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Dedicated Mechanical Subcooling Design Strategies for Supermarket 
Applications 

J.W. Thornton, S.A. Klein, J.W. Mitchell 
Solar Energy Laboratory 

University of Wisconsin- Madison 
Madison, Wl53706 USA 

ABSlRACT 

Dedicated mechanical subcooling cycles utilize a small mechanical vapor-compression cycle. coupled to 
the main cycle at the exit of the condenser, to provide subcooling to the main refrigeration cycle. The 
amount of subcooling, the thennal lift of the subcooling cycle, and consequently the perfonnance of the 
overall cycle can be related directly to the temperature of the subcooling cycle evaporator. In !his paper, 
the optimum value of the subcooling evaporator temperature is predicted using an ideal dedicated 
subcooling cycle. These results are then compared to those generated from a propeny-dependent model. 
The consideration of this optimum subcooling evaporator temperature leads to a design rule for the 
optimum distribution of heat exchange area for !he dedicated subcooling cycle. 
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coefficient of perfonnance 
ideal coefficient of perfonnance 
coefficient of perfonnance of !he main refrigerntion cycle 
coefficient of perfonnance of the subcooling refrigeration cycle 
coefficient of perfonnance of !he overall dedicated subcooling cycle 
main cycle refrigerant enthalpy difference between exit of condenser 
and exu of subcooler 
enthalpy difference between subcooled and non-subcooled main cycle 
evaporator inlets 
Log Mean Temperature Difference 
refrigerant flow rate ratio 
refrigerant flow rate for !he main refrigeration cycle 
refrigerant flow rate for the subcooling refrigeration cycle 
heat transfer to or from the refrigeration cycle 
heat lr.lnSfer to the main cycle evaporator 
heat lr.lnSfer to !he main cycle evaporator if there is no subcooling being 
performed 
heat lr.lnSfer to the subcooling cycle evaporator 
heat transfer across !he subcooler 
temperature of the refrigernted space 
refrigeration cycle sink temperature 
intennediate temperature for the ideal subcooling cycle 
a measure of perfonnance of the subcooler heat exchanger 
overall heat transfer coefficient 
work required to operate main refrigeration cycle 
work required to operate subcooling refrigeration cycle 

!NlRODUCTION 

The ?oef~cient ?f performance (COP) of low-temperature refrigeration cycles can be increased beyond 
that which IS po~s1ble throug~ standard ~apor-comprcssion cycles by utilizing dedicated mechanical 
subcoohng. Dedicated mechanical subcooUng cycles employ a second vapor-compression cycle solely for 
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the purpose of providing subcooling to the main refrigeration cycle. The subcooling cycle is coupled to the 

main cycle oy the use of a subcooler located at the e;<it of the main cycle condenser (refer to Figure I). For 

supermarket applications, the subcooler provides about 70"F of subcooling at design conditions and acts as 

the evaporator for the subcooling cycle. Because the second cycle provides a lower temperature sink for 

the subcooler heat transfer than the ambient, the mechanical subcooling cycle is especially etli:ctive at high 

ambient and low evaporator temperatures. In pt"aCtice, the components of the subcooling cycle are a 

fraction of the size of the main cycle components and perfonn through much sma11er temperature extremes. 

For this reason, the COP of the subcooli11g cycle is appreciably higher than that of the main refrigeration 

cycle. This high subcooling cycle COP can result in an increase in the overall cycle COP. 

Considering Figure 2, a pressure-enthalpy diagram for a dedicated mechanical subcooling cyck 

subcooling allows the refrigerant to enter the main cycle evaporator with a lower quality (where point 4" 

represents a typica1 vapor compression cycle and point 4 represents the dedicated subcooling cycle). Th~ 

lower quality at the evaporator inlet corresponds to an increase in the refrigeration capacity per unit mass of 

refrigerant circulated. However, the increase in refrigeration capacity is not without cost. Neglecting 

losses to the environment, an energy balance on the subcooler reveals that the amount of subcooling 

provided to the main cycle must equal the heat addition to the subcooling cycle evaporator. The h.:at 

addition to the subcooling cycle evaporator must be rejected in the subcooling cycle condenser at the cost 

of the work of the subcooling cycle compressor. Therefore. there is a trade-off between the amount of 

subcooling provided to the mam cycle and the amount of work perfonned by the subcooling cycle 

compressor. This paper investigates this trade-off and explores the concept of the "optimum" temperature 

for the subcooling cycle evaporator. This "optimum" temperature of the subcooling cycle evaporator is the 

temperature at which the COP of the overall cycle is maximized. The "optimum" temperature is derived for 

a thermodynamically ideal mechanical subcooling refrigeration cycle. The results are then compared with 

those from a more detailed propeny-dependent system model. Finally. design guidelines for the optimum 

distribution of heat e11change area for the dedicated mechanical subcooling cycle are developed. 

