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Abstract

Larson [1] proposed a method to statistically infer the expected transient

queue length during a busy period in 0(n
5 ) solely from the n starting and

stopping times of each customer's service during the busy period and assuming

the arrival distribution is Poisson. We develop a new O(n3 ) algorithm which

uses this data to deduce transient queue lengths as well as the waiting times

of each customer in the busy period. We also develop an O(n) on line algo-

rithm to dynamically update the current estimates for queue lengths after each

departure. Moreover we generalize our algorithms for the case of time-varying

Poisson process and also for the case of iid interarrival times with an arbi-

trary distribution. We report computational results that exhibit the speed and

accuracy of our algorithms.
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1 Introduction

In 1987, Larson proposed the fascinating problem of inferring the transient queue

length behavior of a system solely from data about the starting and stopping time of

each customer service. He noted that automatic teller machines (ATM's) at banks

have this data, yet they are unable to directly observe the queue lengths. Also in

a mobile radio system one can monitor the airwaves and again obtain times of call

setups and call terminations although one is unable to directly measure the number

of potential mobile radio users who are awaiting a channel. Other examples include

checkout counters at supermarkets, traffic lights, and nodes in a telecommunication

network. More generally, the problem arises when costs or feasibility prevents the

direct observation of the queue although measurements of the departing epochs

are possible. This paper discusses the deduction of the queue behavior only from

this transactional data. In this analysis no assumptions are required regarding the

service time distribution: it could be state-dependent, dependent on the time of day,

with or without correlations. Furthermore, the number of servers can be arbitrary.

In Larson [1] two algorithms are proposed to solve this problem based on two

astute observations: (i) the beginning and ending of each busy period can be identi-

fied by a service completion time which is not immediately followed by a new service

commencement; (ii) a service commencement at time t implies that the arrival time

of the corresponding customer must have arrived between the beginning of the busy

period and ti. Furthermore, if the arrival process is known to be Poisson, then the

a posteriori probability distribution of the arrival time of this customer must be

uniformly distributed in this interval. In Larson [1] these observations are used to

derive an O(n5 ) and an 0(2 n) algorithm to compute the transient queue lengths

during a busy period of n customers.

In this paper we propose an O(n3 ) algorithm, which estimates the transient

queue length during a busy period as well as the delay of each customer served

during the busy period. Moreover, we generalize the algorithm for the case of time-
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varying Poisson process to another O(n3 ) algorithm and also find an algorithm for

the case of stationary interarrival times from an arbitrary distribution. We also

develop an O(n) on line algorithm to dynamically update the current estimates for

queue lengths after each departure. This algorithm is similar to Kalman filtering

in structure in that the current estimates for future queue lengths are updated

dynamically in real time.

The paper is structured as follows: In Section 2 we describe the exact O(n3 )

algorithm and prove its correctness assuming the arrival process is Poisson. In

Section 3 we generalize the algorithm for the case of time-varying Poisson process

into a new O(n3 ) algorithm. In Section 4 we further generalize our methods to handle

the case of an arbitrary stationary interarrival time distribution. In Section 5 we

describe the algorithm to dynamically update queue lengths in real time. In Section

6 we report numerical results. We also examine the sensitivity of the estimates to

the arrival process.

2 Stationary Poisson Arrivals

In this section we will assume that the arrival process to the system can be accurately

modeled as a Poisson process with an arrival rate that it is unknown but constant

within a busy period. The arrival rate, however, could vary from busy period to busy

period. In sections 3 and 4 this assumption is relaxed. We consider the following

problem: Given only the departure epochs (service completions) ti, i = 1,2,..., n

during a busy period in which n customers were served, estimate the queue length

distribution at time t and the waiting time of each customer. As we noted before

we make no assumptions on the service time distribution or the number of servers.

2.1 Notation and Preliminaries

The following definitions are needed. Let
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1. n = the number of customers served during the last busy period (the end of

the busy period is inferred from a service completion that is not immediately

followed by a new service commencement).

2. ti = the time of the ith customer's service completion.

3. Xi = the arrival time of the ith customer.(By definition X1 < X 2 ... < Xn. )

4. N(t) = the cumulative number of arrivals t time units after the current busy

period began.

5. Q(t) = the number of customers in the system just after t time units after the

current busy period began.

6. D(t) = the cumulative number of departures t time units after the current

busy period began.

