
Dedicated Programming Support for Context-aware Ubiquitous Applications

Malte Appeltauer
Hasso-Plattner-Institut

Universität Potsdam
Germany

malte.appeltauer@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso-Plattner-Institut

Universität Potsdam
Germany

hirschfeld@hpi.uni-potsdam.de

Tobias Rho
Institut für Informatik

Universität Bonn
Germany

rho@cs.uni-bonn.de

Abstract

Ubiquitous mobile applications often require dynamic
context information for user-specific computation. How-
ever, state-of-the-art platforms, frameworks, and program-
ming languages used for developing such applications do
not directly support context-dependent behavior with first
class entities. Instead, context-aware functionality is tan-
gled with the application’s core concerns, which increases
complexity, and hinders separation of concerns and further
software evolution. This paper motivates Context-oriented
Programming (COP) for ubiquitous computing. It presents
an overview of our COP extension to the Java programming
language and a scenario of a context-oriented mobile appli-
cation.

1. Introduction

Rapidly evolving technologies for ubiquitous computing
facilitate new application areas. For mobile applications,
context information becomes an essential part. Context-
aware applications are typically implemented in a service-
oriented approach and composed by services, which pro-
vide context-dependent functionality. Location-based ser-
vices, for example, are aware of the user’s geographical po-
sition, health-and-fitness services monitor activity and vi-
tal signs such as heartbeat or blood pressure, while mood-
based services take care of personal dispositions.

Due to the cross-cutting nature of context-dependent
functionality, developers have to consider an additional di-
mension in the software model. Instead of representing
context-dependent behavior separately at programming lan-
guage level, if conditions check the presence of certain con-
text information and thus tangle the code of the module’s
core concern with additional behavior. To cope with the
complex task of developing context-aware applications, we
need appropriate means for the representation of context-
dependent behavior.

We propose an integral approach to the design, devel-
opment, maintenance, and evolution of context-dependent
services. Context-oriented Programming (COP) [4] en-
riches programming languages and execution environments
with features to explicitly represent context-dependent be-
havior variations. In this paper, we motivate the need for
a new language paradigm for the development of ubiqui-
tous, context-aware applications and demonstrate, how we
employ COP for this purpose. Throughout the paper, we
exemplify our approach with the development of a mobile
community platform, which is introduced in Section 2.1.

Section 2 introduces to context-aware application devel-
opment and presents our scenario mentioned above. Section
3 describes the COP paradigm and motivates the develop-
ment of ubiquitous, mobile applications using COP. Section
4 describes our approach for a COP extension to the Java
programming language. Section 5 presents related work,
while Section 6 concludes the paper.

2. Context-aware Service Development

Most context-dependent systems are developed based
on context-management frameworks (e.g., [8, 1]). Such
an infrastructure supports context reasoning, for instance,
based on ontologies, and passes context information and
change to applications. We do not focus on context-
management frameworks but on enhancing the support of
context-awareness at programming language level. Imple-
mentation issues of context-aware services are discussed in
Section 2.2.

We will give an example for a service-based mobile ap-
plication in Section 2.1. Since we want to point out the
interaction of services and context information, we chose
a domain with frequent context changes. We will refer
this scenario throughout the paper and use it to exemplify
context-oriented software development.

The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

978-0-7695-3367-4/08 $25.00 © 2008 IEEE

DOI 10.1109/UBICOMM.2008.56

38

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 19, 2008 at 04:10 from IEEE Xplore. Restrictions apply.

Figure 1. Different representations of Tim’s
location on Lucy’s mobile device.

2.1. A Mobile Community Application

Mobile community applications (e.g., [8, 5]) allow users
to share information about their mood, activities, location,
and more. In this scenario, we focus on the location repre-
sentation of buddies on mobile devices.

