revolution per phase; J the inertial

load relative to the rotation axis; Ff the viscous friction and

TL the external torque load. yc is the linear position of the

coarse stage (the origin being the position where no force

is applied to the blades) related by γ to the corresponding

angle θ.

The blade guiding system induces a reaction force on

the coarse stage actuator, which varies drastically with the

position (the force varies from -150 N to 150 N). The

force-deformation characteristic can be modeled with a third-

order polynomial [9, page 150]. The torque-deformation

characteristic is assumed to be of the same form, thus the

external torque is modeled as

TL =
(

k1 + k2θ
2
)

θ. (2)

The effects of the lead screw are included in the parame-

ters of the PM stepper motor model and the blade-guiding-

system model.

1) Parameter identification: Parameter identification was

undertaken in two steps, so as to capture the fast dynamics

of the motor as well as the effects of the blade guiding

system. The final parameters are presented in table I. The

identification process showed that k2 = 0 and therefore a

linear model for the external torque load is sufficient:

TL = k1θ . (3)



TABLE I

IDENTIFIED COARSE STAGE PARAMETERS

Parameter Km J Ff k1 k2

Value 1.1282 2e-4 0.1220 0.03 0

2) Linearization: The PM stepper-motor model for volt-

age control is often linearized by the Park-transformation [2],

[1], [17]. For the new model (1), this transformation can be

simplified through setting id = 0, so as to get the linearizing

inputs:

ia = − sin(Nθ)I
ib = cos(Nθ)I

(4)

With the new input I , model (1) is linearized to

dθ
dt

= ω

dω
dt

= −
Ff

J
ω − k1

J
θ + Km

J
I

(5)

B. Fine stage

The piezoelectric actuator available is a tripod design

of three parallel-mounted piezo-stack actuators. Drift and

hysteresis can be compensated in two ways:

1) by internal electronics, provided by “Physik Instru-

mente” (PI), so that the input-output behavior is almost

linear.

2) by adding a feed-forward loop containing the inverse

model of the hysteresis [16].

Currently, the first of the above methods is used, which

makes black-box identification very convenient. For this

purpose, a pseudo-random binary signal (PRBS) was applied

to the system and the data were collected with a sampling

frequency of 5000 Hz. An ARX model with coefficients

na = 3, nb = 2 and nk = 1 gave a reasonable simple

and good model. The ARX model obtained is given by

A(q)y(t) = B(q)u(t − nk) + e(t)

A(q) = 1 + a1q
−1 + . . . + ana

q−na

B(q) = b1q
−1 + . . . + bnb

q−nb+1

(6)

The identified parameters can be found in table II.

III. CONTROL STRATEGIES

A. Decoupled SISO design

The overall structure described in Fig. 1 is equivalent to

the one presented in [13], as well as the specific fine-stage

controller. For the coarse-stage control several methods are

designed, which are presented in the following sections.

TABLE II

IDENTIFIED FINE STAGE PARAMETERS

Parameter a1 a2 a3 b1 b2
Value -1.715 0.9232 -0.1405 -0.002362 0.2073
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1) Direct sine/cosine coarse-stage controller: The direct-

coil controller proposed in [13] also applies to current

control. Consequently, the following controller is proposed:

ia = Ipeak sin(α) (7)

ib = Ipeak cos(α) (8)

ec = rc − ŷc (9)

α =
1

Ti

∫ t

0

ec(t)dt , (10)

where α is the phase of the stator magnetic field; Ipeak is

the peak current applied to the coils of the motor; ec is

the coarse-stage tracking error, i.e the difference between

the estimated position of the PM stepper motor ŷc and the

low-pass filtered reference rc. To avoid de-sychronisation

between rotor and the generated magnetic field, the variation

of the controlled angle α has to be limited [13].

