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Deductibles
from a Risk Theoretical Point of View

by Hans-Peter Sterk*

1. Introduction
Deductibles improve the basic model of the insurance business seen as a complete

transfer of risk from the policy holder to the insurance company by introducing the
variant of partial risk-transfer. In practice they are an important instrument in individual
insurance protection. However, the insurance companies regard an increasing demand for
non-proportional deductibles with a certain scepticism. They fear that, by doing without
that part of the insurance business which lies with the area of minor to average claims,
the resulting effect will outweigh the positive aspects and will be, on the whole, danger-
ous. Consequently, in the case of the partial risk-transfer, great importance is attached to
determining the right premium as the price for risk-bearing. Thus ideas concerning
deductible rebates are of particular importance in papers dealing with problems relating
to this subject.

The same is true of the present article, which proceeds as follows : First, the risk-
theoretical claim components are outlined and the effect that deductibles have on them
is indicated. For this purpose, claim and indemnification models are differentiated. After
a general discussion of the dangerousness of risks, the article then explains the dangerous-
ness of deductibles with respect to the special insurance technical aspect of the coefficient
of variation. The rebating of deductibles is not least dependent on principles, according
to which the risk premiums are determined. Thus in part four, there is a discussion of
premium calculation principles in which special importance is attached to a generalised
standard deviation principle. Then the last part is concerned with the behaviour of
deductible rebates as a function of the underlying claims model and of the premium
principles employed in this connection1.

* University of Mannheim.
Earlier papers dealing with the present theme include the general monograph by Grob [5

which is not particularly confined to insurance technicalities, as well as the articles by Karten [7
Kelly [8], Smith and Head [10], and Strauss [12]. A noteworthy paper by Mack [9], written more
recently, will appear shortly.

The present article is based on the main results of the author's thesis [11], which received the
Ernst Meyer Prize of the "Geneva Association" in 1979.

82



2. Claim models and indemnification models
2.1. Risk-theoretical claim models

In risk theory, claim number and claim amount are random variables, and they form
together an aggregate claim model.

The claim number model consists of a discrete probability distribution

'=(po,Pi .....,p,. .
where p means the probability of n claims (n = 0, 1, 2 ) pj is, therefore, the
probability of no-claims.

The expected value j.t(), and the variance a2 (p), give the average claim number,
and an indication of the possible deviations from the mean.

The general model of claim amount per claim generally consists of a continuous
random variable X > 0, whose distribution function F (x) gives the probability with
which the claim amount per claim will not exceed X. Expected value and variance of
the claim amount are denoted by 1.t(X) and 2 (X).

S > 0 denotes the aggregate claim made up of claim number and claim amount. Its
expected value and its variance are, respectively

1i(S) =t(o)j(X)
ü2 (S) = . 2 (X) + u2 () [t(X)]2.

2.2. Indemnification functionals and indemnification models
The use of a deductible enlarges the outlined claim models, for, in contrast to

complete risk-transfer, there no longer exists any equality between claim and indem-
nification. In addition to the models for claim number, claim amount and aggregate
claim, models for the number of indemnifications, the indemnity amount and the
aggregate indemnity have to be constructed. If the form of deductibles is known, the
last three components can be derived from the first three components. This is
demonstrated below, in the case of straight deductibles.

The contractual determination of a deductible can be described by an indem-
nification functional which reflects the relationship between claim and indemnity.
The arrangement of a proportional deductible of 20 % can be represented, for
example, by the indemnification functional:

f(X)=0.8 .X,
while the functional

f 0 ifXa(X) Xa, if X>a
represents the arrangement of a straight deductible of sum a > 0, in which the
deductible is valid per claim. Hybrid forms of these pure proportional and non-
proportional deductible forms can be represented in a similar way.
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Since claims which, according to the agreement, do not lead to indemnification
payments by the insurance company, are not in every case reported, it is sensible
to understand as indemnifications only claims with f(X) >0. Thereby, for the rest,
an analogy to the arrangement is created, namely the claim amount only amounts to
values greater than zero (cf. BUhlmann, [3], p. 4). In the case of proportional deduct-
ibles there is, consequently, no difference between claim number and indemnification
number, while, in the case of non-proportional deductibles, only those claims which
exceed the arranged deductible amount lead to indemnifications. Thus, the number of
indemnifications, in comparison to the number of claims, can be drastically reduced,
especially in the mass business for small deductibles, since to an overproportional extent,
claims tend to concentrate in the realm of small losses.