Two students, Lucy and Tim have an appointment at
Hasso-Plattner-Institut (HPI) at 12:00. At 11:50, Lucy ar-
rives at the campus. She checks her mobile device to inform
herself about Tim’s current whereabout. The graphical rep-
resentation of this information depends on Lucy’s context:
If Lucy’s device is currently connected to the Internet at
high-bandwidth, a map image service is requested to ren-
der Tim’s location on a map. Figure 1a gives an example
for this map representation. Contrary, if the bandwidth is
low, Tim’s representation depends on Lucy’s need for ac-
tive information. This information is stored in Lucy’s user
profile and is accessible for applications. In the case that
Lucy prefers a smart representation over the refresh period,
a map with Tim’s outdated location is shown (Figure 1c).
The map is labeled with the time stamp of the last update.
Alternatively, when Lucy insists on up-to-date information,
while the bandwidth is too low for updating the map image,
Tim’s position data is simply shown as a text (Figure 1d).

At the same time, Tim arrives at the underground sta-
tion, where his GPS device is unable to receive data any
more. Thus, his mobile device switches to cell-based loca-
tion detection. The new location data is calculated based
on the position of the current mobile cell. The change of
the location provider is propagated to Lucy’s device. De-
pending on its current context, the device has to decide how
it renders this additional location information. If the band-
width is high, for instance, Tim’s position is represented as
a circular area with different color intensities indicating the
probability of Tim’s real location (Figure 1b).

Figure 2. Context-dependent behavior as
cross-cutting concern.

2.2. No Explicit Context Representation

A system such as the community platform, which we
describe in our scenario, can be developed with existing
techniques for ubiquitous computing. Some mobile com-
munity projects provide functionality which is similar to
our example (e.g., [8]). However, programming languages
and environments do not provide appropriate abstractions
for context-dependent behavior. Such functionality requires
system adaptations at several points of the program. To
give an example, Figure 2 sketches some modules belong-
ing to our distributed application. The context-dependent
functionalities concerning low bandwidth, the user’s data
update preferences, and localization data, are scattered
over the client application and service modules. Because
these cross-cutting concerns need to adapt the base mod-
ules at several points, they cannot be completely modular-
ized within one object-oriented module. Instead, they tan-
gle other modules with additional structure - for instance,
if -conditions - at every possible point of behavior varia-
tion. The lack of an explicit representation hinders software
maintenance and evolution.

Next to the modularization issues mentioned above, dy-
namic composition of application modules increase the
complexity of development. In our example, the user ren-
dering depends on dynamic context information. Figure 3
shows different renderings based on four behavioral varia-
tions. The figure does not consider alternative renderings
when Tim’s location data is based on cell IDs, which would
double the number of possible adaptations. In general, with
each new behavioral variation, the number of possible com-
positions increases, at worst exponentially. To control these
different compositions, large condition constructs are in-
jected into the system’s structure at different points. Again,
core functionality of modules is tangled with code that man-
ages context-dependent behavior.

We see this tangling of application and context-
management functionality as an indication for the need of
language-level support of context representation and com-
putation.

39

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 19, 2008 at 04:10 from IEEE Xplore. Restrictions apply.

Figure 3. Behavioral variations based on
layer compositions.

3. Context-oriented Programming

The context-oriented Programming paradigm [4] fea-
tures a new dimension of software modularization by
supporting an explicit representation of context-dependent
functionality. Such functionality can be dynamically acti-
vated for a certain control flow and trigger dynamic behav-
ior variations. With this dynamic composition of behavior
variations, software evolution becomes more flexible and
accessible.

We do not restrict the definition of context to a certain
domain. A program’s context could be everything within its
execution and environment, such as personalization, shar-
ing, location-awareness, activity, and more. We distinguish
three basic classes of behavior variations:

Actor-dependent variations. A system might need to be-
have differently for different actors, even if the actors send
the same request to the system. Consider, in our scenario
Tim and Lucy regularly update the context information of
their buddy Mike. When both request an update of Mike’s
activity information, while Lucy’s is connected at low band-
width, the service responses differently to the clients. Tim
receives the full information update. Lucy, due to the low
bandwidth, receives just a restricted set of data, see Figure
4(a).