OFUMUM TEMPERATIIRE FOR A 1HERMODYNAMICALL Y IDEAL CYCLE 

The thermodynamically idea1 mechanical subcooling cycle was developed using the theory of Camot. 

and classic heat exchanger theory. Camot developed a theoretical upper limit on the performance of a 

refrigeration cycle that is often ca1led the Camot COP. The Camot COP assumes an internally reversible 

cycle and can be modeled as: 

COP = Capacity = Qcvnp = ___!I.._ 
Cili"Ilot Work W lTH-TL) 

where 
<4:vap is the heat transfer from the refrigerate(! space 

W is the work supplied to the refrigeration cycle by the compressor 

TL is the temperature of the refrigerated spnce 

THis the sink temperature 

(I) 

The following assumptions were made in the development of the idea1 mechanical subcooling model: 

• Both the main cycle and subcooling cycle condensers reject heat at the sink temperature (fH) 

• The main cycle heat addition occurs at TL. the refrigerated space temperature 

• The subcooling cycle heat addition occurs at TM. an intermediate temperature lTt<IT M'ITuJ 

• The COP of the main cycle and subcooling cycle are assumed to he the Camot COP if no 

subcooling is provided 

• There is no thermal energy loss to the environment in the subcooler 

• The only irreversibility is due to the subcooler heat transfer 

• The main cycle compressor wort is not influenced by the amount of subcooling 

provided to the main cycle. 

• The exit states of the main cycle condenser and evaporator are unaffected by the amount of 

subcooling performed 
• Isentropic expansion and compression are assumed for both the main and subcooling cycles 
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Firun 2~ Pressu.rt-enthalpy diag,..wnfor a dtd;caud mechanical suhcooling cycle. 

lf no subcooling is provided to the main cycle, the COP c;m be wriuen as; 

COP . _ Oevap,main.nosub _ _.IL_ 
mam- Wcomp,main - (TH-TI.) (2) 

When subcooling is added to the main cycle, the refrigeration capacity will in<:rcasc dw to the rcc.Ju<:cu quality of the refriger;mt entering the main cycle evaporator. However, the main cycle compressor will still provide the same amount of work. Therefore. the main cycle COP increases with additional subcooling. 

The subcooling cycle operates between the sink temperature (TH) ;md the subcooling cycle evaporator temperature (TM). Therefore. the COP of the subcooling cycle may now be cxpn:sscd as; 

Cop _ Oevap,sub _ ---.2M...__ 
sub- -

Wcomp.sub (TH-TM) 
(3) 
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Neglecting losses to the environment, an energy balan~ on the subcooler shows that the subcooling cycle 

evaporator heat transfer (Qevap,sub) is' equal to the amount of subcooling provided to the main cycle 

(Qsub>· 

The overall cycle COP may be e:o:pres.sed as the total refrigeration capacity divided by the total work. 

The capacicy of the overall cycle is simply the capacity of the main cycle without subcooling. plus some 

increment in capacity of the main cycle due to the subcooling performed. With the assumptions given 

earlier, an energy balance on the main cycle reveals that the amount of subcooling performed is equal to the 

increment in capacity to the main cycle. 

Referring to Figure 2. the energy balance may be seen as 6h2.3 = Ah4.4. The total work performed on the 

cycle is simply the sum of the compressor work for both the subcooling and ma.in cycles. With these 

definitions, the COP of the overall cycle may be e:o:pres.sed as: 

Cop 
_ (Qevap,main,nosub + Qsub) 

tom!-
(W comp,main + W comp,sub) 

(4) 

Before this e:o:pression may be further manipulated, an assumption is made to model the heat transrcr in 

the subcooler (the only source of irreversibility in the ideal model). The assumption is that the heat transli:r 

in the subcooler is proportional to the temperature difference between the working fluids in the main and 

subcooling cycles. For the ideal dedicated mechanical subcooling cycle, the ma:<imum temperatur,; 

difference in the subcooler is between the sink temperature (TH) and the subcooling evaporator 

temperature <TMl· The expression for the subcooler heat transfer becomes: 

(5) 

where x is the effectiveness·Cmin product as described by the NTU heat exchanger performance 

calculation method. 

