
DEDUCE: At the Intersection of MapReduce and Stream
Processing

Vibhore Kumar, Henrique Andrade, Buğra Gedik, Kun-Lung Wu
IBM Thomas J. Watson Research Center, Hawthorne, NY 10532

vibhorek@us.ibm.com, hcma@us.ibm.com, bgedik@us.ibm.com, klwu@us.ibm.com

ABSTRACT
MapReduce and stream processing are two emerging, but differ-
ent, paradigms for analyzing, processing and making sense of large
volumes of modern day data. While MapReduce offers the capa-
bility to analyze several terabytes of stored data, stream processing
solutions offer the ability to process, possibly, a few million up-
dates every second. However, there is an increasing number of data
processing applications which need a solution that effectively and
efficiently combines the benefits of MapReduce and stream pro-
cessing to address their data processing needs. For example, in the
automated stock trading domain, applications usually require peri-
odic analysis of large amounts of stored data to generate a model
using MapReduce, which is then used to process a stream of inci-
dent updates using a stream processing system. This paper presents
DEDUCE, which extends IBM’s System S stream processing mid-
dleware with support for MapReduce by providing (1) language
and runtime support for easily specifying and embedding MapRe-
duce jobs as elements of a larger data-flow, (2) capability to de-
scribe reusable modules that can be used as map and reduce
tasks, and (3) configuration parameters that can be tweaked to con-
trol and manage the usage of shared resources by the MapReduce
and stream processing components. We describe the motivation for
DEDUCE and the design and implementation of the MapReduce
extensions for System S, and then present experimental results.

1 Introduction
The last few years have witnessed a rapid evolution in the data pro-
file associated with modern data processing applications. Not only
has the volume of stored data increased manifold, but the rate at
which streaming data or the updates arrive has also witnessed a
rapid pace of growth - often beyond the realm of traditional data
processing technologies. Even more importantly, the data profile,
from being composed entirely of the data at rest (stored data) or
the data in motion (streaming data) is now some combination of
the two. Examples include, finance applications like automated
stock trading [8], scientific applications like the square kilometer
array [20], network security and monitoring applications like the
ones used for intrusion detection [17], and several others. Such ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

plications are now faced with an increasingly pressing need to not
only scalably (and often at regular intervals) analyze exceedingly
large volumes of stored historical data for drawing inferences or
detecting patterns, but also provide the capability to process very
fast moving streams of data using the inferences or patterns mined
from the stored data.

While innovations like MapReduce [7] and stream processing
systems [1, 3, 5, 9, 14] are targeted towards addressing the needs
of such applications, these innovations, however, offer only a part
of the solution, addressing only the data at rest, in case of MapRe-
duce or only the data in motion, as is the case with stream process-
ing systems. Hence, application developers are not only forced to
adopt two different programming paradigms, but also maintain two
separate infrastructures for handling the data at rest and the data in
motion. This independent and decoupled implementation approach
often makes composing and managing the application more com-
plex, and also limits the opportunities for infrastructure sharing and
end-to-end optimization.

This paper describes DEDUCE, a middleware that offers a uni-
fied abstraction and runtime for addressing the needs of modern
data processing applications, like the ones outlined above. DE-
DUCE, to the best of our knowledge, is the first effort that attempts
to combine real-time stream processing with the capabilities of a
massive data analysis framework like MapReduce. Towards this
end, DEDUCE builds on our previous work on System S, especially
the stream processing core [2] and the SPADE declarative stream
processing engine [9], and augments their capabilities with those
of the MapReduce paradigm. In particular, DEDUCE makes the
following important contributions

• Language Constructs: DEDUCE extends SPADE’S data-flow
composition language to enable the specification and use of
MapReduce jobs as data-flow elements.

• Reusable Modules: DEDUCE provides the capability to describe
reusable modules for implementing offline MapReduce tasks
aimed at calibrated analytic models.

• Runtime Support: DEDUCE augments the System S runtime in-
frastructure to support the execution and optimized deployment
of map and reduce tasks.

• Control Parameters: DEDUCE provides configuration param-
eters (e.g., update frequency, resource utilization hints, etc.)
associated with the MapReduce jobs that can be tweaked to
perform end-to-end system optimizations and shared resource
management.