Since the peak current is constant, this particular controller

dissipates power constantly, even if the PM stepper motor

is at rest. Deriving the RMS power dissipation leads to

following relation:

PRMS = 2RI2
peak (11)

2) Coarse-stage controller based on feedback lineariza-

tion: To avoid the constant power dissipation a new coarse

stage controller has to be designed. Using the concept of

exact feedback linearization the coarse stage controller can

be divided into a control part and a part reconstructing the

inputs ia and ib (Fig. 2). From a theoretical point of view, the

”coarse stage”-block (Fig. 1) and the ”nonlinear feedback”-

block (Fig. 2) build exactly the linearized motor model (5).

a) PI-linearized: A classic PI-controller with the fol-

lowing transfer function is the first choice:

PI(s) = Kp ·

(

1 +
1

Tis

)

(12)



An integrator anti-reset windup (ARW) is introduced, of the

simple form:

uik
= 0 if ek > ǫ

uik
= uik−1

+ h
Ti

ek if ek ≤ ǫ
(13)

b) Flatness based control: The flatness property of a

system is characterized by the existence of a flat output,

which parameterizes the inputs and the system states with a

finite number of its derivatives. By planning the trajectories

of the flat output, one gets the corresponding system states

and inputs without integrating a differential equation. The

parameterized input linearizes the system and thus the flat-

ness property is similar to dynamic feedback linearization,

therefore the term exact feedforward linearization based on

differential flatness is also used [6], [8], [3].

Since the coarse-stage model is considered in its linearized

form (5), the simplest flat output to the system is

yf = γθ (14)

From the desired trajectories y∗

f , ẏ∗

f and ÿ∗

f the nominal input

I∗ to the system (5) is constructed:

I∗ =
1

γKm

[

Jÿ∗

f + Ff ẏ∗

f + k1

y∗

f

γ

]

(15)

To stabilize the system around the trajectory the new input

v is designed as

v = ÿ∗

f − 2k
(

ẏf − ẏ∗

f

)

− k2
(

yf − y∗

f

)

, (16)

where k > 0 is a design parameter. Combining (15) and (16)

gives the control law

I =
1

γKm

[

J
(

ÿ∗

f − k2e − 2kė
)

+ Ff ẏ∗

f + k1

y∗

f

γ

]

, (17)

with e = yf − y∗

f and ė = ẏf − ẏ∗

f .

B. PQ controller

The PQ method is dedicated to dual-stage DISO systems,

which is mostly used for the control of HDDs. The method

reduces the DISO design problem into two SISO design

problems [12], [14].

To apply the PQ method, linear models of the fine stage

and coarse stage are needed. Converting the identified fine-

stage ARX model into a transfer function yields the follow-

ing function

G1 =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0

, (18)

where the transfer function coefficients are given in table III.

The linearized coarse-stage model (5) can easily be written

TABLE III

FINE STAGE CONTINUOUS-TIME TRANSFER FUNCTION COEFFICIENTS

Nominator b0 b1 b2
Value 6.3 · 1010 −2.2 · 106 -423.2

Denominator a0 a1 a2

Value 2.1 · 1010
2.3 · 107 9814

as a transfer function:

G2 =
Kmγ

Js2 + Ffs + k1

(19)

The numerical values for Km, J , Ff and k1 are given in

Table I.

1) Actuator-output allocation: As proposed in [13], the

stepper motor’s contribution should be limited, so that it

keeps the piezo actuator within saturation range. Instead of

filtering the reference for the coarse stage, the PQ method

allows to choose the relative actuator-output allocation by

setting the 0-dB crossover frequency of the PQ transfer

function, where P = G2

G1

and Q = C2

C1

[12], [14]. Typically,

the 0-dB crossover frequency is chosen at around 10 Hz.

Moreover, an integrator for each actuator is added so as to

eliminate the residual steady-state errors.

The uncompensated system P in Fig. 3 has a phase margin

of 88◦ at 0-dB crossover frequency 115 Hz. Because the

relative-output allocation should take place at around 10 Hz,

the 0-dB crossover frequency needs to be lowered, which is

achieved with a small static gain. So as to have integrators

on both actuators, the following Q is proposed:

Q =
Ti1s

Ti2s
. (20)

This induces a slow integrator on the coarse stage and a

fast one on the fine stage. The static gain compensation is

equivalent to Ti1

Ti2
. In Fig. 3, one can see that the compensated

system PQ has a phase margin of 89◦ at 0-dB crossover

8.2 Hz, where the phase margin fulfills the requirement for

constructive interference [12], [14]. With this choice of Q,

the PQ system is not stable since the identified fine-stage

model G1 happens to be non-minimum phase.