The goal of the ideal model is to develop an expression for the overall cycle COP as a function of the 

subcooling evaporator ltlmpcrature <TM) and syslllm parameters. Since TM is a measure of th~ amount of 

subcooling provided illl.d the subcooling cycle thermal lift, there exists a thermodynamic compromise 

between the two competing effects. The desired e:o:pression is obtained by solving equation 2 for the main 

cycle compressor work (which is independent of the amount of subcooling as described earlier), equation 

3 for the subcooling cycle compressor work, and incorporating the subcooler heat transfer (equation 5) 

into equation 4. 

When (TM = TH), equation 6 reduces to; 

(7) 

which is the Camot COP of a cycle operating between TH and TL, as expected. If the subcooling 

evaporator temperature is the sink ltlmf"raturc. there is no tllmpcrature diflcrcncc hctw<.-cn the llow .'tream.' 

in the subcooler. Therefore, there will be no subcooling provided to the main cycle and conwqucntly no 

work performed by the subcooling cycle compressor. The overall cycle will then act like one cycle 

op,;rating between TH and TL at the Camot COP. 

At the lower e:o:trcme (TM "' TL), equation 6 again reduces to equation 7. With the subcooling 

temperature at the refrigerated space temperature. the maximum amount of subcooling is being performed. 

However. both cycles are now operating over the same thermal lift and the advantage of using dedicated 

mechanical subcooling is destroyed. 

If there is a subcooling evaporator tem(lCrature that ma:o:imi1.cs the overall COP. it must lio; between the 

two temperature extremes TH and T L· Considering Figures 3 and 4, there exists an optimum tcmp,;raturc 

of the subcooling evaporator that ma:o:imizes the COP of the ideal cycle. Figures 3 and 4 also show that the 

optimum temperature of the subcooling evaporator is not strongly affected by either x: a measure of the 
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subcooling heat exchanger perfom1ance, or Qevap; the desired n:frigerution capacity _for the ~lected val~es 
ofTH and TL that are representative of supem1~ket applications. The only factors mfluen~mg the chOICe 
of the optimum temperature for the ideal cycle are the s.ink temperature (TH) and the refngerated space 
temperature (TI). 
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Flguro 3: COP as a[uncrion o[TM and x.[or the ideal 
dedicattd subcooling cycle. 
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Figure J: COP as a/unction o[TM and Qevap[or 
the i<kaJ <kdicated subcooling cycle_ 

OPTIMUM TEMPERATURE FOR A PROPERTY -DEPENDENT CYCLE 

Although the results for the ideal cycle suggest that an optimum subcooling cycle evaporator temperature exists and that this optimum temperature is dependent only on the sink and refriger-.lted space temperatures, there aro many irrevcrsibilities that could affect the choice of, or even the existence of. the optimum temperamre. To evaluate whether the trends developed in the ideal analysis hold for the non-ideal case, a property-dependent computer model of a dedicated subcooling cycle was developed. The computer simulation was modeled after a supem1arket application designed to provide 15 tons of low·t<:mpemLur<: refrigeration. The property-dependent model takes imo account the irreversibiliti~;s due to compression, expansion. and heat exchange. The model was developed using EES; an engineering equation solver thal includes built-in thermophysical properties. optimization algorithms and parametric sLudies. The refrigeration system computer model was crealed by the integration of the steady-state component models discussed below. The property-dependent model differs from the ideal model in that the refrigeration capacity for the property-dependent model is asswned constant (15 tons). 

COMPRESSORS: It was assumed for the simulation thm the compressors were rcciprocaLing compressors with negligible heat transfer to the surroundings. Because Lhe isentropic efliciency is relatively independent of reciprocating compressor size for a given refrigerant, the steady-state compressors were modeled using the concept of isentropic efficiency. In this way. the intluence of relaLive compressor size on the simulation results was eliminaLed. 

EVAPORATORS: In most supermarket applications, the refrigerated display cases act as the evaporators for the refrigeration system. Therefore, the refrigerated space temperature dictates the evaporation temperature. For this simulation, the evaporator temperature was set at values of -20°F, 0°F, and 20°F. The refrigerant exiting the evaporaLOr was assumed to leave with seven degrees of superheat 

CONDENSERS: The condensers were assumed to be air-cooled cross-flow heat exchangers with cooling air flow rates of 3800 pounds of air per hour per ton of refrigeration. This value corresponds w approximately 900 CFM per ton of refrigeration, and is representative of current practice. The condensers were modeled using the Log Mean Temperuture Difference (LMTD) approach. 