The exact extent of the reduction can be ascertained with the help of the distri-
bution of the claim amount. A deductible amounting to a> 0 is exceeded with the
probability a: = 1 - F (a) per claim, so that the expected number of indemnifications
drops from t(p) to a.lt('). In addition, simple reflection shows how probabilities of
the claim number distribution are transformed into the indemnification number distri-
bution,

)* = ( p'.....pj,. .

where p' means the probabilities of k-number of indemnifications (k = 0, 1, 2, ..
A k-number of indemnifications can only arise when there first arises a larger, or at

least an equal, number n> k of claims, from which exactly (nk) number lead to a claim
below the deductible amount and k-number lead to a claim above that amount.

The latter occurs exactly with probability

()ak (1 a)nk,
since a represents the probability of the event that a claim is higher than the deduct-
ible amount. Since n claims occur with a probability of Pn, the probability of k
indemnifications, consequently, reads as follows:

pi = p()ak(la)flk
nk

(k=0,1,2,...).
The expected value and variance of the distribution of indemnification number are

thus written

Both quantities can be calculated from the corresponding quantity of claim number
and the probability of exceeding the deductible amount.

For known claim number models, the transition from claim number to indemnific-
ation number distribution proves to be "model maintaining" in the sense that the
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indemnification number distribution belongs to the same model type as the claim number
distribution, and is reflected only in a parameter transformation. The parameter trans-
formations in the transition from to 'i', being dependent on the probability of
exceeding the deductible amount, are specified in table 1. The corresponding proofs
are obtained by direct application of (4), or more elegantly by using the concept of the
generating functions (see Feller [4]).

The indemnity amount distribution, Fa (x), results from a left-sided truncation of
the claim amount distribution at point a, and subsequent translation to point zero. This
process is illustrated in Figure 1, using a density function. Since the area under the
density function up to point a describes the share of claims at the most from amount a,
it therefore appears that, depending on how a deductible is used, indemnifications with
trifling sums are now relatively much more frequent than was previously the case.2

Probability
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Figure 1 : Density functions of claim amounts
and indemnity amounts with straight deductible a

Equations (6) and (7) respectively show the formal link between indemnity amount
and claim amount distribution, and the expected value of the indemnity amount Xa

2 Numerical examples are given by Smith and Head ([10], p. 221).
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Fa(x) - F(X + a)F(a) x>OlF(a)
/ (X - a) dF (x)

i(Xa) = 1F(a)
Depending on the claim amount distribution, the expected indemnification can

become smaller or larger than the average claim amount l.t (X). For example, Benktander
and Segerdahl [1] characterise a class of distributions for which .t(Xa) increases monot-
onically as a increases.

Similarly, simple results, as in the transition from claim number to indemnification
number distribution, are not to be found in the transformation of known claim amount
distributions into the corresponding indemnity amount distributions, for here the tran-
sition is not generally "type-maintaining". An exception is the exponential distribution
with its noteworthy characteristic that indemnity amount distribution Fa (x) and claim
amount distribution F (x) always coincide.

The indemnity components derived from the deductible arrangement form, in the
usual way, the aggregate indemnity, which is represented by Sa. Its expected value and
its variance are

8
t(Sa) =t(*)L(Xa)=I.t() i°°(Xa)dF(x).

q2 (Sa) = R() . 2 (Xa) + q2 (*) [t(Xa)}.2

3. The dangerousness of deductibles
An examination of the extent to which deductibles are to be regarded as dangerous

or risk-increasing, calls first of all for a risk-theoretical discussion of the concept of
dangerousness. Since deductible arrangements transform risk situations, one must define
what is to be understood as the dangerousness of a risk-situation characterised by claim
distributions. This task, however, is not clear-cut, and cannot provide a generally
applicable solution. The evaluation of risks forms an important part of utility and
decision theory, and according to such theories, evaluations without regard to individual
preferences and risk-attitudes, expressed by so-called utility functions, are not generally
rational. This especially means that simple, parametric, rules determining the danger-
ousness of claim distributions need not be accepted. Nevertheless, such rules appear to
be very important, both in theory and in practice. In contrast to utility theoretical
procedures they are easy to apply with relatively less information and, in addition, they
have an immediate insurance technical appeal. In particular, they are closely related to
the most important parametric premium calculation principles. These rules can, therefore,
more easily withstand the pitfall of a lack of rationality.

In the discussion about the dangerousness of risks, much importance should be
given to the statistical measures for extent and direction of possible deviations of claim
data from its expected value, such as variance and semivariance (see Berliner [2]). In
particular, the insurance technical importance of the variance (or its square-root : the
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standard deviation) is underscored by the Chebyshev inequality, which limits the upper
probability based on deviations from the expected value.