The following section describes a simplified market data pro-
cessing scenario to further motivate the need for a DEDUCE-like
middleware that is capable of handling both the data at rest and the
data in motion.

657

1.1 Example: Market Data Processing

Financial market customers are in an arms race to process increas-
ingly large amounts of market data with shorter and shorter laten-
cies, and ever more sophisticated analytics. The profits, for such
customers, are driven not only by the capability to keep shortest
and fastest possible processing path from market data ingestion to
order execution, but also on the capability to continuously gen-
erate/update the underlying analytic models employed to formu-
late trading strategies. Most financial firms build proprietary so-
lutions, often consisting of two independent components, one in
which streams of information such as market data are processed
against an analytic model to produce the required results and the
other responsible for generating/updating the analytic model.

As we articulated before, DEDUCE provides a common and easy
to use high-performance development platform for such applica-
tions. It leverages and extends the capability of the SPADE data-
flow composition language and the System S runtime framework
to (1) easily specify the data processing needs of the application in
question, (2) scalably and efficiently process high-rate data streams
using the pre-existing capabilities of the System S stream process-
ing middleware, and (3) build and manage sophisticated analytic
models from massive amounts of stored data using MapReduce ex-
tensions provided by the DEDUCE middleware.

2 Background
DEDUCE middleware extends the System S-based SPADE declara-
tive stream processing engine with the capabilities of MapReduce
framework. This section provides a brief overview of the System
S, SPADE, and the MapReduce framework.

2.1 System S

System S is a large-scale, distributed data stream processing middle-
ware under development at the IBM T. J. Watson Research Center.
It supports structured as well as unstructured data stream process-
ing and can be scaled to a large number of compute nodes. The Sys-
tem S runtime can execute a large number of long-running applica-
tions that take the form of data-flow graphs. A data-flow graph con-
sists of a set of Processing Elements (PEs) connected by streams,
where each stream carries a series of data tuples. The PEs are basic
execution containers that are distributed over compute nodes and
a node generally hosts multiple PEs. The compute nodes are or-
ganized as a shared-nothing cluster of workstations (COW) or as
a large supercomputer (e.g., Blue Gene). The PEs communicate
with each other via input and output ports, which are connected by
streams.

The DEDUCE middleware makes use of the PE containers to
spawn the map and reduce tasks across the cluster, it also ex-
tends the System S job management module to schedule and mon-
itor the spawned map and reduce tasks. We will describe such
extensions in more detail in Section 4.2.

2.2 SPADE

SPADE [9] (Stream Processing Application Declarative Engine) is
the declarative stream processing engine of System S. It is also
the name of the declarative language used to program applications.
The language is used to express parallel and distributed data-flow
graphs containing the operators and resulting streams required to
carry out the actual processing for an application. SPADE also of-
fers toolkits of type-generic built-in stream processing operators
and a broad range of adapters to ingest data from outside sources
and publish data to outside destinations. It is also possible to aug-
ment or build a new toolkit with additional user-defined built-in
operators (UBOPs) or create new adapters.

DEDUCE makes use of the extensible nature of the SPADE lan-
guage. It uses UBOPs to build several operators for the DEDUCE
toolkit. For instance, it uses the UBOPs to build the MapReduce
operator (representing a MapReduce job in a data flow) and adapters
that interface with the distributed file systems (like HDFS [12]) for
accessing data. This is described in more detail in Section 4.

2.3 MapReduce

The MapReduce programming model provides a highly scalable
approach to conducting data-intensive computations over large
amounts of stored data. At a high-level, the model involves speci-
fication of an algorithm using two functions, map and reduce.

The map function reads the input data using an application spe-
cific data format, processes the data and generates a set of interme-
diate <key, value> pairs. The reduce function operates on a
subset of generated intermediate <key, value> pairs, such that
all the pairs with the same key belong to one subset, and outputs
one or more output <key, value> pairs in sorted order.