EXPANSION VALVES: A typical vapor compression refrigeration cycle contains one expansion device. For this study, it was assumed that the expansion device was a them1ostatic expansion valve with negligible heat trunsfer to the surroundings. Thennostatic e11:pansion valves control the refrigerant flow rate in response to the degrees of superheat exiting the evaporator in order to avoid unevaporated refrigerunt being passed to the compressor. 
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SUBCOOLER: The subcooler. or subcooling he:ll exchanger. was assumed to be a concenuic-tube, 

counter flow heat exchanger. The subcooling heal exchanger acts as the evaporator for the subcooling 

cycle and the subcooler for the main cycle and was modeled using the LMTD approach. • 

2.50-r-------------, 
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2.26-

2.20+---r-..--r--r-..---r-..--1 
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Subcooling Evu.poru.tor Temperu.ture ( •f) 

Firure 5: COP as a flJnction of the submoling ewrporator ltmporarure for tht proptrry.dopendent dedicated subcooling C)"C/e. 

The effect of the subcooling evaporator temperature on overall COP was explored using the property­

dependent computer model. Referring to Figure 5. there is a noticeable maximum point in the COP versus 

subcooling evaporator temperature plot as predicted by the ideal model. However, nine variables 

significantly affected the performance of the dedicated subcooling cycle and the choice of the optimal 

subcooling evaporator temperature. 

• Refrigeration load 
• Ambient Temperature 
• Degrees of subcooling at exit of evaporators 
• Main cycle evaporator temperature 
• Compressor isentropic efficiency 
• Main cycle condenser size (UA) 
• Condenser cooling air flow rates 
• Subcooler size (UA) 
• Subcooling cycle condenser size (UA) 

Of these nine variables, four are constrained by the supermarket application and refrigeration 

equipment; the refrigeration load, the degrees of subcooling at evaporator exit. the compressor isentropic 

effictency, and the condenser cooling air flow rateS. Five variables remained that affected the choice of the 

optimal subcooling evaporator temperature. These variables fell into two groups; heat exchanger size 

considerations. and refrigeration cycle wmperature considerntions. 

The sensitivity of the optimal subcooling evaporator temperature to the heat exchanger sizes (main cycle 

condenser, subcooling cycle condenser, subcooler) was explored with the property-dependent computer 

model. The evaporator UA size was not considered because it is constrained by the choice of refrigerated 

case .. Changing the UA size of a heat exchanger not only affec!S the heat transfer in that component. bm 

ultimately affects the performance of the entire system. 

The consequence of changing the sizes of all three heat exchangers by the same amount was 

investigated. In this case. the UA product of allthrcc heat exchangers was multiplied by a constant. By 

multiplying by a constant, the ratio of each heat exchanger to the total remained constant; regardless of the 

multiplier. In this way, the effect of the total heat exchanger si7.e on the maximum COP point was studied. 

For this study, the heat exchanger UA productS were increased and decreased by 33%. Referring to 

Figure 6, the COP curves are seen to increase with increasing heat exchanger UA as expected. However. 

the sizes of the heat exchangers do not affect the maximum COP point if the rntio of the heat exchanger 

sizes to the total remains constant. 

The next problem that required investigation wa.s whether the relative sizc.s of the heat exchangers an·cct 

the optimal subcooling evaporator temperature. In the standard model, the main cycle condenser size (UA) 

was 300% greater than the subcooling cycle condenser size (UA). Figure 7 was generated by decreasing 
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the main cycle condenser UA by 300% and increasing the subcooling cycle UA by 300%. The inverted 
UA labeled on the sraph represents the switch from the sWJdard condenser UA's. With the main cyck 
condenser now being only one-third the size of the subeooling cycle condenser, the COP curves. wen.: 
shifted down by approllimately 20%. Howeve~.l)le sl!beooling evapor_ator tempero1tu~ a~ the maxtmum 
COP point was left virtually unchanged. ThiS tmphes that the max1mum COP pomt IS not a strong 
function of the relative si:t.eS of the condensers. 

