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A b s t r a c t .  The reliability of complex software systems is becoming in- 
creasingly important for the technical systems they are embedded in. In 
order to assure the highest levels of trustworthiness of software formal 
methods for the development of software are required. The VSE-tool was 
developed by a consortium of German universities and industry to make 
a tool available which supports this formal development process. 
VSE is based on a particular method for programming in the large. This 
method is embodied in an administration system to edit and maintain 
formal developments. A deduction component is integrated into this ad- 
ministration system in order to provide proof support for the formal 
concepts. 
In parallel to the development of the system itself, two large case studies 
were conducted in close collaboration with an industrial partner. In both 
cases components of systems previously developed by the industry were 
re-developed from scratch, starting with a formal specification derived 
from the original documents. 
This paper focuses on the deduction component and its integration. We 
use a part of one of the industrial case studies in order to illustrate 
the important aspects of the deduction component: We argue that a 
close integration which makes the structure of developments visible for 
the theorem prover is necessary for an efficient treatment of changes 
and an indispensable structuring of the deduction process itself. Also 
we commend an architecture for interactive strategic theorem proving 
which has turned out to be adequate for applications in the context of 
formal program development. The last one of the three main sections 
addresses the important point of detecting bugs in implementations and 
specifications. 

1 I n t r o d u c t i o n  

The  reliability of  complex  software systems is becoming  increasingly i m p o r t a n t  
for the  technical systems they are embedded  in. Malfunct ioning of  software sys- 
tems  caused by design flaws or faul ty  implementa t ions  m a y  lead to loss or gar- 
bling of  da ta ,  breach of  security, danger  to life and limb, and, in a lmost  all cases, 
severe economic  losses. 
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Led by the German Information Security Agency (Bundesamt ffir Sicher- 
heit in der Informationstechnik, BSI) a catalog of criteria for the evaluation of 
the security of information technology systems has been developed in Germany 
[IT-89]. In the assessment of a system's trustworthiness, the development process 
plays a major role. Requirements to the development process break down into 
aspects of (the formulation of) security and/or safety requirements, the overall 
structure of the system, and the implementation. The highest levels of quality 
require, to a varying extent, the use of formal methods. The BSI thus decided on 
the development of a tool to support the use of formal methods during all stages 
of the design process. Starting in 1991 the VSE system [BCC+92] was developed 
by a consortium consisting of Dornier/DASA, Friedrichshafen, the German Re- 
search Center for Artificial Intelligence (DFKI), Saarbrficken, the Gesellschaft 
ffir Prozet~rechner-Programmierung (GPP), Miinchen, the University of Karl- 
sruhe, and the University of Ulm. 

In August 1994 the first prototype was delivered, tested, and finally accepted 
by the BSI. 

VSE is based on a particular method for programming in the large. This 
method is embodied in an administration system to edit and maintain formal 
developments. A deduction component is integrated into this administration sys- 
tem in order to provide proof support for the formal concepts. 

This paper focuses on the deduction component and its integration. A part 
of an industrial case study called PERSEUS is used to illustrate the main ideas. 
The case study is part of an access control system for nuclear power plants. The 
task was to guarantee that only authorized staff is present in each area of the 
plant. The part we wilt be looking at is concerned with the manipulation of the 
rights of persons to enter different areas of the plant. 

The paper is organized as follows. In the following section we give a survey 
of the VSE system and its underlying formal concepts. In section three we give 
a more detailed description of the part of the case study which is used in the 
following. We then discuss the integration of the deduction component into the 
administration system. We argue that a close integration which makes the struc- 
ture of developments visible for the theorem prover is necessary for an efficient 
treatment of changes and an indispensable structuring of the deduction process 
itself. The next section describes what could be called interactive strategic the- 
orem proving. This architecture has turned out to be adequate for applications 
in the context of formal program development. The last one of the three main 
sections addresses the important point of detecting bugs in implementations and 
specifications. 

2 T h e  V S E  S y s t e m  

We begin with a survey of the VSE system introducing some underlying formal 
notions as well as the basic constituents of the systems in its technical realization. 
We will also mention the two industrial case studies that were carried out in the 
project. 
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2.1 T h e  G e n e r a l  M e t h o d  

VSE is based on a method for the top-down development of structured, for- 
mal specifications and their stepwise implementation (refinement) using abstract 
intermediate layers represented by specifications. 
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Fig. 1. The VSE Method 
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Refinement steps are specified by means of abstract p,vgrams that  use con- 
cepts from the lower (import) level in order to implement the more abstract ones 
on the export  level. The bot tom layer is given by a collection of predefined con- 
cepts that  can directly be realized in a target programming language. Modularity 
in this context means that  sub-specifications can be implemented separately. 