7. Wj = the waiting time of the jth customer.

8. O(t-) = the event {X 1 tl,... , < t n }

9. O'(i, n) = the event {X 1 < tl,. .. ,Xn ,< t, and N(tn) = n}.

Without loss of generality assume that the busy period starts at time to = 0.

We observe the process D(t) and wish to characterize the distribution of N(t)

given D(t). From N(t) properties of Q(t) and Wj can be directly computed. For

example Q(t) = N(t)- D(t). Suppose exactly n - 1 consecutive service completions

coincide with new service initiations at times tl,t 2,. .. ,tn, 1 , and a service comple-

tion takes place at time t without a simultaneous new service initiations. Then,

one knows that event O'(,n) occurred, i.e., X1 < t,...,Xn < t and N(tn) = n.

We want to compute the distribution of N(t) conditioned on O'(i, n).

To do this we note (Ross [3]) that the conditional joint density for 0 < x1 <

X2 .. < Xn

f(X = xi, ,Xn = 'lN(xn) = n) - (1)
Zn
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As a result,

Pr{Xi < tl,..., Xn tlN(tn) = n} = -n! n 2 j dxl ... dxn
ntl=O -0 2= 1 n=n-1

(2)

Equation (2) is an example of an integral that encapsulates the a posteriori infor-

mation of the arrivals times. This information combined with the known departures

times lead to a posteriori estimates of the queue lengths and waiting times. More

generally, as will be shown in Section 2.2 and proven in Section 2.3 to evaluate this

type of integral efficiently we must evaluate the following related integrals

Hj,k(y)= j ... J f . dxl . ..dxk (3)
Hl=O 12-l j= j1+l=Xj k Xk- 1

and

Fk(y) = :J L ... dxk ... d (4)
k=O J'k+l =xk -n=n-

at y = tj.

Define

fti t2 ft j fj ftj
hj,k = Hj,k(tj) = ... i ... I dx . . dxk (5)

Jl 1=OJ 2=X 1 J=jl = j+l=j Xk=Xk-l

and

fj,k = Fk(tj) = ft dXk... d. (6)
k=

0
dk+l =k :n=n-1

The first four steps of the following algorithm will compute these values in O(n 3)

and the next two steps will use these values to compute transient queue length and

waiting time estimates. The validity of the algorithm will be demonstrated in Section

2.3.

2.2 An exact O(n3 ) Algorithm

STEP 0 (Initialization).

Let

ho,o = 1,fn+l,n+l = 1 ,to = 0 (7)
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STEP 1 (Calculation of the diagonal elements hk,k).

For k = 1 to n,
k kitk-i+l1

hk,k = E(-1)k-i ti+ 1 - (8)

STEP 2 (Calculation of hj,k).

For j = 1 to n - 1

For k = j + 1 to n,

hjk t (tj - t) k- i +l
hk- -(k i- )! hi-1,i-1. (9)

i=1 (k - )!

STEP 3 (Calculation of the diagonal elements fk,k).

For k = n to 1,
n i-k+l

fk,k = Z(-1)i - k k + fii+i (10)
i=k (i- k + 1)!'

STEP 4 (Calculation of fj,k).

For j = 1 to n - 1

For k = j + 1 to n,

n ti-k+l

fj,k = -- 1)ik j f+i+i (11)
i=k (i- k + 1)! f'

STEP 5 (Estimates of transient queue length).

1. For j = 1 to n - 1

E[Q(tj) O'(i, n)] = _k=j khj,k[fk+l,k+l - fj,k+l] (12)
h,n

2. Given t, tj t < tj+l

E[Q(t)O'(i, n)] = E[Q(tj+1)Ot'(i, n)] + (1 - )E[Q(tj) O'(t n)] (13)

where 0 = t-tj and for 0 < k < n-l-j

Pr{Q(t) = kOt( n)} = Hj,k+j(t)[Fk+j+l(tk+j+l) - Fk+j+l(t)] (14)
hrn
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and

Pr{Q(t) = OIO'(t, n)} = 1 (15)

where

Hj,k(y) = k (y_ ti)k-i+l h_(16)
i( k! (k+1) hi- i1

and

Fk(y) = E ()i--k + l) f+l,+i (17)

where ho,o and fn+l,n+l are defined in (7).

STEP 6 (Estimates of transient waiting time).

For tj < tk - t < tj+1

Pr{Wk < tlO'(fin)} = Er=l Hj,r(tk - t)[Fr+l(tr+l) - Fr+l(tk - t)] (18)

where Hj,k(y) and Fk(y) are defined in (16) and (17), respectively.