A typical implementation of the MapReduce programming model
(e.g. Hadoop [11]) consists of a distributed file system, a runtime
that supports distributed execution of map and reduce tasks on
the nodes hosting the distributed file system and default implemen-
tation of some of the programming model concepts like input for-
mats, output formats, partition function, among others.

One of the main advantages of the MapReduce programming
model is its simplicity. The user is only supposed to specify an
algorithm as a pair of map and reduce tasks that conform to the
requirements of the programming model. The details of paralleliza-
tion, task setup, concurrent data access and fault tolerance are all
hidden from the user. This level of abstraction allows the user to fo-
cus more on the algorithm and makes it a very convenient platform
for developing massively scalable data-analysis algorithms. DE-
DUCE relies on the ease of use and massive scalability provided by
the MapReduce programming model to analyze massive amounts
of data and possibly generate the models that could be used by real-
time stream processing applications.

3 DEDUCE: System Overview
This section provides a quick end-to-end overview of the DEDUCE
middleware. The main challenge when designing the DEDUCE
middleware was the need to maintain the same level of ease of
use, expressibility and performance as provided by the System S
stream processing middleware and the MapReduce programming
framework. Towards this end, DEDUCE represents a MapReduce
computation as a data-flow element or operator to enable easy com-
position of MapReduce jobs and the stream processing logic.

A MapReduce operator accepts several configuration parameters
(described later in Section 4.1.1), which among other things also
contain handles to the specification of the map and the reduce
tasks. The input data set to the MapReduce operator can either be
pre-specified at compilation time or could be provided at runtime as
a punctuated1 list of files or directories. Once the input is available
the MapReduce operator spawns a MapReduce job and produces
a list of punctuated list of files or directories, which point to the
output data. A MapReduce operator can potentially spawn multi-
ple MapReduce jobs over the application lifespan but such jobs are
spawned only when the preceding job (if any) has completed its
execution. In a typical application multiple jobs can be cascaded
together to create a data-flow of MapReduce operators or the out-
put from the MapReduce operators can be read to provide updates
to the stream processing operators.
1A punctuation is a special marker in the SPADE language that de-
limits the input or the output stream

658

Table 1: WordCount application in DEDUCE

[Application]

WordCount

[Typedefs]

typespace WordCount

[Modules]

map module

module WordCountMap{

input In : {key:Integer, value:String};

output Out: {key:String, value:Integer};

topology stream Out(key:String, value:Integer) :=

Aggregate(In<punct(),pergroup>)[key]{Any(key),Cnt(value)}

}

reduce module

module WordCountReduce{

input In : {key:String, value:Integer};

output Out: {key:String, value:Integer};

topology stream Out(key:String, value:Integer) :=

Aggregate(In<punct(), pergroup>)[key]{Any(key), Sum(value)}

}

[Program]

mapreduce operator - represents the mapreduce job

stream CountedWords(outputFiles:String) := MapReduce()[

name:"WordCount";

in:"/user/wc/input";

out:"/user/wc/output";

map:"WordCountMap";

reduce:"WordCountReduce";

reduceCount:4;

inputFormat:"TextInputFormat";

outputFormat:"TextOutputFormat";

configurationDirectory:"/user/wc/conf";

maxTasks:10]{}

Table 1 lists the implementation of the well-known wordcount
application as a MapReduce job in DEDUCE (note that the mod-
ules shown above use the stream manipulation operators from the
SPADE language). Upon compilation the wordcount application
compiles into three independent artifacts, which include the main
wordcount application that is submitted to the runtime for exe-
cution and two executables which correspond to the map and the
reduce tasks (using module definitions). The code for the map
and reduce tasks is generated at compile time and is compiled to
native executables for high performance. Once submitted for ex-
ecution, the MapReduce operator contained in the application as-
sesses the input data set and infers the number and the location of
map and reduce tasks, which are then scheduled for execution.
The MapReduce operator during the execution of the tasks keeps
track of the progress of the MapReduce job and this information
can be easily retrieved for visualization and monitoring purposes.

4 DEDUCE: Detailed Design
In the following sections we provide details about the language ex-
tensions that were made to the SPADE’S programming language,
the addition of appropriate support to the System S runtime, the
control parameters associated with the MapReduce jobs, and the
compilation, startup and management of DEDUCE applications.