Environment-dependent variations. Variations, which
are based on external events and are not given implicitly
by the control flow, are denoted as environment-dependent.
Figure 4(b) represents an environment-specific variation:
Our platform delays its service response when network traf-
fic increases.

System-dependent variations. A system may alter its
behavior, for instance, depending on its state and history.
When Tim and Lucy frequently update information of their
buddies, the system could alter its response depending on
the information sent out before. Then, it would be unnec-
essary to submit information about all buddies at once. In-

Figure 4. Behavioral variations in a service-
oriented environment.

stead, updates could be distributed on successive responses.
This system-specific variation is shown in 4(c). The re-
sponse of updateBuddyInformation() contains only a sub-
set of all buddy information, i.e., the most outdated one.
This buddy list differs for every request.

For a broad introduction to COP we refer to [4]. COP has
been successfully implemented in the form of several lan-
guage extensions, such as ContextL for Lisp, ContextS for
Squeak/Smalltalk, ContextPy and PyContext for Python,
and ContextR for Ruby. In the following section, we sketch
ContextJ.

4. ContextJ

4.1. Language Features

In this section, we describe the main features of Con-
textJ, our COP extension to the Java programming lan-
guage. We chose Java as base language for the implementa-
tion of our scenario mainly for two reasons: Firstly, Java is
a widely accepted language proven many times to be a sta-
ble and secure platform for service-oriented programming.
Secondly, Java would be the first statically typed program-
ming language to be extended with context-oriented fea-
tures. We want to investigate, how the dynamic properties
of COP are feasible for statically typed languages. ContextJ
provides means for the definition and dynamic activation of
behavioral variations:

Layer. A layer encapsulates partial method declarations
belonging to a behavioral variation. Similar to annotations,
layers enrich source code with additional semantic informa-
tions.

Partial method declarations. Partial methods are defined
within layers. They contain instructions which are executed
- while the layer is active - before, after or instead of the
original method execution. The function proceed() can be
used within partial declarations. It dispatches the method

40

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 19, 2008 at 04:10 from IEEE Xplore. Restrictions apply.

invocation to the next layer - if more layers are active - or
to the original declaration. This feature is also implemented
by other languages such as Common Lisp and AspectJ.

Layer activation. Layers can be activated and deacti-
vated, depending on the current context at run-time. When
activated, method calls are dispatched to the layered meth-
ods. The construct with(Layer) controls activation.

4.2. Implementation

The development of a ContextJ compiler is work in
progress. A first prototype, ContextJ* [4], has been devel-
oped previously as a proof of concept. ContextJ* is a plain
Java library and covers a limited set of COP features.

The listings presented in this paper are implemented with
a second prototype, based on a generic aspect library, de-
veloped with LogicAJ1 [7]. The aspect implementation is
oblivious for developers and needs no adaptation for con-
crete applications. To use the aspect’s COP functionality,
some idioms need to be followed when writing Java pro-
grams. Layered methods are declared with the first param-
eter to be a subtype of Layer. The ContextJ with construct
is simulated with the methods activateLayer(Layer) and
deactivateLayer(Layer). Additionally, the aspect library
provides a static proceed() method which executes the dis-
patching to the next layer or to the original method.

With the development of COP for Java with LogicAJ we
gathered experiences which will help us to create a com-
plete Java language extension.

4.3. Example

In the following, we present a COP-based implementa-
tion of parts of our scenario. We focus on (1) the modular-
ization of context-dependent behavior variation with layers
and (2) the dynamic composition of layers.