The simplest C1, so that C2 is proper, is

C1 =
1

Ti1s
. (21)

C2 then becomes

C2 =
1

Ti2s
, (22)

which is realizable.

2) Loop shaping for overall performance: Designing C0,

the overall performance of the system can be improved. The

closed-loop bandwidth of Gsiso = C1G1 + C2G2 (Fig. 4)

needs to be increased to achieve the demanded performance.

A simple static gain is not enough, because the new phase

margin is negative. Therefore, an additional lead compen-

sator is incorporated, which contributes to the missing phase

so as to stabilize the loop. The following transfer function

for C0 arises:

C0 = Kp

(

s + 1

T2

s + 1

β2T2

)

(23)
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3) Overall control structure: The controller designed in

sections III-B.1 and III-B.2 is based on a linear model of

the plant. As seen in section II-A the coarse-stage model

has highly non-linear dynamics, hence its linearization in-

corporates the variable transformation (4). In practice this

linearization is inverted through reconstructing the inputs ia
and ib with the relationship (4). To do so, an observer is

needed to provide an estimate of the coarse-stage position.

It is sufficient to use the static observer proposed in [13]:

y = yf + yc

ŷc = y − PDC · Sat[uf ] ,
(24)

where PDC is a static gain model of the piezo. Thus, the

PQ controller is implemented based on the control structure

appearing in Fig. 5.

C. LQ controller

To guarantee tracking, the reference is fed to the plant

inputs through the block “N” in Fig. 6. Considering the

benefits of the dual-stage design, the reference is split by

tracking the actual reference r with the coarse stage and

PQ controller

Observer

Fine stage

Plant

nonlinear

Feedback Coarse stage
+

+

uf yf

ŷc

ia

ib
ycI

y

C0

C1

C2

r

Fig. 5. PQ control structure for the DDL

the error between the reference r and the estimated coarse-

stage position ŷc with the fine stage, where the coarse stage

estimate is provided as in (24). So as to reject perturbations

and model errors, an integrator term on the error is added to

the fine-stage reference. Hence, the equations of N :

u∗

c = r · (Kc)
−1

(25)

u∗

f = (r − ŷc + ie) · (Kf )−1
(26)

ie =

∫

(r − y)dt (27)

where Kc and Kf represent the closed-loop static gain of

the coarse stage, resp. fine stage.

The weighting matrices of the linear quadratic regulator

are chosen in a way to enforce the dual-stage nature of the

system. This means that, on one hand, the coarse stage is

tuned quite softly, so that it gently follows the reference, but,

on the other hand, the fine stage is tuned very aggressively

so as to give the necessary tracking precision.

In simulation, the classical Kalman estimator of the LQG

controller is used. From an implementation point of view, a

Kalman filter is not applicable, due to computational burden.

Instead, the fine-stage states are estimated by simulating the

model in parallel and the coarse-stage position is estimated

using (24). The coarse-stage velocity is estimated through

numerically differentiating the estimated coarse-stage posi-

tion. In this case no LQ estimator is in the loop, therefore

the design corresponds to a LQR controller.

Since the proposed exact feedback linearization (4) does

not affect the system states, only the inputs ia and ib have to

be reconstructed. Alltogether this gives the control structure

in Fig. 6.

Estimator

Linear Quadratic

Regulator nonlinear

feedback

System
Differential Delay Line

N
r

y

Iref

uref

I
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ib

up

x̂

Fig. 6. LQG overall control structure



D. Overview

There are five different methods to be compared by

simulation and tested on the real system. Three are based

on the decoupled SISO structure tagged; “direct coil”, “PI-

linearized” and “flatness based” (section III-A). Further two

global structures, “PQ” (section III-B) and “LQG”, resp

“LQR” (section III-C), were designed. In the next sections,

only one of these tags will be used to refer to one particular

control law.