4.1 Language Extensions

The main considerations for DEDUCE-specific language extensions
to the SPADE language were (1) to be able to easily specify the
MapReduce jobs, (2) to support MapReduce jobs as composable
data-flow elements, and (3) to provide the capability for creating
domain-specific collection of map and reduce modules. In terms
of language extensions DEDUCE consists of two important compo-
nents – the DEDUCE Operator Toolkit and the Module specification
framework, which are described next

4.1.1 DEDUCE Operator Toolkit

As mentioned in Section 2.2, an important feature of the SPADE
language is its capability to allow the specification and use of new

Table 2: MapReduce operator parameters

Parameter Name Description
name unique name for the job

input optional, files or directories for input data
output directory for output data

mapModule name of the map module
reduceModule optional, name of the reduce module
mapCountHint optional, a hint for the number of map tasks to spawn
reduceCount number of reduce tasks to be spawned
inputFormat the format of input data

outputFormat the format for output data
confDir optional, location of configuration directory

partitionFn optional, the partition function

user-defined built-in operators. We made use of this capability of
the language to create the DEDUCE operator toolkit. In particular,
this toolkit contains the following operators:

(a) MapReduce Operator
We model the MapReduce job as a SPADE operator. This approach
simplifies the design of applications that combine the data at rest
with the data in motion. While the input data set for a MapRe-
duce job can either be specified as a parameter to the operator or
as a punctuated input stream containing the location of directories
or files to be processed, the output of the MapReduce job is writ-
ten to a pre-specified location on the distributed file system and the
location of this output data is optionally available as a punctuated
output stream from the MapReduce operator. A combination of
mandatory and optional parameters (see Table 2) are used to con-
figure the operator. The MapReduce operator also accepts a set of
control parameters and these will be described in Section 4.3.

(b) Data Input & Output Operators
To make it easy for the users to specify the MapReduce jobs and
to utilize the output from the MapReduce jobs, the DEDUCE mid-
dleware provides an implementation of operators that can read and
write data to the underlying distributed file system, while conform-
ing to a certain data format. These operators besides being used
by the users are also used by the map and the reduce tasks to
access data that is assumed to be formatted in conformance to the
inputFormat and the outputFormat parameters that are spec-
ified as part of the MapReduce operator. These operators also hide
the underlying distributed file system by using a common inter-
face to access the file system. Currently, DEDUCE supports access
to HDFS and work is in progress to support other distributed file
systems like KFS [13]. At runtime the input an output operators
choose the right implementation for the file system interface to be
employed by making use of information provided in the MapRe-
duce configuration file.

4.1.2 Module Specification Framework
The module specification framework is DEDUCE’S extension to the
SPADE programming language. It allows the user to specify an op-
erator graph along with the declaration of the data format that can
be processed by the graph, and the format of data that is produced
as a result of such processing. Modules provide the mechanism
to express complex map and reduce tasks in terms of regular
SPADE operators. The DEDUCE application listed in Table 1 shows
an example of a module definition. Together with UBOPs, mod-
ules provide an easy way to implement domain specific toolkits for
MapReduce, described next.

4.1.3 Domain-Specific MapReduce Toolkits
DEDUCE supports the creation of domain-specific MapReduce toolk-
its. A toolkit is a collection of domain-specific UBOPs (possibly
implemented by a domain expert) and pre-written modules that
may use the UBOPs specified in the toolkit. The UBOPs con-

659

tained in the toolkit typically implement functional units that, for
example, perform fast Fourier transforms on streamed digital sig-
nals. In other words, operators are the building blocks employed
for specifying a map/reduce module. Pre-written modules can
be directly used by DEDUCE developers to rapidly prototype and
deploy domain-specific MapReduce jobs.

4.2 Runtime Components

Additional runtime components (beyond what exists in System S)
are needed to support the MapReduce programming model. These
include a distributed file system to provide block-level access to
data and a task management infrastructure that spawns and tracks
the map and reduce task.

4.2.1 Distributed File System

Instead of developing our own distributed file system, we chose to
write adapters that can interface with the existing distributed file
systems. These adapters were implemented as a set of UBOPs. We
already have an adapter for HDFS and, as previously mentioned,
work is in progress to implement the same for KFS.