At each level, additional safety and/or  security requirements can be formu- 
lated in addition to the system specification. These requirements are formalized 
in a separate specification which can be mapped onto the systems specification, 
such a connection is called a satisfies-link between the two. 

Most of the development steps lead to so-called proof obligations. These for- 
malized assertions are handed over to the deduction component where the actual 
verification takes place. 

Figure 1 shows the general method for formal software development in VSE. 
The concrete instance of this general method depends on the formal con- 

cepts used for modeling the desired system. Specification concepts covered in 
the current (first) version of the VSE system include abstract data types and 
state transition systems. 

A b s t r a c t  D a t a  T y p e s  Abstract Data Types (ADTs) provide a view on a sys- 
tem as an algebra, given by a (typed) collection of sets of data  objects and a 
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(typed) collection of operations which manipulate these data. 
Elementary specifications (of algebras), so-called theories are made up of a 

signature and a set of axioms. The signature part introduces the vocabulary 
of the data type. It consists of a set of types and a set of typed function and 
predicate symbols. VSE-SL allows full first-order logic to describe the semantics 
of these symbols in the axiom part. 

In general there will be many (non-isomorphic) algebras that satisfy a given 
specification. VSE-SL allows to restrict the class of models to (term) generated 
or even to freely generated models. These restrictions lead to induction principles 
that are used in the verification process. 

An example of a theory is given below: 

THEORY Rights 
USING : Topology; 

Persons 
TYPES : AccessRel = 

GENERATED BY emptyRel I 
grant(Person,Area,AccessRel) I 
refuse(Person,Area,AccessRel) 

PREDICATES : hasAccess : Person,Area,AccessRel; 
inRel : Person,Area,AccessRel 

VARS : p, pO, pl : Person; 
b, bO, bl : Area; 
m : AccessRel 

AXIOMS : NOT inRel(pO, bO, emptyRel); 
inRel(pO,bO,grant(pO, bO, m)); 
NOT inRel(p0, bO, refuse(p0, bO, m)); 
bO /= bl OR pO /= pl 
-> (inRel(p0, bO, m) <-> 

inRel(pO, b0, grant(pl, bl, m))); 
bO /= bl OR pO /= pl 
-> (inRel(pO, bO, m) <-> 

inRel(pO, b0, refuse(pl, bl, m))); 
hasAccess(p, b, m) <-> 
(b = extern 
OR visitor(p) AND inRel(leader(p), b, m) 
OR NOT visitor (p) AND 

(inRel(p, b, m) OR hasAccess(p, next(b), m))) 
THEORYEND 

The theory Rights corresponds to representation of the rights of persons to 
enter different areas of the plant. It refers to the (sub-) theories Topology (e.g. 
using the function next) which represents the topology of the plant and Persons 
(e.g. using the predicate v i s i t o r )  modelling the different (types of) persons like 
staff members or visitors. Among other operations this kind of enrichment gives 
rise to a (horizontal) structure of abstract data type specifications. 
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In the refinement process functions and predicates from the export specifica- 
tion are implemented by (recursive) procedures that use function and predicate 
symbols from a given import specification. The relation between concepts from 
the export specification and parts of the implementation is given by a mapping. 
The theory underlying these concepts has been described in [Rei92b], [Rei92a]. 

Specif icat ion of  S ta te  Trans i t ion  Sys tems  State transition systems are used 
to describe systems where the history of operations executed has an effect on 
the results produced. Here the operations cause side effects on a global system 
state. 

State transition systems in VSE-SL are given by so-cMled objects. As an 
example, we present below a simple specification of a state transition system 
which is, like the theory presented in the last section, taken from the case study 
PERSEUS conducted in the VSE project. 