All methods, except the direct-coil controller, use the exact

feedback linearization technique. The driving force, resp.

the torque generation, of the methods using exact feedback

linearization and the direct-coil control is fundamentally

different. Linearizing the model (1) reduces it to a SISO

system (5) with the single input I . Using this input to

reconstruct ia and ib, only the amplitude of the inputs can

be influenced. The phase of the stator magnetic field is fixed

at 90◦ with respect to the actual rotor position θ. In case

of direct-coil control, the amplitude of the input currents is

fixed to Ipeak, but the phase of the stator magnetic field can

be altered so as to generate the necessary torque.

IV. RESULTS

In pure tracking mode, a realization of a stochastic

Kolmogorov process (with a frequency content up to 250

Hz) is used as a reference. This signal is representative

of the atmospheric disturbances encountered. In reality, the

reference is not a pure Kolmogorov signal. From time to

time, there is a brusque change in position or even a switch

in stroke from one end to the other. The behavior of the

system in such cases can be tested through performing step

responses with displacements of different amplitudes.

The controllers need to track the reference with less than

70 nm RMS error, in pure tracking, and cover the whole

bandwidth of 250 Hz. In addition, they need to be robust

all over the stroke range and for all the different kind of

references.

A. Simulation results

1) Kolmogorov tracking: To analyze the quality of the

tracking performance, several characteristics are evaluated.

• The root mean square error

RMSE =

√

√

√

√

1

n

n
∑

i=1

e2
i , (28)

where n is the number of samples.

• The maximal absolute error

|e|max = max
e

|ei|. (29)

• The mean absolute error

ē =
1

n

n
∑

i=1

|ei|, (30)

where n is the number of samples.
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Fig. 7. Kolmogorov tracking in simulation with different control methods

• The power dissipation

PRMS = 2R
(

i2aRMS
+ i2bRMS

)

, (31)

with R = 0.5 Ω.

Each controller is simulated over 2 seconds in tracking

mode. In Fig. 7(a) a detail of the DDL output position

is given and in Fig. 7(b) the corresponding coarse-stage

position on a different time scale. One can see, in Fig.

7(a), that the PQ controller shows the largest deviations

from the reference especially at the beginning, whereas in

case of the LQG controller the DDL tracks very closely

the reference. This is perfectly in line with the results in

columns 1 to 3 in Table IV. All the different errors of the

PQ controller are larger than for the LQG, with the other

three controllers being somewhere in between. The direct

coil, flatness based, and PI-linearized controller should have

similar coarse-stage action, since their coarse-stage controller

is given the same filtered reference. Fig. 7(b) shows that

the direct-coil controller has a small delay with respect to

the coarse-stage action under flatness-based control, which

arises from the pure integration control (same effects as a

low-pass filter) of the direct-coil controller (section III-A.1).

The low-pass filter property of the integrator also has positive



TABLE IV

TRACKING RESULTS IN SIMULATION

RMSE [nm] |e|max [nm] ē [nm] P [W]

Direct Coil 23 103 18 2.25

PI-linearized 33 149 26 2.4e-5

Flatness based 27 118 21 4.5e-5

PQ 45 207 35 4.3e-5

LQG 15 84 20 4.5e-5

effects. The inaccurate coarse-stage position estimated does

not affect the direct-coil controller, but induces a slight jitter

of the coarse stage, which affects the tracking performance in

terms of RMS, absolute and mean error (Table IV columns

1-3). Interesting to mention is that the coarse-stage action

of the PQ and LQG controller are almost equal (Fig 7(b)),

despite their different design approaches. Furthermore, the

PQ controller shows worse performance for RMS, absolute

and maximal error (columns 1-3 Table IV). This means that

the optimal LQG controller treats the fine-stage action much

better than the PQ controller.