4.2.2 Scheduling map & reduce tasks

For the purpose of task management we extended the System S job
management component. Termed TaskManager, the new compo-
nent is capable of accepting requests for spawning and terminating
map and reduce tasks. While, the termination requests are im-
mediately executed, the spawn requests are added to a queue from
which the next task to spawn is chosen based on its uvalue (a
representation of its scheduling priority). The uvalue for a task
can be based on a number of factors that include time of task ar-
rival, task priority, progress percentage of the associated global job,
etc. DEDUCE allows a default implementation which uses the time
of task arrival parameter to implement a FIFO scheduling. How-
ever, users can override this default implementation to enforce cus-
tom scheduling policies. Once ready to be scheduled, every task is
spawned as a new processing element.

4.3 Control Knobs

The MapReduce operator provides three optional control parame-
ters that can be tweaked to adjust the physical layout and resource
utilization level of a DEDUCE MapReduce job. These include:

• updatePeriod – this parameter refers to the expected time
in which the operator can expect the arrival new input data, and
therefore the operator should finish a particular job in no more
than the specified updatePeriod. This has implications on
the maximum number of concurrent map and reduce tasks
that the operator can be expected to execute.

• maxTasks – this parameter refers to the maximum number of
concurrent map and reduce tasks that can be spawned by the
MapReduce operator. This affects the completion time of the
job, and can assist in maintaining manageable loads across a
system hosting multiple MapReduce jobs.

• priority – this parameter refers to the priority of the spawned
MapReduce job. A higher priority task will, when possible, be
preferentially scheduled by the TaskManager.

4.4 DEDUCE Application

A typical DEDUCE program represents a data-flow which is a com-
bination of a regular stream processing application and one or more
MapReduce operators2. The MapReduce operators analyze large
2There are no underlying assumptions that make the usage of DE-
DUCE as a regular MapReduce only platform inefficient or difficult.

volumes of stored and possibly transient data sets and, in several
cases, build analytic models that are then forwarded to the stream
processing component for use in real-time data analysis. A par-
tial listing of an application (model-assisted bargain index compu-
tation) written in DEDUCE, and a schematic representation of the
same is shown in Figure 1. Next, we provide a brief description of
the application.

4.4.1 Model Assisted Bargain Index Computation
This example application is designed to find when a stock is avail-
able at a bargain price in the stock market. The application does
this by computing normalized bargain index, which is determined
based on recent market value at which the stock has been selling,
and inputs from automated analysis of recent news feeds, filings,
etc. (which may run into gigabytes) about the institution that the
stock represents. A good measure of recent market value of a
stock is volume weighted average price or VWAP, which is com-
puted over a sliding window as

∑
price × volume/

∑
volume.

The calculation of VWAP is done by the top most segment shown
in Figure 1, which consists of the Functor that forwards the trades
along with the product of price × volume for each trade, fol-
lowed by an Aggregator that computes for each window the sum
of forwarded product and the volume for each stock symbol, and
finally the Functor operator computes the VWAP for each stock sym-
bol. To compute the simple bargain index, the quoted price is com-
pared with the VWAP computed by the segment described above,
this is shown as the Functor and the Join operator segment in the
schematic. Finally, the bargain index is normalized using a model
which is generated by the MapReduce job to take into account the
effect of events outside the market. The MapReduce job period-
ically receives a list of files from external data source and it uses
them to compute the desired model using the two map and reduce
modules specified as part of the application.

5 Experimental Evaluation
In this section we report the results from our evaluation of DE-
DUCE as a MapReduce platform, and results from our study of in-
teraction between the streaming component and MapReduce job(s)
that belong to the same DEDUCE application. All the experiments
detailed in the following sub-sections were performed on a set of
84 reserved nodes, using all or fewer nodes from the set to study
various aspects of the middleware. The reserved set contained two
types of node, the first one - having 14 nodes had 2 Intel Xeon
3.4 GHz CPUs, 6 GB RAM and 2 x 36.4 GB hard disks; the sec-
ond set - having 70 nodes had 2 x dual core Intel 3.0 Ghz CPUs,
8 GB RAM and 2 x 73.4 GB hard disks. For our experiments we
do not differentiate between these nodes.