OBJECT PlantAccess 

USING : Rights 

DATA : Matrix : AccessRel 

VARS : p, q : person; 

b : area 

OPERATIONS : 

PROC access(p : Person,b : Area) : bool 

ENSURES IF hasAccess (p, b, Matrix) 

THEN RESULT = T 

ELSE RESULT = F 

FI 

PROC setaccess(p : Person,b : Area,z : bool) 

MODIFIES Matrix 

ENSURES IF z = T 

THEN Matrix = grant(p, b, Matrix') 

ELSE Matrix = refuse(p, b, Matrix') 

FI 

INITIAL : leader(p) = leader(q) -> 

(hasAccess(p, b, Matrix) <-> 

hasAccess (q, b, Matrix)) 

OBJECTEND 

The state space is given implicitly through the items in the DATA-slot. The 
variables declared here are state-dependent and may be changed by the opera- 
tions. Their types (sorts) are taken from the theory mentioned in the USING-slot. 
Additional local variables may be declared in a VtRS-slot. The behavior of Op- 
erations is described by pre- and postconditions. In the postcondition a variable 
x '  denotes the value of x prior to the execution of an operation. The precondi- 
tions form a complete case-distinction. In the RESULT-slot the value returned by 
an operation is specified. By an additional REQUIRES-slot one might restrict the 
situations in which the operations may be executed. These requirements have to 
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be respected if an operation is used for example as an import operation in some 
implementation. 

Consider the example of the procedure se t acces s .  Matrix ' denotes the value 
of Matrix prior to the execution of the operation Se taccess .  Thus, in case the 
operation is called with z equal to T the new value of Matrix is computed from 
its current value by applying gran t  with additional parameters p and b on it. 

The set of initial states (and perhaps also a global invariant of the system) is 
specified by first-order formulae. As with ADTs there are also generic state tran- 
sition systems, and unions of such systems. Export operations of state transition 
systems are implemented in the VSE system by pieces of abstract programs that 
use operations from some import specification. 

An introduction to state transition systems of this kind can be found in 
[RvHO91] while a comprehensive description of the syntax and semantics of 
state transition systems is given in [VSE94]. 

2.2 System Support  

VSE is an integrated system that supports the user at all stages of the develop- 
ment process following the method outlined above. Basically there are two kinds 
of activities, editing and proving, that are in fact interleaved. This means that 
the user might edit (some part of) a specification, prove certain safety proper- 
ties, edit an import specification and a refinement, prove the refinement correct, 
and then continue his work for example by a further refinement step. 

The work is organized via a so-called development graph that displays the 
representation of a (partial) development to the user and allows him to continue 
his work at a node he wants to expand. The development graph also gives the user 
access to status information that is maintained by the administration system. 
This correctness management controls the work in the various development units 
and their proof obligations. It keeps track of dependencies between a proof and 
those parts of the specification which are used during the proof. Changing these 
parts of the specification will invalidate the related proofs while other proofs 
may not be affected. 

The main system support w.r.t, editing specifications and implementations is 
syntactical analysis including type-checking. If a development step is completely 
edited and successfully checked, a logical database related to this step is created 
by the system. It is initialized by the axioms computed from the specifications 
involved and the proof obligations that correspond to the development step. 
The verification process then takes place in the context of this database where 
all kinds of logical information, like axioms, lemmata, and proofs are stored. 
When a branch of the development is completed, the actual code of the target 
language is generated by the system. 

2.3 Case S tud ies  

In parallel to the development of the system itself, two large case studies were 
conducted in close collaboration with Dornier. In both cases components of sys- 
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terns previously developed by Dornier were re-developed from scratch, starting 
with a formal specification derived from the original documents. The selection 
of the case studies was oriented along the specification paradigms supported by 
the VSE system. 

The first case study deals with a system that controls the exchange of pro- 
grams between radio stations, including the booking of leased communication 
lines. Within this case study, the kernel of the booking system was re-developed. 
It contains a complicated algorithm to re-schedule already booked transmis- 
sions in the case of conflicts. The booking system was modeled as an abstract 
data type, i.e. the booking system can be viewed as a structured collection of 
operations. The entire case study consists of about 5000 lines of specifications 
(including the security model), and 8000 lines of implemented source code. 

The second case study named PERSEUS demonstrates the use of state tran- 
sition systems. It is (part of) an access control system for nuclear power plants. 
Again the safety relevant kernel of the system, which supports the tracking and 
control of movements within a plant, was re-developed. This case study, which 
begun later, comprises currently about 3000 lines of specifications, which were 
partially implemented in 2000 lines of code. 

2.4 D e d u c t i o n  

A distinguishing feature of the VSE system is that  it offers deductive support for 
all formal concepts. This takes into account the experience that one of the main 
limiting factors for the application of formal methods in an industrial context is 
machine assistance for the construction of proofs. 