From the first four steps of the algorithm all of the hj,k's and fj,k 's can be

found in O(n3 ). From (13), to compute E[Q(t)10'(, n)] for only one value of t can

be done in O(n2 ) because not all hj,k's and fj,k's are required. However, from (13),

to compute E[Q(t) O'(i, n)] for all values of t requires O(n3) with the bottleneck

steps being STEP 2 and STEP 4. To speed the implementation of the algorithm,

for j = 1,2,..., n, j! should be computed once and stored as a vector. Also, note

that the fj,k's and hj,k's need not be stored but instead can be computed and

then immediately used in equation (12) to reduce the storage requirements of the

algorithm to O(n).

2.3 Proof of Correctness

In this subsection we prove that indeed the algorithm correctly computes the dis-

tributions of the queue length and waiting time. A basic ingredient of the analysis

is the following lemma that simplifies the multidimensional integrals:
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Lemma 1

/ / : ... dxl . . dxk = (19)
Z1=Z J2=X1 :rk=Xk-1 k!

Proof: (by Induction).

For k = 1 (19) is trivial. Suppose (19) were true for r = k. Then, from the induction

hypothesis

- . . .. dxl...dxk+l (Y z)k dxl = ( + 1)kl
1i=Z - 2=jXl Lk+l =k 1=Z kT (k + 1).

Hence, (19) is true for r=k+1 and the Lemma follows by induction. O

Remark: The proof of Lemma 1 can be generalized to show that

> .J.> .iY f(xk)dxl ... dxk= y (Y xl)klf(xl)dx. (20)
~1 =Z 2='"1 xk= k-1 1 =Z ( ) -

In the following proposition we justify steps 1 and 2 of the algorithm.

Proposition 2 STEP and STEP 2 of the algorithm are implied by the definition

of hj,k. Also Hj,k(y) defined in (3) satisfy (16).

Proof: If we apply lemma 1 to (3) we obtain

fxtj lt2j (Y - )k-j
Hj,k () = j (Y-X dxl...dx3 , (21)

I= 2= j=j- (k-j)

which, after performing the innermost integral, is equal to

ftl jt 2 tj-1 [(Y -Xj-)k-j+l ( _ tj)k-j+l

z=0 2=1 j1=X-2 (k- j + 1)! (k - j + 1)! ] 

Hence, from (3) and (21) we obtain

Hj,k(y) = Hjl,k(y) - - j)+ 1
(k-j + 1)! 

Successive substitution of this equation gives,

Hj,k(y) = H1,k(y) (- )+- ' 1

i=2 (k -i-] 1)i li1
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But from (3)

Hlk(y) = i (Y - xl)k- dx = Yk
1 0=o (k -i)! '..

(y - tl)k

k!

and thus (16) follows. Since hj,k = Hj,k(t), (9) is obtained. Moreover, from (5) and

(21), hk,k = Hk,k(O) and thus we obtain (8). 0

We now turn our attention to the justification of steps 3 and 4 of the algorithm.

Proposition 3 STEP 3 and STEP 4 of the algorithm are implied by the definition

of fj,k in (6). Also Fk(y) defined in (4) satisfy (17).

Proof: From (4) we note that Fk(y) is a polynomial in y of degree n-k + 1. Let ci,k

be the coefficients in Fk(y) = Ei=k Ck,i-k+lyi- k+l. Moreover, from (4) we obtain:

y F

Fk(Y ) =- [Fk+l(tk+l)- Fk+l(xk)]dx k.

By differentiating,

and

More generally,

From Taylor's Theorem,

fore,

dFk (y) 
- Fk+l(tk+l)- Fk+l(Y)dy

d2 Fk(y) _ dFk+l(y)

dy2 dy

di- k+l Fk(y) ( 1)i k d(y)
dy - k+ l - dy

d'-k+lrk(O) df (0)ck,i-k+l = d~YTk+ l /(i - k + 1)! and Ci,1 = -There-

(-_ l)i-k

Cki-k+1 = (i- k + 1)!Ci (23)
(i - k + 17~~~~~23

Evaluating (22) at y = 0 gives

Ck,1 = dFk() = Fk+l(tk+1),
dy

since Fk+1(0) = O. As a result,

Ck-1,1 = Fk(tk) = Cki- ik+ l

n

i=k

9
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From (23),
_Ckl,1 n (-1 )i-kti - k+ 1

i=k (i k + 1)!

where cn,1 = 1. Thus, fk,k = Fk(tk) = Ck-l,1 satisfy (10). In addition, Fk(y) =

yi-k·n ~ l, ~(_l)i-kti-k+1
ni=k ck,ik+li k+l, which from (23) is Z=k (i-k+l)! ci,1 and thus (17) follows.