5.1 Performance & Scalability
The first set of experiments was conducted to demonstrate the scal-
ability of the DEDUCE middleware and to compare the performance
of DEDUCE with that of Hadoop [11] (release 0.17.1). We con-
ducted these experiments for both I/O (disk) intensive and compute
intensive MapReduce jobs. For the following experiments, DE-
DUCE makes use of HDFS as the underlying distributed file system
and accesses the HDFS using Java native interface (JNI).

5.1.1 I/O Intensive Workload
For measuring the performance of DEDUCE as compared to Hadoop
with respect to I/O bound jobs we make use of string grep and count
scenario. We used the network security logs from one of the IBM
subsidiaries and ran the analysis. The job consisted of searching a
particular set of events and counting the occurrence of each such
type of event. We ran the experiments for varying sizes of the input

660

Source

Functor

Functor

Functor

Functor

Aggregate

Join Sink

MapReduce ModelReader Normalizer

Pass trades and
compute volume*price

Compute moving aggregate
(for each symbol)

Compute VWAP

Pass quotes Compute bargain index

Read input from feed
handler

Write results to database

Invoked every
30 minutes

Read the model generated
by MapReduce

Incorporating the
generated Market model

Drop zero indices

Data at Rest

Data in Motion stream TradeFilter
(ticker: String, myvwap:Float, volume:Float)

:= Functor(TradeQuote)
[ttype="Trade" & volume>0.0]
{ myvwap := price*volume }

stream VWAPAggregator
(ticker:String, svwap:Float, svolume:Float)

:= Aggregate(TradeFilter <count(15), pergroup>)
[ticker]
{ Any(ticker), Sum(myvwap), Sum(volume) }

stream VWAP(ticker:String, cvwap:Float)
:= Functor(VWAPAggregator)

[true]
{ cvwap := (svwap/svolume)*100.0 }

Code
Snippet

Figure 1: A schematic representation of the model assisted bargain index computation application

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80

T
im

e
ta

ke
n

(s
ec

)

Number of nodes

10 GB
20 GB
40 GB

Figure 2: DEDUCE performance
for I/O bound job

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80

T
im

e
ta

ke
n

(s
ec

)

Number of nodes

10 GB
20 GB
40 GB

Figure 3: Hadoop performance for
I/O bound job

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80

T
im

e
ta

ke
n

(s
ec

)

Number of nodes

10 GB
20 GB
40 GB

Figure 4: DEDUCE performance
for compute bound job

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80

T
im

e
ta

ke
n

(s
ec

)

Number of nodes

10 GB
20 GB
40 GB

Figure 5: Hadoop performance for
compute bound job

log file and the number of nodes used for data storage and compu-
tation. In the results shown in Figure 2 and Figure 3, we observe
that DEDUCE performs significantly (≈ 33% reduction in job com-
pletion time) better than Hadoop for smaller sizes of the log file,
while it does perform better even for larger file sizes the improve-
ment is not as significant. This can be attributed to the overhead
imposed by JNI for the DEDUCE implementation, which starts be-
ing the dominant factor for larger files. In terms of scalability, as
expected, we observe that for smaller size of the log file the gain in
performance stagnates and does not improve with addition of more
nodes. However, for larger files we see a continuous increase in
performance with the addition of nodes.

5.1.2 Compute Intensive Workload
The next experiment in the set was focused on determining the per-
formance of DEDUCE in comparison to Hadoop with a compute
intensive workload. We used the same MapReduce job as above
except for a change in the map task, which was modified to include
several floating point operations for every byte of input data. This
workload corresponds to situations when MapReduce job is used
for summarizing training data and creating analytic models. In this
setup, DEDUCE outperforms Hadoop significantly. For instance,
when using 48 nodes DEDUCE takes 90 seconds to process 40 GB
of data, as opposed to 169 seconds taken by Hadoop. The results
are shown in Figure 4 and Figure 5. DEDUCE makes use of the
code generation and other high-performance features that are built
into System S middleware for running the MapReduce jobs and this
is reflected in the results.