But in order to compare risks with various expected values taking into consideration
their standard deviations, it is more sensible to form the coefficient of variation, which
represents a relative measure of deviations, as the relation of standard deviation to
expected value

(9) v(S)=.-
r (S)

This coefficient can be regarded as a dimensionless risk-measure for a risk with an
aggregate claim variable S.

By using (2) and by taking into account the coefficients of variation v(') and
v(X) of claim number and claim amount, (9) may be rewritten:

(10) v(S)=

A low loss frequency, as well as high relative deviations of the claim number and
claim amount, contribute to relatively high fluctuations in the aggregate claim and are,
in this sense, to be regarded as dangerous.

This has some importance when one discusses the dangerousness of deductibles.
If one inserts the indemnification components 5a Xa and * into (10), then it can be
shown that v(Sa), seen as a function of a, increases monotonically in particular,
V (Sa) > v (S), for every a> 0. Thus, although the expected value and standard deviation
of the aggregate indemnity decrease with the introduction or increase of the deductible,
the relative deviation increases. It can be proved that this is due to the fact that the
average indemnification number t(*) decreases with respect to .t(p) and, at the same
time, the relative deviation v(*) increases with respect to v(), as a glance at relation
(5) makes clear. From (10) it becomes clear that these factors result in an increase of
v(Sa). In contrast, the coefficient of variation of the indemnity amount distribution
does not necessarily increase, but, depending on type and parameter of the claim amount
distribution, either remains unchanged, decreases or increases.

The main cause for the dangerous effect connected with deductibles is, consequently,
the reduction of the claim number, which, at the same time, is accompanied by an in-
crease in its relative deviation. Consequently, this confirms the view that a high loss
frequency is more welcome to assess, from an insurance-technical point of view, than a
low loss frequency. For the calculation of deductibles, the increased dangerousness means
an adjustment of the safety loading to avoid a higher probability of negative results for
the insurance company. This is of direct importance to deductible rebates.

4. Premium calculation principles
A premium calculation principle is a functional it, which assigns a real number it (S)

to the aggregate claim variable S of a risk, it(S) is made up of two components : the net
risk premium and the safety loading.
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Before applying a premium calculation principle, a decision must first be made as
for which risks are to be combined into a balance-relevant portfolio. A balance-relevant
portfolio is a portfolio the goal of which is to obtain a balanced result from premium
minus losses by the end of the insurance period.

Every premium calculation principle should also meet certain postulates. The first
of them is that the risk premium should at least cover the expected value of losses, i.e.
it(S)

The inequality it (S) Max (S) requires that the risk premium may not be higher
than the maximum loss. From a practical point of view, this seems obvious, for no one
is prepared to pay a premium which exceeds the maximum possible loss. For theoretical
reasons, however, it is sensible to admit premium calculation principles which in some
cases lead to it (S) > Max (S), and to describe such risks as uninsurable.

Another postulate concerns the combination of independent risks to form a balance-
relevant portfolio. It is called the postulate of subadditivity : for n risks Si, S2.....
Sn independent from each other, the following inequality should apply

it(S1 +S2+....+S)it(S1)+it(S2)+....+it(S)
where S +. . .. + Sn represents the total result of the portfolio. Put briefly, this postu-
late requires that insurance should not become more expensive through combining
several independent risks. The premium calculation principles which fulfill the equality
in (11) are called additive.

A final postulate refers to the concept of dangerousness. It states that, in principle,
the more dangerous of two risks should require a higher safety-loading. This severe
postulate, which is not always followed when evaluating inhomogeneous portfolios,
emphasizes that a connection is necessary between the dangerousness-evaluation of
risks and the calculation of the premium.

The simplest and best-known premium calculation principle is the expected value
principle, where the net risk premium is equal to the expected value of the risk, and the
safety-loading is expressed as a fixed percentage of this expected value

it(S)=(l +A)11(S) , X>O.
A weakness of this principle is that it does not take into account the riskiness of

the portfolio. It therefore implies some risk-neutrality and, in spite of its simplicity, may
be regarded as inferior to the standard deviation principle, where the safety-loading is
expressed as a multiple of the standard deviation

it(S) = ri(S) + X a(S) , X>O.
This principle is clearly related to the following presentation of the Chebyshev

inequality, defining an upper limit for the probability of insurance payments exceeding
a given amount

Prob [S>t(S)+t.a(S)]-, t>O.
For instance, X = 3 guarantees a probabiistical safety-margin of at least 89 %

(= 1 1/32).
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The standard deviation principle is also related to the coefficient of variation, as can
be seen from equation (9). The safety-loading, expressed in relation to the net risk
premium, consists of the X-multiple of this coefficient.