Moreover, since fj,k = Fk(tj), (11) follows. 

Having established the validity of the steps of the algorithm required to compute

the hj,k's and fj,k's we proceed to proof the correctness of the performance measure

parts of the algorithm, steps 5 and 6.

Theorem 4 The distribution of Q(t) and its mean conditioned on the observations

O'(t, n) is given by (12), (13),(14) and (15) in STEP 5 of the algorithm.

Proof: For n- 1 > k > j and tj < t < tj+l the event {N(t) = k, O(t)} occurs if

and only if 0 < X1 < tl,...,Xjl < Xj < tj,Xj < Xj+ < t,...,Xk-l < Xk <

t,t < Xk+l < tk+l, ... ,Xn- < Xn < tn. Since the arrival process is Poisson, the

conditional density function is uniform and hence,

Pr{N(t) = k,O(tlJN(tn) = n} =

n ttl tj t t rtk+ tn

-- d ..... dn,tn Jz1=0 j -=zj 1 Jzj+l=zj J2k=zk_ J1dk+i=t n=n-

which, from (3) and (4), is

n!
-Hj,k(t)[Fk+l(tk+l)- Fk+l(t)].
n

Similarly, from (2) and (5),

Pr{O(tIlN(tn) = n} = n! Jtlt2 . dx ... dx = n-h,
n 1l=0 Z2= Z Z=-tn nt f

Therefore, for n - 1 > k > j and tj t < tj+l

Pr{N(t) = klO(t),N(tn) = n} = Hj,k(t)[Fk+l(tk+l)- Fk+l(t)] (24)
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For t = tj, using (5) and (6), we have

Pr{N(tj) = klO(t, N(t~) = n = hj,k[fk+l,k+l - fj,k+l] (25)
hnn

Since Q(t) = N(t)- D(t) and D(tj) = j

E[Q(tj)1O(ti, N(tn) = n] = E[N(tj)10(t, N(tn) = n]- j

n

= kPr(N(tj) = klO(tO, N(tn) = n}- j
k=j

because, for k < j, Pr{N(tj) = klO(t), N(tn) = n} = 0. Hence, (12) follows from

(25). Also, for tj < t < t+j,

Pr{Q(t) = klO(t, N(tn) = n} = Pr{N(t) = j + kjO(t, N(tn) = n}

so (14) follows from (24). In addition, (15) follows from the observation that N(tn) =

D(tn) = n with probability 1 and Q(t) = N(t)- D(t).

Suppose we condition on the event {N(tj) = r and N(tj+1 )} = m. Then, for

tj t < tj+l,

Pr{N(t) = klO(t), N(t,) = n, N(t j ) = r, N(tj+l) = m} =

Pr{N(t) = k, N(tj) = r, N(tj+l) = m, O(t) IN(tn) n}

Pr{N(tj) = r, N(tj+l) = m, O(t), IN(tn) = n}
tl tj tj t it t j+l= tj+1 At+l n dx dZ
1

1 =O 1
Zj=Xj-1 fr=r-l fr+l=tj k=xk1 fkilt fxm=?m- lm+l=t+ n=n-, dx 1 .dn

f rotl rtj tj+ + tnxl=-O ft>Xp._X f =xr- f =x-1 -- Jz +l=tj+l iXn=xn-I 1 .d

_ fZr+l=tj Xkfkl= k ,+ f=m.1 dzr+l... dm1f f+m1:= dxrll .... dd

r+1 t+1',+l .' j+l d2,+,1 ... dzm

after simplification. Using Lemma 1 and some additional simplification we obtain

Pr{N(t) = klO(tI), N(tn) = n, N(tj) = r, N(tj+1 ) = m} = (k-r)k- ( -O) k

where = tj Hence,tj+l-tj

Pr{N(t) - N(tj) = k'IO(t, N(tn) = n, N(tj), N(tj+l)}
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(N(tj+l)- N(tJ)) k'(1 _ O)N(tj+l)-N(tj) (26)

Therefore, N(t) conditioned on N(tj) and N(tj+1 ) is a Binomial distribution so

E[N(t)1O(t, N(t.) = n, N(tj), N(tj+1 )] = N(tj) + O(N(tj+) - N(tj)),

which by taking expectations leads to

E[N(t)O(t), N(tn) = n] = (1 - O)E[N(tj)] + OE[N(tj+1)]

Since Q(t) = N(t) - j for tj t < tj+l the piecewise linearity of (13) follows. 