1.9L~~====::~~~~~ 1.9-\--,.-....,..--.--r--r--.--.---\ 
.lQ 0 10 20 30 40 50 60 70 ·10 0 10 20 30 40 50 60 7U 

Subcooling Evaporator Temp. (°F) S11bcooling E11aporator Temp. (•F) 

Figu~ 6: COP as a [uncllon of the subcooling evaporQior Flgul'8 7: COP as a functron of tiJe subcooling e~•aporat<Jr 
temperaiure and the total UA producr for the property- temperruurt and the condenser UA's for the property-
de~nl dt.dic01ed subcooling cycle. dtpDti/enl dt.dicat<d subcooling cycle. 

The ideal model, shows that the subcooler heat exchanger effectiveness (represented by x) had no effect 
on the optimal choice of the subcooler evaporator temperature. In the propeny-dependent case, the UA or 
the subcooler (which is an indirect measure of the heat exchanger effectiveness) is seen to havl! a slight 
effect on the choice of the optimal temperature. Referring to Figure 8, tht: maximum COP point is seen to 
increase with increasing subcooler UA. However the drift is minimal over a wide range of subcooler 
thermal sizes. 

2.~n(h.-------------~ 

2.45 

• 2.40 
~ 
0 2.35 

u 2.30. 

2.25 

/ 

I 
/ r • • 

...... UAsu~tooo 
, . , 1:-:-:- H~~~t:~[Gll .. , 

2.201-l--..--.-~~=~~=~..-....._l 
-10 0 10 20 30 40 50 60 70 

Subcooling E11aporlltor Temp. ("F) 

Fif:ur~ 8: COP as a/unction of the subcooling tvaporator ttr~ratur. and tile subcooler UA product for the proptny­
dtpelllknt dedicated subcooling cyclt. 

As predicted by the ideal model, the ambient and main cycle evaporator temperatures affect the choice or 
the optimal subeooling evaporator temperature. The optimum subcooling evaporator temperature was seen 
to increase with increasing main cycle evaporator and ambient temperatures (Figures 9 and !0). The result 
is that the optimum point fluctuates near the middle of the cycle extremes. However, the drift is slight 
over the normal range of operating temperatures . 

. Model Conclusions 

The ideal dedicated s~bcooling model (equation 6~ exhibits the same; tendencies as a propetty-dependem 
~omputer model. The tdeal cycle pred1cts the existence of an optimum subcooling temperature, the 
1mportance of the cycle eJ~tremes, and the relative unimportance of the heat exchanger's thermal 
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performance on the optimum subcooliog evaporator temperature. The ideal model in fact compo.n:s well 

with the propeny-dependent computer model; regardless of the cycle temperarure extremes. Even at the 

upJ?Crextreme of main cycle evaporator temperature, the difference between ideal and propeny-dependem 

esttmates was approximately four degrees. This four degree difference corresponds to a change in COP of 

less than 0.1 %. 
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DESIGN STRATEGIES FOR DEDICATED SUBCOOLING SYSTEMS 

Design considerations for the dedicated subcooling cycle were derived using the propeny dependent 

model. The design considerations were based on an ambient temperature of 800f, a main cycle evaporator 

temperature of -20"F. and a suhcooling evaporator temperature of 30"F. A suhcooling evaporator 

temperature of 30°F rcprcsenrs a ncar optimal choice for all ranges of ambient and evaporator temperature 

(refer to Figures 5 through 10), due to the relative namess of the COP curves as a function of the 

sutx:ooling evaporator tcmpemturc ncar the optimal poinL 

For the earlier sections, the UA products of the three heat exchangers (main cycle condenser. 

subcooling cycle condenser, and subcooler) were set to values typical of standard practice; a small 

subcooler, and a subcooling cycle condenser that is a fraction of the size of the main cycle condenser. 

However, the question arises :LS to whether this is the optimal distribution of heat exchange area. This 

section investigates the optimum UA distribution, develops design guidelines. and evaluates these design 

guidelines over the runge of operating conditions. 

Since an increase in the total allocated UA product will lead to an increase in the overall cycle COP. the 

total UA product was constrained to allow the relative effe~:ts of heat exchanger distribution to be seen. 

(Note: this paper makes no attempt to determine the optimum total UA. the total allocated UA product 
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should be determined by application and economics.) With three unknown~ (the three heat exch~ger 
thermal sizes) and one constntint (the total allocated UA product), the problem ts reduced to a two.v:mable 
optimi....ation. 