5.2 Interaction between streaming application & MapReduce
This experiment was designed to demonstrate the importance of
effective scheduling mechanisms for a middleware like DEDUCE.
As mentioned in Section 4.2.2, DEDUCE allows the users to ex-
tend the scheduling policy by taking into consideration a number
of factors that range from time of arrival of a job, job priority, job
progress percentage, etc. We conducted this experiment on a set

Table 3: Interaction: streaming application & MapReduce jobs

maxTasks Tuples processed percentage of file processed
4 61389 59
8 57991 67
12 48567 78
16 42898 93

of 8 nodes, and deployed a DEDUCE application with a stream-
ing component consisting of a source that continuously generated
data by reading from a file, a time window based aggregator, a
compute intensive operator, a filter operator and a sink in series
– replicated twice, while the MapReduce component with 20 map
and 4 reduce tasks was supposed to ingest 10 Gigabytes for a
wordcount like application. We calculated the number of tuples
processed by the streaming application and the percent of data file
ingested by the MapReduce Job in a two minute window for differ-
ent values of maxTasks parameter of the MapReduce job. Results
shown in Table 3 show that there is be a strong level of interaction
between the streaming application and the associated MapReduce
job, and parameters like maxTasks can be used to trade delay in
propagation of updates through the streaming application for faster
generation of models and vice-versa.

6 Related Work
This section provides a brief survey of the existing body of research
in the related domains of stream processing systems, MapReduce
and larger data analysis systems.

6.1 Stream Processing Systems

Recent years have witnessed a lot of activity in the domain of
data stream processing both in the industry and the academia.
While academic projects like Borealis [1], STREAMS [3], Tele-
graphCQ [5] and others [14] have focused on the more theoret-

661

ical aspects of the paradigm, industry activity [2] has primarily
focused on commercialization and wide availability of this novel
data processing paradigm. In addition, researchers have also fo-
cused on issues like load-distribution [2], load-balancing [21] and
fault-tolerance [4] in stream processing systems. Stream process-
ing systems typically provide system support for instantiating real-
time data analysis applications that consume high-rate data streams.
However, such systems are not meant to analyze large volumes of
stored data and often rely on data warehouses and other ad hoc
mechanisms for analyzing stored data, and such analysis is often
the source of analytic model used by stream processing operators.

DEDUCE takes a more holistic approach to the problems asso-
ciated with processing modern day data. It not only provides the
stream processing capabilities, but also allows the users to specify
and instantiate MapReduce jobs as an element of the data-flow.

6.2 MapReduce

The MapReduce programming model [7] has gained significant ac-
claim for its ease-of-use, scalability, and fault-tolerance. It offers
a parallelization framework that depends on a runtime component
for scheduling and managing parallel tasks [11] and a distributed
file system that is responsible to providing parallel access to dif-
ferent blocks of the stored data [10, 12]. The success of the pro-
gramming model has resulted in the development of an open source
implementation of its runtime called Hadoop [11] and the Hadoop
distributed file system [12]. A number of efforts are also focused
on developing languages that help the specification of MapReduce
jobs [18, 19]. Recent research efforts have also focused on adapt-
ing MapReduce for database like operations using a map-reduce-
merge framework [22]. Another effort focuses on implementing
well-known machine learning algorithms for the MapReduce pro-
gramming model [15]. Although, MapReduce has also received a
lot of criticism for ignoring a lot of research on task paralleliza-
tion and data modeling conducted by database researchers [16], it
continues to be the new preferred platform for developing large-
scale analytics on static data. As compared to these infrastructure
and language efforts DEDUCE is aimed at completing the real-time
data analysis loop by supporting both the specification of streaming
application and the associated analytics.

6.3 Data Analysis Systems

Data analysis systems have evolved from monolithic data ware-
houses [6] of the past to the modern day real-time data analysis
systems [2]. The nature of the task has changed from offline to
online and therefore new sets of challenges have been posed to the
research community. Modern day data analysis systems should not
only scale with the volume of stored data, but also scale with the
rate at which live data arrives. In addition to that, modern frame-
works must be able to provide processing capabilities to deal with
both structured and unstructured data.