Remark: Larson [1] also contains a proof of the piecewise linearity of E[N(t)10(t), N(tn) =

n]. Our proof more easily generalizes to the case of time varying arrival rates.

Finally, we establish the correctness of STEP 6 of the algorithm.

Theorem 5 The distribution of W(t) conditioned on the observations O'(, n) is

given by (18) in STEP 6 of the algorithm.

Proof: The total time Wk the kth customer spent in the system is simply tk - Xk.

Therefore, the event {Wk t} is the same as the event {Xk tk - t}. But this is

the same as the event {N(tk - t) k}. Hence,

k

Pr{Wk tlO'(, n)} = Pr{N(tk-t) kO'(F,n)) = Z Pr{N(tk-t) = iO'(, n)),
i=l

so (18) follows from (24). 

Note that (13) and (18) provides the basis to easily compute higher moments of

W(t), and Q(t).

3 The Time-Varying Poisson Arrival Process

In the previous section we assumed that the arrival rates are Poisson with a hazard

rate A that is constant during each busy period and found the inferred queue length

and waiting time. In some applications, however, it is not realistic to assume that
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A remains constant. We will show in this section that all the results of the previous

section are immediately extendible to this case without adding any complexity to the

resulting algorithm. In particular, if the arrival rate is time-varying, A(t) > O, then

we will show that the algorithm in Section 2.2 is applicable if all t 's are replaced by

fot A(x)dx.

Let A(t) be the time-varying arrival rate. We will first need to find the general-

ization of the conditional distribution of the order statistics given in (1).

Theorem 6 Given that N(t) = n and the time-varying arrival rate A(t), the con-

ditional density function of the n arrival times X 2, ,... X is

n!-i A(xi)
f(X = ,.,Xn = nlN(t) = n)= A( i) (27)

An (t)

where A(t) = fot A(x)dx.

Proof: The proof below is similar to Theorem 2.3.1 of Ross [3]. Let 0 < x1 < x2 <

. . Xn < Xn+1 = t, and let ei be small enough so that xi + ei < xi+, i = 1,..., n.

Now, Pr{x1 < X 1 < x1 + 1 ,... ,x, < X, _< Xn + en and N(t) = n} = Prexactly

one arrival in [xi, xi + ei] for i < n and no arrival elsewhere in [0, t]}.

But the number of Poisson arrivals in an interval I is Poisson with a mean

fxEI A(x)dx, so the above probability is

n n

JJ[e-MiMi]e-(A(t> il M)) = eA(t) I| Mi
i=1 i=l

where Mi = xl+'I A(x)dx = A(xi)ei + o(i)

Since Pr{N(t) = n} = e-(t)A) (27) follows. J

Given that we have now characterized the joint conditional density we can answer

questions about the system behavior.

Proposition 7 Suppose A(t) > O. Let tj < t < tj+1 . Then

n! A() f(t2) ... (tn) dxl ... dxn
Pr{X1 < tl, . . Xn < tN(tn) = n =

(28)
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Proof

From (27),

1 =0 ft2=l ... ft=_ H=l A(xi)dx l
... dxn

Pr{X1 < tl,. .. ,Xn < tN(tn) = n} = 2=n=n-
A(tn)n

(29)

Consider now the transformation of variables yi = A(xi), i = 1, n. This is an one-

to-one monotonically increasing function if A(t) > 0. Furthermore dyi = A(xi)dxi.

With this transformation of variables all of the upper limits change from xi = ti to

yi = A(ti). But the condition xi = xi-1 is equivalent to yi = yi-1. Performing the

transformation of variables we obtain (28).0

The proof of above proposition leads to a very simple extension of the algorithm

of the previous section.

Theorem 8 STEPS 1-6 of the algorithm of Section 2.2 are valid for time varying

A(t) if replace t is replaced by A(t) ( and tj with A(tj)).