Modularization. Figure 5 shows two classes belonging
to an implementation of the application introduced in Sec-
tion 2.1. The class Client controls the application on the
mobile device; BuddyActivityService on the server pro-
vides the client with new buddy activity information. To
extend our application with the behavioral variations of our
scenario, we need to adapt our system both, on the client
and server sides. The following listing presents a layered
method declaration of getBuddyActivity().

public static Activities getBuddyActivity(String userId){
return getUser(userId).getActivity();

}
public static Activities getBuddyActivity(

TextualRepresentation tr, String userId){
return filterImages(proceed(userId));

}

1LogicAJ and the Java/COP aspect library are available at:
http://sewiki.iai.uni-bonn.de/research/logicaj/cop

Figure 5. Distributed layer declaration

While the first declaration in the listing is a plain
Java method declaration, the second one repre-
sents a partial declaration of that method for the
layer TextualRepresentation. The method uses
the proceed() function, which delegates the call to
the original method. The return value is wrapped
with filterImages(Activities), which filters poten-
tial graphical data out of the activity list. When the
TextualRepresentation layer is active, only this restricted
set is passed to the client.

Dynamic Composition. Consider, the functionalities for
the different location representations shown in Figure 3 are
modularized into different layers. Each combination of
these layers yield to a different configuration. The dynamic
configurations are controlled by dynamic layer activations.
The next listing shows such an activation.

Activity a;
if(getBandwidth().isLow()){
activateLayer(OutdatedInformation.class);
a = client.requestService("getBuddyActivity","Mike");
deactivateLayer(OutdatedInformation.class);

}
else{
a = client.requestService("getBuddyActivity","Mike");

}

The service call getBuddyActivity() is invoked within
the low bandwidth context, which is inferred by the method
call getBandwidth().isLow(). Thus, Lucy receives the
compressed list of activities computed by the layered
method declaration of the previous listing. The layer acti-
vation is thread-local; a parallel service request of Tim, for
instance, would not be dispatched to the layered method.

Combinations of layer activations lead to different com-
positions. The following listing shows a layered method
renderUser() which is responsible for the client’s graphi-
cal representation of a user.

public UIComponent renderUser(ActualInformation ai){
String loc = requestService("getBuddyLocation","Tim");
return renderMap(requestService("getMap",loc));
}
public UIComponent renderUser(OutdatedInformation oi){
UIComponent com = proceed();
com.add(renderTimeStampOfLastUpdate());
return com;
}
public UIComponent renderUser(TextualRepresentation tr){
String loc = requestService("getBuddyLocation","Tim");
return renderText(loc);
}

41

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 19, 2008 at 04:10 from IEEE Xplore. Restrictions apply.

The listing below contains an activation of multiple lay-
ers to compose the behavior shown in Figure 3(d).

activateLayer(OutdatedInformation.class,
TextualRepresentation.class);

renderUser();
deactivateLayer(OutdatedInformation.class,

TextualRepresentation.class);

The invocation of renderUser() is passed to the
OutdatedInformation layer. First, the proceed()

function delegates the call to the next layer. The
TextualRepresentation layer renders the location sim-
ply as a text and returns the component back to
OutdatedInformation which adds a time stamp to it.

4.4. A COP-based Service Infrastructure

Since we want to validate the features of ContextJ for
service development in a realistic environment, we are con-
structing a service-oriented infrastructure. It is based on
several different client systems and server platforms, in
which we integrate our application of Section 2.1. The ap-
plication contains services implemented with ContextJ. Our
infrastructure is based on IYOUIT and Android.

IYOUIT [8] is a mobile community platform. Users
can share context information, such as their current activ-
ity, location, mood, weather information, and more with
their friends. Next to context data derived by the system,
users can create new context, for instance blog entries and
photos, which are tagged with the author’s context infor-
mation. The implementation of our scenario is based on
IYOUIT. We extend the system with new features imple-
mented with ContextJ. Later on, we will additionally imple-
ment services with ContextS for the Smalltalk-based Sea-
side [11] server. With this heterogeneous infrastructure we
will evaluate COP.

The Open Handset Alliance project Android [10] is an
open-source platform for mobile devices. It provides a
Java run-time environment for application development.
Location-based services, such as GPS, are directly sup-
ported by Android. However, it does not come with a
context-management system. Since IYOUIT only supports
a client software for Nokia S60 cell phones, we develop a
second IYOUIT client for the Android operating system.