At the optimum heat exchanger distribution. the subcooler represented ~pproximately 10% of the total 
allocated heat exchange area; which corresponded to a subcooler effectiveness ne~ 1.0. Also at the 
optimum distribution, the main cycle condenser was 3 .. 3 times as large as the subcoolang. cycle condenser 
with effectiveness values of 0.665 and 0.717 respectively. Therefore, the subcooler ts seen to be the 
critical heat exchanger in the dedicated subcooling eye!.:. 
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Fitu'~ 13 Optimum ~al exclto.nger distribution as a 
[u11ction of th~ ambient temperature. 

Figu.l'e 14 Optimum heat exchangtr distribution a.f a 
funciion of the main C)'clt tvaporatar temperature. 

The results , however, are based on standard conditions of 80"F ambient temperature and ·20°F 
evaporator temperatm~. Therefore before any conclusions can be drawn about the optimum heat exchange 
distribution, the results have to be investigated with the changing cycle temperature extremes. As 
mentioned earlier, the ambient and evaporator temperatures were the only major factors influencing the 
choice of the optimum subcooling evaporator temperature. These temperatures are also the only major 
factors influencing the optimum heat exchange distribution, as seen in Figures 13 and 14. The heat 
exchanger distribution results can be summarized as: 

~ 
" <>: 

s -; 
"' 6' 

• The optimum subcooler UA is unaffected by the choice of ambient temperature and only slightly 
affected by the choice of evaporator temperature. 

• The ratio of main cycle condenser size to subcooling cycle condenser size decreases as the 
ambient temperature increases. 

• The ratio of main cycle condenser size to subcooling cycle condenser si:ro decn:ases as the 
evaporator temperature decreases. 
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Before continuing. the system ratios for the dedicated subcooling cycle must be defined. The ratio is 
defined as the amount of any variable in the main cycle divided by the sum of this variable in the main and 
subcooling cycles. 
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For example, the refrigerant now rate ratio is defined as: 

An imporw.nt trend is revealed when the refrigernnt now rate mtio and the optimized UA ratio arc 

plotted as functions of the ambient and evaporator tempemrures. Figures 15 and 16 show that th.: optimum 

UA ratio (which is a direct measure of the optimum heat exchange distribution) closely matches th.: 

refrigerant flow rate rotio regardless of ambient or evaporntor temperarure. 

Design ·guidelines for a dedicated mechanical subcooling system can be established using trends 

developed from the property-dependent computer modlll. 

I) Select the total UA product available for thu dedicated subcooling system based on 

economics. 
2) Apportion approximately 10% of the allocated heat exchange area to the subcoolcr • 

corresponding to an effectiveness near 1.0. 
3) Decide at which ambient temperature the system will most often run (the "design" temp.). 

4) Distribute the remaining UA product according to the expected refrigeront tlow rotes at this 

"design" temperature. 

CONCLUSIONS 

An ideal mechanical subcooling cycle was developed from Camot theory and heat transfer relations. 

This ideal cycle predicted the existence and location of the "optimum" subcooling temperature for the 

dedicated subcooling cycle. The ideal cycle also predicted that the "optimum" temperature was strongly 

dependent on the sink and refrigemted space temperatures, and we:tlcly dependent on the subcooler heat 

exchanger parameters. A model of a property-dependent dedicated subcooling cycle was created. The 

property-dependent model took into account the irreversibilities due to compression, expansion. and heat 

exchange. The property-dependent model proved the trends predicted by the ideal model; the existence and 

location of an "optimum" subcooling evaponator tempcnature, the strong dependence on·cycle temperature 

extremes, the weak dependence on subcooler heat exchanger parameters, and the relative unimportance or 

the condenser thermal sizes. 

The property-dependent model allowed the optimal heat exchanger distribution to be developed and 

design guidelines to be established. The optimum heat exchanger distribution and design guideline for a 

dedicated subcooling cycle can be summari:red as follows: 

• Since the subcooler thermal size is relatively independem of ambient and main cycle evaporator 

temperatures, apportion 10% of the allocated UA product to the subcooler. 

• Although the ratio of main cycle condenser thermal size to subcooling cycle thermal size~ as 

the cycle temperature extremes increase. the ratio of the condenser UA's mirrors the ratio of refrigerant 

l1ow rates. Therefore, the optimal distribution of condenser thermal sizes will be in the same ratio as the 

design refrigerant flow rates . . 
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