Proof: This theorem follows immediately by applying the original proofs of STEPS

1-6 to the time varying case and using the transformation of variables yi = A(xi) as

was done in the above proposition. O

Remark: Note that the piecewise linearity property with respect to t of E[Q(t)lO'(t, n)]

in equation (13) found for the case of constant A is destroyed by the transformation

of variable, i.e., E[N(t)lO'(F, n)] = (1 - O)E[N(tj)IO'(F, n)] + OE[N(tj+ )IO'(t n)]

where 0 = A(t)-A(tj)

Note that while, the performance measures in the homogeneous Poisson case

of the previous section do not depend on the knowledge of A, the results in the

time-varying case require knowledge of A(t).

4 Stationary Renewal Arrival Process

Our methods in the previous sections critically depended on the Poisson assumption.

In this section this assumption is relaxed and we only assume that the arrival process
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is a renewal time-homogeneous process, where the probability density function be-

tween two successive arrivals is a known function f(x) and c.d.f. F(x) = fy=O f(y)dy.

The key step is to generalize (2):

Theorem 9

= n} =

1 - F(t - xn))dxl ... dxn

Pr{Xl tl,..., Xn t IN(tn)

rl=0 rn=- f(xl)f(2 - Xl)... f(xn - Xn-1)(

F(n)(tn)- F(n+l)(tn)

Proof: The underlying conditional density function

the ratio i.e.,

(30)

can be expressed in terms of

h(Xi = x 1 ,... ,Xn = xnlN(t) = n) = X = N(t) = n
Pr{N(t) = n}

But g{X1 = x1,.. ., Xn = Xn, N(t) = n} is the joint density function corresponding

to the first interarrival time being xl, the second interarrival time being x2 - xl,...,

the the nth interarrival being xn- xn-1,and having no arrival occurred in an interval

of duration t - xn. Hence,

g{X 1 = xi,... ,Xn = xn,N(t) = n} = f(xl)f(x 2 -Xl) ... f(xn-Xn-1)(1-F(t-n)).

Also,

Pr{N(t) = n} = Pr{N(t) < n}-Pr{N(t) < n-1} = Pr{Xn+l > t)}-Pr{Xn > t)}

= F(n)(t)- F(n+l)(t),

where F(n)(t)is the cdf of the nth convolution of the renewal process and F(x) =

fo f ()dx so

h (X = xi,...- , Xn = xnf N (t) = f()f(2 - ) (... f(xn - x,- 1 )(1 - F(t - x))
Fh(X n) (n)(t)- F(n+l)(t)

(31)

so (30) follows. 0
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Equation (30) is the basis of the algorithm for estimating Q(t) and W(t).

For example, using (30), one can evaluate

Pr{N(tj) > kO(t), N(tn) = n}

Pr{X1 < t, .. ., Xj < tj,Xj+l tj,... Xk tj, Xk+l < tk+l, , Xn t IN (tn) = n}
Pr{X1 < tl,...,Xj < tj,Xj+l tj+l,...,Xk < tk,... ,Xk+l < tk+l, . .. ,Xn < tlN(tn) = n}'

(32)

From (32), one can find

E[Q(tj)lO(t), N(tn) = n] = E[N(tj) > kO(t), N(tn) = n]- j

because Q(tj) = N(tj)- j.

n

= E PrfN(tj)
k=l

n

= E Pr N(tj)
k=j

> klO(tt, N(t) = n} -j

> kO(t, N(tn) = n}- 

because Pr{N(tj) > kO(t, N(tn) = n} = 1 for k = 1,2,.., j- 1.

For the Erlang-k distribution, for example, f(x) = A(AX)k-le-Ax/(k - 1)! and

F(x) = 1- e (Ax)3/j!.

In this case, from (30), for allt l ,t 2,...,t,

Prt{X1 tl, .. . ,Xn < tlN(tn) = n}

10 ....
X1=0 J. n=8n-1

Xk-l(2-X 1 )k- 1 .. . (Xn-Xnl)k-1

k-1

(A(tn-xn)
j=O

Ak(A,t) =

)3/j!dxl . ..dxn

(33)

(Ak/(k- 1)!)e-,t-

F(n)(t)- F(n+l)(tn)'

Therefore, the evaluation of (32) can ignore the contribution of Ak(A, tn) because it

will cancel in the numerator and denominator.