5. Related Work

5.1. Context-Management Frameworks

Context-dependent systems are mostly endured with a
context-management framework (CMF). The CMF man-
ages context-reasoning and processing and provides context
information to applications. We already discussed IYOUIT
as one example for CMF-based systems.

The Java Context-awareness Framework (JCAF) is a
service-based infrastructure for context-aware applications.
In this framework, context acquisition, management and
distribution is implemented with different services that in-
teract with each other. Due to the service-oriented ap-
proach, JCAF-based applications are flexible for extension,
even at run-time.

The Context Toolkit [13] influenced many of nowadays
CMFs. It incorporates various services related to the gath-
ering and supply of context, including the encapsulation
of context, access to context data, and a distributed infra-
structure. Several approaches have been developed in the
tradition of the Context Toolkit with improvements regard-
ing e.g. personalization and end-user development [17] or
ontology-based context modeling [3]. All share the men-
tioned limitation.

5.2. Aspect-oriented Programming

The purpose of Aspect-oriented Programming (AOP) is
the encapsulation of cross-cutting concerns. The core con-
cept of AOP languages is a join point model, well-defined
points in the execution of a program, interceptable by ad-
vice constructs which are executed before, after or around
these points. The join points, where an advice will be exe-
cuted, are selected via a (declarative) pointcut language. All
terms have been coined by AspectJ [6] and have become
standard. The advice constructs encapsulate a concern in
an aspect that would otherwise be scattered throughout the
code. Typical examples for cross-cutting concerns are per-
sistence, caching, and logging. In context-aware applica-
tions, context-dependent concerns can be extracted into as-
pects and (de-)activated for certain contexts.

Context-aware applications mostly run on mobile de-
vices using distributed services. Some AOP languages and
systems come with explicit support for distributed AOP,
such as AWED [9] and ReflexD [16]. The approaches can be
facilitated for context-aware service selection and decora-
tion (filtering). For a feature comparison of distributed AOP
approaches, see [2]. However, the classic join point mod-
els have no explicit representation for context. They there-
fore need additional frameworks for context-management
and analysis, which reduces the advantage of the declara-
tive pointcut language, since the location where to apply an
aspect can not be described in one place.

An open framework for Context-aware Aspects based on
a reflective extension of Java [15] is proposed by [14]. As-
pects can be restricted to certain contexts, refer to context
parameters in advice, and via a snapshot approach to previ-
ous context states.

The OSGi-based aspect language CSLogicAJ [12] is an
extension to LogicAJ [7]. It features the adaptation of ser-
vice behavior by context-sensitive service aspects. Con-

42

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 19, 2008 at 04:10 from IEEE Xplore. Restrictions apply.

text change can be modeled as a join point of the system.
Context join points can be described within the language’s
pointcut constructs, which are based on first-order logic.
Asynchronous advice executes service adaptation triggered
by context changes. CSLogicAJ is based on the OSGi-
based middleware Ditrios [12]. Only services available in
the local OSGi registry can be intercepted.

6. Conclusion

Some platforms for mobile applications support context-
awareness via context-management systems at application
level, but with poor support at programming language level.
Hence, the implementation of context-dependent concerns
tangles the application’s core modules and hinders software
maintenance and evolution.

In this paper, we propose to apply the COP paradigm
to support the development of context-aware services. We
present a scenario of a mobile application which is imple-
mented using ContextJ, a COP extension to the Java pro-
gramming language. We demonstrate, how software mod-
ularization can be enhanced with layers and dynamically
scoped layer activation and composition.

The explicit representation of behavioral variations at
programming language level improves software modular-
ization and supports the development of context-aware sys-
tems.

Acknowledgments

The authors thank Michael Haupt, Robert Krahn, Jens
Lincke, and Daniel Speicher for valuable discussions and
comments on drafts of this paper.

References

[1] J. Bardram. The Java Context Awareness Framework
(JCAF) – A Service Infrastructure and Programming Frame-
work for Context-Aware Applications. In Proceedings of the
3rd International Conference on Pervasive Computing, Al-
brecht Schmidt, University of Munich, May 2005.