The postulate t(S) Max(S) is not necessarily fulfilled by (13). A risk, which leads
to a loss of $ 10.000.- with 20 % probability, calls for, by application of(13) with X = 3,
a risk-premium of $ 14.000.-, and would therefore be uninsurable. This contradicts every
day experience, and the reason for this contradiction must be sought in the isolated
approach, which completely neglects the balancing effect of large portfolios. For
example, if (13) is applied to a portfolio of 10.000 such independent risks, this leads to
a premium of $ 320.- per head. This reduction of the premium reflects the subadditivity
of the standard deviation principle, which is, of course, due to the effect of the law of
large numbers.

The idea that a risk should not be calculated without considering the balancing
effect of a larger portfolio leads to the following generalisation of the standard deviation
principle

it(S;S1 .....
X>0, i=1......n.

In this generalized standard deviation principle, it should first be decided in which
balance-relevant portfolio the risk will be located. S consequently becomes one of the
S1. The sum of the premiums calculated from (15) may then be written as:

(S1)+X.a(S1 +.. . .+S)=t(S +. . .

i=1 +X.a(S1 +... .+S)

This is, simply, the standard deviation principle applied to the sum S +. . . + S
and, therefore, the probabilistical guarantee of a non negative result is ensured.

Strictly speaking, the generalized standard deviation principle represents more than
a premium calculation principle as we defined it above, since the premium depends not
only on S, but also on S1.....S. Its peculiarity consists in the fact that the safety
loading is calculated collectively and is distributed equally in all portfolio-risks, while
the net risk premium deals with the individual aspect of the risk. In contrast to the
application of (13) with subsequent calculation by division, all individual premiums will
generally be different from each other. They each contain an individual and a collective
share.

Utility-oriented premium calculation principles play a theoretically interesting role,
although, up to now, they have not been very important in practice. They determine
the risk premium in such a way that the utility, after underwriting, remains at least the
same as previously. They, thereby, guarantee the maintenance of a certain utility level
(see Bühlmann [3], Chapter 4).

However, for calculating utility-preserving premiums, the utility function must first
be known and there is no general agreement on the adequate function to be chosen.
Doubts about quadratic utility functions in economics and decision theory find insurance
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support in the fact that its use leads to superadditive premiums : insurance per head
becomes more expensive with increasing portfolio size (see [11], chapters 3 and 4),
which means that the balancing effect of large homogeneous portfolios of independent
risks is more than counteracted, in terms of risk premium. In contrast, the family of
exponential utility functions leads to additive premiums, and the calculations can be
accomplished relatively smoothly when the generating function of the claim number
distribution and the moment generating function of the claim amount distribution are
known, as is true for some typical cases.

5. Deductible rebates
The adequate premium rebate for a deductible depends on whether the remaining

premium may be considered as adequate. This concerns first the risk premium. Other
premium components, such as operating expenses, profit-loadings or taxes are only
indirectly affected by a deductible agreement, and their influence - which is mainly
supposed to be of a deterministic nature - should be taken into account only after the
rebating of the risk premium.

The question of the adequate risk premium is generally answered by the decision to
apply a certain premium calculation principle. If it is the premium calculation principle,
the premium for the part of risk remaining after agreeing on a deductible a is It (Sa), and
the relative premium reduction may be written

'17 It(S)It(Sa)
" ' it(S)

The expected value principle (12), becomes
t(S)t(Sa)

i (S)
after cancellation of (1 + X). It can be seen that the relative premium reduction is, in
this case, equal to the relative reduction in the expected value of the loss.

Using (2) (5) (7) and (8), the above formula may be rewritten

p(p) { I X d F (X) - f (X - a) d F (X) }
0 a
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The term r (a) has been called the loss elimination ratio (see GUrtler [6], p. 135).
From its easily established concavity, it follows that a straight deductible of x % of the
sum insured permits a rebate of at least x % (see Karten [7]), and a similarly rough
estimate - relevant only for small deductibles - gives as the highest possible rebate the
share of the deductible on average loss, i.e. r(a)'( a/t(X). The special behaviour of
r (a) depends very much on the type and parameters of the underlying claim amount
distribution (see [11], ch. 6 for examples).