16

= Ak(A,tn)

where



5 Realtime Estimates

In some applications it is desirable not to wait until the end of a busy period to

estimate the queue length. For example, if there is a possibility of realtime control

of the service time, knowledge that the queue length was excessively large but it is

currently zero is not of value. Instead a current estimate is needed. The analysis of

this problem will be derived for the case of a time-varying Poisson process. However,

for the case of a constant arrival rate the method can be easily specialized.

Suppose that immediately after the nth departure (time t + ) we observe exactly n

departures at times ti, i = 1, 2, ... , n during a busy period and the busy period did

not end at time tn (as inferred from the commencement of a new service initiation

at time tn). We are interested in having an estimating the state of the system at

time t > tn without any observation of D(t) between time tn and time t. Also

note that knowledge that the busy period did not end at time tn is equivalent to

Xn+1 < tn. The following theorem provides the basis for an O(n) on line algorithm

for estimating N(t) and Q(tn) given these observations.

Theorem 10 Let tn be the time we observe the system. Then, for t > tn,

E[N(t)lO(t, X+ 1 < t,] = 1n + + A(t) (34)

and

E[Q(tn)iO(t), Xn+l < tn] = 1 + A(tn)- Rn (35)
Tn

where

Rn = qn + Pn - [A(tn) + 1]e-A(tn)gn, (36)

Tn = Pn - e-A(tn)gn, (37)

and qn,p,, gn are computed as follows:

qn = qn- 1 + Pn-1 - [A(tn) + 1]e- A(tn)gn - 1 , (38)

Pn = Pn-1 - eA(tn)g n - 1 , (39)

17



and
k Ak-i+l(t,)

gk = E(_lk-i k (ti i

with the initial conditions po = 1, qo = O, go = 1.

Proof: For j > n + 1, using (27),

PrO(t), Xn+l < tlN(t) = j}

-j ! tl tn tn t

Aj(t) Z1=O J n=Zn-1 Jfn+l=n J

j! tl Ltn tn

Aji(t) zl=° n=zn- l Jn+l=zn

[A(t)- A(xn+l)] j - n- 1

(j - n- 1)!

n+1

II A(xi)dzi
i=l

from Lemma 1 and the transformation of variable Yi = A(xi), i = n + 2, . .. , j. Also

Pr{N(t) = j} =e-A(t) AJ (t)
j!

Tn = PrO(t , Xn+I < tn} =

= e-A(t) j'...jE=71 +1 1= 0
nj=n+l =:3

E Pr{O(), Xn+l tnIN(t) = j}
=n+l

[t [A(t)- A(Xn+l )]j - n -

,n-I Jxn+l=Xn (j- - 1)!

Pr{N(t) = j}

n+l

HI A(xt)dzi
i=1

(43)

from (41) and (42), which leads to

Tn Jt. i:tn tn

X1= 0 Jn=Zn-1- n+ l=xn

n+l

e-^(xn+l) H A(xi)dxi.
i=1

But, for t > tn,

E[N(t)lO(t, Xn+1 < t] =
00oo

E jPrtN(t) = jlO(t), Xn+1 < tn}
j=n+l

oo

= Z (n+ 1+(j-
- 1))Pr{O(t), Xn+l tnlN(t) =n~~ ~ ~~~-i ,.,,~ - j}Pr{N(t) = j}

J 1'

18

(40)

II A(xi)dxi
i=l

(41)

Now, let

(42)

(44)

Prju~t), n+ Ijn



From (41), (42) and (44) we find that this is equal to

t t.
1 ~ (n+l+(j n-l))eA(t) ttn J tn

Tn j=n+l 1 = n=-n- n+ 1 =xn

= 1 [(n+ 1)T +-tl tn Jtn

Tn 21=0 2n=_l 2n+1=2

Therefore, (34) follows where

ti tn in

21l=0 n=2n-l n+l=Xn

[A(t) - A(xn+l)]j - n- 1 n+
(j - n- 1)! i- r (xi)dxi

n+l

[A(t)-A(xn+l)] e- A(xn+ l) Ij A(xi)dxz].
,n i=1

n+l

A(Xn+l) e -
A(xn+

l
) II A(xi)dxi.

i=1

But, after computing the innermost integral using integration by parts,

Rn = J ... J (-[A(tn) + l]eA(tn) + [A(xn) + 1]e -A(x)) II A(xi)dxi
1=0 n=xn-1 i=1

so (36) follows where

qn = Itn
271 =° n=Xn-1

n

i=l

Pn 0= j e-A(2n) I A(xi)dxi,
1=0 n=xn-1 i=l

gn = J1 (xi)dxi. (45)
1=0 n =xn- 1 i=

Computing the innermost integral of (44), we get (37). Integrating by parts we can

find recursions from which the quantities Pn, qn, gn are computed as follows:

n-i , tl -J~~~t,,l ~n--1
qn = Ill ] '' (-[A(tn)+l]e-A(tn)+[A(xnl)+l ]e- A(xn l) ) j A(xi)dxl ... dxn-1

1=0 Xn--l=2Xn-2 i=l

so (38) follows.