As expected, all methods based on exact feedback lin-

earization need much less energy as the direct-coil structure

(Table IV column 4). However, the power dissipation is

almost zero, which is not very realistic, but is explained by

the absence of a detailed static-friction model.

B. Experimental setup

1) DDL prototype and laser metrology: The DDL proto-

type available at the EPFL is built from a PM stepper motor

NEMA 23 from “Ultramotion”, combined with a lead-screw

which covers a full stroke of 70 mm. The motor is powered

by current a amplifier developed by the PRIMA consortium.

Also, the blade guiding system is a tailor-made product. The

piezoelectric S-325 is from PI with a course of 30 µm and

a bandwidth of approximately 300 Hz.

The output is measured with an Agilent laser metrology.

2) Data acquisition hardware:

• VME rack: Two cards are installed into the VME rack

to get access to the laser metrology: the Agilent 10897B

laser board, which gives the position measured with sub-

nanometer resolution, and the NI VME-MXI-2 board.

The VME rack interfaces the memories of both boards,

so that the measurements are available to a PC.

1) Stepper motor

2) Piezoeletric actuator

3) Blade guiding supportt

4) Laser metrology

Fig. 8. Experimental setup: 1) Stepper motor, driving the coarse stage; 2)
Piezoelectric actuator, driving the fine stage; 3) Double parallelogram flexure
with notch-hinges; 4) Laser metrology with sub-nanometer resolution
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• NI PCI-MXI-2: This board is connected to the NI

VME-MXI-2 board, so as to access the position mea-

surement and to establish the real time control loop.

• NI PCI-6025E and NI PCI-6251: These cards provide

the 3 analog outputs to control the piezoelectric actuator

and the stepper motor. One of them is also used as

timing source to synchronize the measurement and the

excitation of the actuators.

3) Software: LabView 8.2 is used to implement the con-

trollers. In a timed loop all the necessary operations are

executed, where the loop is timed with the clock of one of the

NI DAQ boards. To achieve good closed-loop performance,

the sampling rate is selected to be 5kHz.

In Fig. 8 a schematic representation of the complete

installation is given.

C. Experimentation results

1) Kolmogorov tracking: Kolmogorov-signal tracking was

executed over 10 seconds. In figure 9, only a detail is given in

order to make differences visible. The tracking performance

is evaluated with the same relationships as in section IV-A.1.



In Fig. 9(b) one can see that all the controllers guarantee

that the coarse stage keeps the fine one within its saturation

limits, which is necessary for the functionality of the system.

In case of the PQ controller the coarse-stage action is quite

at the limit of what is allowed (Fig. 9(b)); nevertheless the

performance is similar to the one of the LQR controller in

terms of RMS and mean error (Table V column 1 and 3).

Furthermore, the three controllers based on the decoupled

SISO design (direct coil, flatness based and PI-linearized)

have similar RMS and mean errors (Table V column 1 and

3). Since they all use the same fine-stage controller, which

gives the precision to the system, this is not surprising.

In Fig. 9(a) the LQR shows a sort of oscillatory behavior

and bigger deviation from the reference than the rest of the

controllers. Checking the maximal error of the controllers

(Table V column 2), one can see that just the LQR controller

has the largest maximal error. Whereas for the direct coil and

PQ controller the deviation peaks are less marked (Fig. 9(a)),

also the maximal error of these controllers is smaller than for

the LQR (Table V column 2). The PI-linearized controller

does not show any oscillations around the reference (Fig.

9(a)), which is also confirmed by the smallest maximal

error of all controllers (Table V column 2). In case of the

PQ controller, one can also clearly see the effects of static

friction on the coarse stage action (Fig. 9(b)), which leads

to a sort of stepping behavior. The other controllers show

a smoother coarse-stage movement especially the direct-coil

controller (Fig. 9(b)). This controller also injects constantly

a lot of energy into the system (section III-A) and thus the

static friction does not affect the coarse-stage movement.

Column 4 in Table V shows that all the controllers based

on exact feedback linearization dissipate much less power in

tracking than the direct-coil controller.