The deductible rebates which result from the expected value principle are closely
connected to the relative loss elimination, since the calculation of the risk premium is
in this case exclusively based on the expected value. This results in not taking into
account the danger-increasing effect of deductibles. In order to eschew this problem, the
premium calculation must rather be based on the standard deviation principle.

Since the standard deviation principle calculates the safety-loading as a multiple
of the standard deviation, it can be supposed that the danger-increasing effect of
deductibles will result in deductible rebates which are less than the loss-elimination
ratios. This is confirmed by a formal analysis of the rebate formulas, taking as an example
a homogeneous portfolio of independent risks.

If all individual risks S1 ....., S of a portfolio of size n are independent, and are
represented by the same random variable S, the result is

a(Si+... . + S) = a(S).
Consequently, the standard deviation principle raises on every portfolio-member

the risk premium
X.a(S)n(S) +

If all portfolio-members choose a deductible of amount a, S is replaced by Sa, and
the relative reduction of the risk premium may thus be written

i .t(S) +X.a(S)
which can be rewritten

t(Sa) v(Sa)v(S)(a)=l_() {l+X '/+X.v(S)
q(a) differs from the loss elimination ratio r(a) by the factor in bracket. Since
v(Sa) > v(S), this factor is positive, and we may write:

q(a)r(a) , aO.
Like the risk premiums calculated according to the standard deviation principle,

the rebates q (a) are dependent on the portfolio size n. With increasing portfolio size they
converge from below towards the loss elimination ratios. Thus, the larger the balance-
relevant portfolio, the more likely are the deductible rebates to reach their highest values.

Figure 2 provides an illustration based on the relations derived in section 2. It gives
an indication of the rebate range which results from the standard deviation principle. The
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Poisson-distributed claim numbers with average loss-frequency of 10 % and Exponential
distributed claim amounts, in addition to X = 3, have been taken as a basis for calculations.
The range is bounded by the extremes of n = 1 and n = For a straight deductible
in the amount of the average loss (a / t (X) = 1), the range varies between rebates of
41 % and 63 %. The rebates for a portfolio of size n = 900 have also been plotted.

It has been assumed, until now, that all portfolio members choose a deductible of
amount a. If this is only true for n1 of them (ni <n), the portfolio should be divided
into two homogeneous parts, using the indemnification variables Sa and S.

The application of the generalized standard deviation principle then leads to the
common safety-loading:

--. X. s/ni .u2(Sa)+(nni)a2(S) -

Since a2 (Sa) < a2 (S), the safety loading decreases when ni, the number of
contracts with deductibles, increases.

The premium for the contracts with deductibles may be written

(21) t(Sa)+X Jn.a2(S)ni[a2(S)_a2(Sa)1
Comparison of (21) with the premium for full risk transfer - which differs only

from (21) by the first term, i.e. ji(S) in place of jt(Sa) - shows that the rebates converge
to (19) with increasing n1. It can also be established that the dependence of rebates on
the number of contracts with deductible does not turn out to be as strong as the
dependence on the total portfolio size. Therefore, no big errors are likely to appear
when the rebates have been calculated according to an incorrectly estimated value of
ni

Most important, the formal analysis of the rebate tariffs, derived from the general-
ized standard deviation principle, confirms that the rebates must be lower than the loss-
elimination coefficients. In this case too, the loss-elimination coefficients would be
justified as rebates only for portfolios of infinite size.

Finally, an examination should be made on how the premium-rebates behave when
the premium calculation principle is based on utility theory. It has been shown elsewhere
(see [11], chapter 6) that exponential utility functions with exponentially-distributed
claim amounts and Poisson-distributed claim numbers lead to deductible rebates which
do not differ from the loss-elimination coefficients. However, binomial-distributed claim
numbers imply rebates which turn out to be lower, with the difference depending on the
degree of risk-aversion. Thus, the danger-increasing effect of deductibles may also have
some importance in premium calculation principles based on utility theory.

6 Conclusion
A deductible agreement can be represented by a function which transforms the risk-

theoretical models for claim number, claim amount and aggregate claim into correspond-
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ing indemnification models. It has been shown that, mainly because of the elimination
of numerous small claims, the coefficient of variation of the aggregate indemnity distri-
bution increases in the case of a straight deductible. As this danger-increasing element
of deductibles is taken into account in premium calculation principles based on a
portfolio-linked safety loading, it follows that the resulting deductible rebates turn out
to be smaller than the loss elimination ratios, i.e. the percentage decrease of expected
losses. This relation between deductible rebates and loss elimination ratios has also
been found to be valid when the premium is calculated according to utility theory.
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