[2] F. Dantas, T. Batista, and N. Cacho. Towards Aspect-
Oriented Programming for Context-Aware Systems: A
Comparative Study. In SEPCASE ’07: Proceedings of the
1st International Workshop on Software Engineering for
Pervasive Computing Applications, Systems, and Environ-
ments, page 4, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[3] T. Gu, H. K. Pung, and D. Q. Zhang. Toward an OSGi-
based Infrastructure for Context-Aware Applications. In
IEEE Pervasive Computing, vol. 03, no. 4, Oct-Dec 2004.

[4] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
oriented Programming. Journal of Object Technology,
7(3):125–151, March-April 2008.

[5] R. Kernchen, D. Bonnefoy, A. Battestini, B. Mrohs,
M. Wagner, and M. Klemettinen. Context-awareness in Mo-
biLife. In 15th IST Mobile & Wireless Communication Sum-
mit, Mykonos, Greece, 2006.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. Lecture
Notes in Computer Science, 2072:327–355, 2001.

[7] G. Kniesel, T. Rho, and S. Hanenberg. Evolvable pattern im-
plementations need generic aspects. In RAM-SE’04: Work-
shop on Reflection, AOP, and Meta-Data for Software Evolu-
tion, in conjunction with ECOOP’06, pages 111–126, Oslo,
Norway, June 15 2004. Fakultät für Informatik, Universität
Magdeburg.

[8] J. Koolwaaij, A. Tarlano, M. Luther, P. Nurmi, B. Mrohs,
A. Battestini, and R. Vaidya. Context Watcher – Sharing
context information in everyday life. In J. Yao, editor, Web
Technologies, Applications, and Services, Calgary, Canada,
July 17-18 2006. ACTA Press, Proceedings of The IASTED
International Conference on Web Technologies, Applica-
tions, and services.

[9] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. D.
Fraine, and D. Suvée. Explicitly distributed AOP using
AWED. In AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, pages
51–62, New York, NY, USA, 2006. ACM.

[10] Open Handset Alliance. Android. http://www.code.
google.com/android.

[11] M. Perscheid, D. Tibbe, M. Beck, S. Berger, P. Osburg,
J. Eastman, M. Haupt, and R. Hirschfeld. An Introduction
to Seaside. Software Architecture Group, Hasso-Plattner-
Institut, April 2008.

[12] T. Rho, M. Schmatz, and A. B. Cremers. Towards Context-
Sensitive Service Aspects. In Workshop on Object Technol-
ogy for Ambient Intelligence and Pervasive Computing, co-
located with ECOOP 06, Nantes, France, July 3-7 2006.

[13] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
aiding the development of context-enabled applications. In
CHI ’99: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 434–441, New York,
NY, USA, 1999. ACM.

[14] E. Tanter, K. Gybels, M. Denker, and A. Bergel. Context-
Aware Aspects. In Proceedings of the 5th International Sym-
posium on Software Composition, Lecture Notes in Com-
puter Science. Springer, March 2006.

[15] É. Tanter and J. Noyé. A Versatile Kernel for Multi-language
AOP. In R. Glück and M. R. Lowry, editors, Proceedings of
the 4th International Conference on Generative Program-
ming and Component Engineering, volume 3676 of Lec-
ture Notes in Computer Science, pages 173–188. Springer,
September 29 - October 1 2005.

[16] É. Tanter and R. Toledo. A Versatile Kernel for Distributed
AOP. In Proceedings of the IFIP International Conference
on Distributed Applications and Interoperable Systems, vol-
ume 4025 of Lecture Notes in Computer Science, pages 316–
331, Bologna, Italy, Jun 2006. Springer-Verlag.

[17] A. Zimmermann, M. Specht, and A. Lorenz. Personalization
and context management. User Modeling and User-Adapted
Interaction, 15(3-4):275–302, 2005.

43

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 19, 2008 at 04:10 from IEEE Xplore. Restrictions apply.