Based on the tracking performance in Table V the PI-

linearized controller is rated best, since it has lowest values in

RMS, absolute and maximal error and additionally the power

dissipation is much less than for the direct-coil controller.

2) 5000 µm step response: To test the system for sudden

large displacements in the reference, step displacements of

5000 µm are applied to the DDL. One experience is done

in the center of the stroke, where no force is applied to the

blades (Fig. 10(a)), and another towards the end of the stroke,

where a big reaction force acts on the coarse-stage actuator

(Fig. 10(b)).

In order to obtain the results illustrated in Fig. 10, strict

rate limitations for speed have been introduced, for the con-

trollers based on the decoupled SISO structure, as mentioned

in [13]. With these measurements, taken the system with

TABLE V

TRACKING RESULTS IN IMPLEMENTATION

RMSE [nm] |e|max [nm] ē [nm] P [W]

Direct Coil 25 308 19.6 2.25

Flatness based 26.6 147.5 20.7 0.016

PI-linearized 22.8 133 17.7 0.017

PQ 40 270 31 0.012

LQR 44.8 640 30.7 0.015
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(a) DDL output position for a 5000 µm step displacement at
the center
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(b) DDL output position for a 5000 µm step displacement
towards the extremity of the stroke

Fig. 10. Tests of sudden large displacements in the tracking reference

direct-coil control performed best, since it allows the highest

speed without destabilizing the system (Fig. 10(a)). In case

of the LQR controller, no such speed limitation can be

introduced, which leeds to a random behavior caused by de-

synchronization between rotor and the generated magnetic

field (Fig. 10(a)). Similar behavior was also observed for

the other methods based on exact feedback linearization de-

pending on position and moving direction of the coarse stage.

Towards the extremities of the stroke they also have problems

to follow the reference. As one can see in Fig. 10(b), if the

system is driven by a controller based on linearization, the

DDL suddenly stops to move. The controllers do not allow

the motor to generate enough torque to make the table move.

With the direct coil controller, the system has no problems

to follow the reference (Fig. 10(a)), because as soon as

the difference between the reference and the real position

increases a bigger torque is generated due to the particular

structure of the controller. The input saturation is present by

imposing a ramp instead of the true step reference. In case of

a controller based on feedback linearization, this is different.

The input I already saturates at the beginning of the ramp in



TABLE VI

QUALITATIVE CONTROLLER COMPARISON

Decoupled SISO structure Global structure

Amplitude = fixed Amplitude = controlled
Phase = controlled Phase = fixed
Direct coil PI-linearized Flatness LQR PQ

RMS error ++++ ++++ ++++ ++ ++

emax +++ ++++ ++++ + +++

Power dissipation - ++++ ++++ ++++ ++++

Step response ++++ + - - - - - -

Robustness ++++ - - - - - - - - - -

order to follow it. When the tracking error starts to increase

there is no more room to generate more torque, since the

input is already saturated (Fig. 11).

V. CONCLUSIONS

This paper presents a variety of control approaches for a

dual-stage mechatronic system. It shows that the well-known

Park transformation to control PM stepper motors in voltage

control can be modified for the use in current control.

Since the system needs to be robust and highly reliable,

the only reasonable choice for the final implementation is the

decoupled control structure with the direct-coil coarse-stage

controller. All the other methods show promising results,

especially in terms of energy consumption, but they lack

global robustness. In Table VI, a representative comparison

of the different control methods is given.

To overcome the lack of torque towards the extremities,

another feedback linearization needs to be introduced, which

allows action on the amplitude of the input currents ia and

ib and the phase of the generated magnetic field. All the

new methods would not be applicable anymore, since they

are designed for a coarse-stage model transformed to a SISO

system.

To determine whether the effects of the blade guiding

system and the lead screw cause the robustness issues,

one could separate the PM stepper motor from the rest of

the system. Such an experience would show whether the

controllers work for the PM stepper motor only.
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Fig. 11. Inputs ia and ib of the flatness-based controller during a 5000 µ
step displacement towards the extremity of the stroke
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