DEDUCE is an attempt to bring together the benefits of two
emerging data analysis technologies in a way such that it ad-
dresses the needs of several modern day data processing applica-
tions. However, traditional technologies like warehouses and re-
lational databases still continue to be very useful as far as consis-
tency, persistence and transactions are concerned.

7 Conclusions & Future Work
This paper described DEDUCE, a middleware that aims to address
the needs of the modern data processing applications that need to
handle both data at rest and data in motion. In doing so, DEDUCE
extends the SPADE declarative stream processing engine with the
capabilities to specify and instantiate MapReduce jobs, thereby fa-

cilitating the development of real-time data analysis applications
that must rely on model derived from historical or otherwise stored
data. DEDUCE has been developed keeping in mind the ease of
use and the need for high-performance and it seamlessly integrates
a MapReduce job as an element in the larger data analysis flow.
Additionally, DEDUCE also provides parameters associated with
MapReduce jobs which can be used to tune the resource utilization
or execution times of such jobs.

In terms of future work, although DEDUCE provides capabili-
ties to the user to extend the scheduling mechanism for map and
reduce tasks but there are a lot of opportunities to continue work
in this direction. This becomes particularly important when the
streaming application and MapReduce jobs share the same infras-
tructure. We would also like to extend this work to address the
issue of relationship between the quality of generated models, their
impact on system resources and the quality of generated real-time
data. We are also looking into the issues related to development
of MapReduce toolkits, and if such toolkits can be profiled in ad-
vance to assist in enforcement of service level agreements on the
deployed MapReduce jobs.

Acknowledgments
We would like to thank Nagui Halim, the principal investigator of
the System S project, for his continued support and invaluable guid-
ance throughout the development of the DEDUCE middleware.

8 References
[1] D. J. Abadi et al. The Design of the Borealis Stream Processing Engine. In

CIDR, 2005.
[2] L. Amini et al. Spc: a distributed, scalable platform for data mining. In DMSSP,

2006.
[3] A. Arasu et al. Stream: the stanford stream data manager (demonstration

description). In SIGMOD, 2003.
[4] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker.

Fault-tolerance in the borealis distributed stream processing system. ACM
Transansactions on Database Systems, 33(1), 2008.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah.
Telegraphcq: continuous dataflow processing. In SIGMOD, 2003.

[6] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap
technology. SIGMOD Record, 26(1), 1997.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. In OSDI, 2004.

[8] IBM - financial markets. http://ibm.com/financialmarkets/.
[9] B. Gedik et al. SPADE: the System S declarative stream processing engine. In

SIGMOD, 2008.
[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. SIGOPS

Oper. Syst. Rev., 37(5).
[11] Hadoop. http://hadoop.apache.org/core.
[12] The hadoop distributed file system: Architecture and design. http://

hadoop.apache.org/core/docs/current/hdfs_design.html.
[13] High performance scalable storage.

http://kosmosfs.sourceforge.net.
[14] V. Kumar et al. Implementing diverse messaging models with self-managing

properties using IFLOW. In ICAC, 2006.
[15] Apache mahout. http://lucene.apache.org/mahout.
[16] Mapreduce: A major step backwards. http://www.databasecolumn.

com/2008/01/mapreduce-a-major-step-back.html.
[17] S.-H. Oh, J.-S. Kang, Y.-C. Byun, G.-L. Park, and S.-Y. Byun. Intrusion

detection based on clustering a data stream. International Conference on
Software Engineering Research, Management and Applications, 0, 2005.

[18] C. Olston et al. Pig latin: a not-so-foreign language for data processing. In
SIGMOD, New York, NY, USA, 2008.

[19] R. Pike et al. Interpreting the data: Parallel analysis with Sawzall. Scientific
Programming Journal: Special Issue on Grids and Worldwide Computing
Programming Models and Infrastructure, 2005.

[20] Square kilometer array. http://www.skatelescope.org.
[21] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distribution in the borealis

stream processor. In ICDE, 2005.
[22] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge:

simplified relational data processing on large clusters. In SIGMOD, 2007.

662