Similarly,we get (39) from

P = j Jn. [e-A(xn-1) -e-A(tn)] 7 )A(xi)dxl dXn

1=0 rXn-l=xn-- 2 i=1

From (5) and (45) and the transformation of variable, yi = A(xi) described in

Section 3, one finds that the definition of gn would equal hn,n if ti is replaced by

A(ti). Therefore, from (8), gn satisfies (40).
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Finally,D(t,) = n and Q(t) = N(t)- D(t). Hence, (35) follows from (34). 

Remark: To find E[Q(t)lO(t), Xn+l < t,] for t > t requires knowledge of the de-

parture process,i.e., knowledge of the service distribution and the number of servers

present.

Theorem 10 provides an algorithm to update dynamically the queue length es-

timates after each departure. The algorithm is as follows:

On Line Updating Algorithm

STEP 0 (Initialization).

Let go = 1; qo = 0; po = 1; to = 0.

STEP 1 (On line recursive update).

Pn = Pn-1 -e tgn-1,

qn = qn-i + pn-i - [A(tn) + l]e-^(t")gn_l,

gn = E 1)
i= (n + 1)!

Rn = q + Pn - [A(tn) + l]e-^(tn)gn,

Tn = p, - e-A(tn) gn

STEP 2 (Real time estimation)

E[Q(tn)lO(t, Xn+1 < tn] = 1 + A(t)- Rn
Tn

and,for t > tn,

E[N(t)IO(t), Xn+l < tn] = 1 + n + A(t)- n
Tn

At each step we need to keep track the previous two values Pn, qn and the vector gi,

i = 1,.. ., n. The calculation of Pn, qn can be done in 0(1), since we can update the

estimates for queue lengths in constant time given Pn-, qn-1, gn-1. The calculation

of gn, however, requires O(n) time. Using the same methodology we can recursively

estimate the variance and higher moments of the queue length as well.
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6 Computational Results

We implemented the algorithm of Section 2.2 for the case of stationary Poisson

arrivals in a SUN 3 workstation. Using a straightforward implementation, the algo-

rithm uses n2 memory (the matrices fj,k and hj,k are half full). For most practical

applications, the number of departures in a busy period is less than 100. We were

able to calculate several performance characteristics with up to n = 99 number of

departures in a busy period reliably in less than 40 seconds. In Figure 1 we report

the expected number of arrivals in a busy period of 99 points given that the depar-

ture epochs are regularly spaced within the busy period, i.e. ti = i/n. In Figure

2 we compute the estimate of the average cumulative number of arrivals during

the interval parameterized by n, the total number of arrivals during the interval,

based on the assumption that the departures are regularly spaced, i.e., given n we

computed

J E[Q(t)I O'(i, n)]dt

Not surprisingly, this is a monotonically increasing function of n.

For the case of n = 5, we plot in Figure 3 the estimate of the queue length,

E[Q(t)l O'(i, n)] as a function of time based on the assumption that the departures

are at ti = i/5, A = 10, and the interarrival time is either exponentially distributed

or Erlang-2 distributed. As expected the larger coefficient of variation of the ex-

ponential distribution causes a larger queue length. The exponential distribution

curve is based on the algorithm in Section 2 where it was demonstrated that the

curve is piecewise linear. The Erlang-2 distribution curve was based on the analysis

in Section 4 using Mathematica. For this case piecewise linearity has not been

established (indeed it does not hold) so the connecting line segments between the

points ti should be viewed as an approximation. Note also that for exponential case

the curve is convex as anticipated in Larson [1]. On the other hand, the Erlang-2

curve is clearly not convex.

If all of the parameters of Figure 3 remain unchanged except that A is increased
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to 100 then the exponential case curve would not change. This is because the

algorithm in Section 2 is independent of A. Figure 4 compares A = 10 with A = 100

for the case of Erlang-2 interarrival times. Not surprisingly, the estimates are quite

close.
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