Apart from actualizations of generic specifications, there are two major kinds 
of links in development graphs that lead to proof obligations, satisfies-links be- 
tween systems specifications and additional safety and/or security properties and 
refinement steps. Safety and/or security properties lead to assertions in first- 
order predicate logic while in the case of refinements we have to prove assertions 
about programs. These are formulated in a variant of Dynamic Logic (DL), see 
[Pra76]. 

The deduction component is made up of two closely integrated provers: the 
KIV system (Karlsruhe Interactive Verifier) and the INKA system (INduction- 
prover KArlsruhe), see [HRS90] and [BHHW86]. KIV is mainly used for proofs 
in DL while INKA provides strategies for first-order assertions, in particular 
for inductive proofs. Both systems follow the paradigm of interactive, strategic 
theorem proving. 

3 P E R S E U S  

As mentioned before we will use a part of the second case study PERSEUS to 
demonstrate the main features of the deductive component and its integration 
into the administration system. While in the first case study the safety require- 
ments were concerned with the problem of exclusive use on lines, here the task 
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was to guarantee that  only authorized staff is present in each area of a nuclear 
power plant.  A small par t  of the development graph concerning the access rights 
is given in Figure 2. 

The  par t  we will be looking at is concerned with the manipula t ion  of an 
access matrix  that  encodes the rights of persons to enter different areas of the 
plant.  Persons are either member  of the staff or parts  of visitor groups who 
are always escorted by a member  of the staff (the so-called leader of a group). 
Visitors have same access rights to the areas as their leader (but may  only enter 
an area together with their leader). In order to simplify mat te rs  staff  members  
are always their own leader regardless whether they escort a visitor group or 
not. 

AccessLis~s Ar Lists ~ ~ 

Perfill 

( 

Fig. 2. A Development Graph 

On the top-level we have the specification of an object P l a n t A c c e s s  which 
provides operations for looking up ( acce s s )  and changing entries ( s e t a c c e s s )  in 
the access mat r ix  (Matr ix) .  It  uses abstract data types for matr ixes  (AccessRel) ,  
persons (person) ,  and areas (a rea)  given by the structured theory R i g h t s .  

In a typical refinement step we re-specify the theory P l a n t A c c e s s  on a lower 
specification level making some implementa t ion decisions. For instance, we im- 
plement the access relation by a property list and define procedures G e t _ a c c e s s  

and S e t _ a c c e s s  which operate on property lists and correspond to the functions 
a c c e s s  and setaccess specified in the theory R i g h t s .  

Next, we implement  the access mat r ix  in the theory A c c e s s L i s t s .  A da ta type  
t c c e s s L i s t  is specified as a property list with persons as i tems and areas as 
values. An entry of a person p with value a denotes tha t  p has access to a. 
Persons may  occur several t imes in the property list specifying access rights to 
different areas. 
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THEORY AccessLists 

USING : Persons; 

Topology 

TYPES : AccessList = FREELY GENERATED BY 

nil ] 

blst(getPerson : Person,getArea : area,rest : AccessList) 

FUNCTIONS : DEL : Person,Area,AccessList -> AccessList 

PREDICATES : in_list : Person,Area,AccessList 

VARS : b : area; p : person; 1 : AccessList 

ALGORITHMS : DEFPRED in_list(p, b, I) <-> 

SWITCH 1 IN 

CASE nil : FALSE 

CASE blst : IF getPerson(1) = p 

THEN IF getArea(1) = b 

THEN TRUE 

ELSE in_list(p, b, rest (i)) 

FI 

ELSE in_list(p, b, rest(l)) 

FI 

NI; 

THEORYEND 

List of  areas are defined in tile theory AreaLists. Especially, the theory 
provides a funct ion h i g h e r A r e a s  of an area, a which provides a list of  all areas 
wi th  higher securi ty level than  a. 

THEORY AreaLists 

USING : Topology 

TYPES : areaList = 

FREELY GENERATED BY no_area I 
add area(first:area, rest:areaList) 

FUNCTIONS : higherAreas : area -> areaList 

PREDICATES : elem : area, areaList; 

_<_ : areaList, areaList 

VARS : b, bl, b2 : area; 

I, Ii : areaList 

ALGORITHMS : DEFPKE/) elem(b, I) <-> 

SWITCH i IN 

CASE no_area : FALSE 

CASE add_area : IF first(l) = b THEN TRUE 

ELSE elem(b, rest(l)) FI 

NI; 

DEFPRED 1 < 11 <-> 

SWITCH 1 IN 

CASE no_area : Ii /= no_area 
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CASE add_area : IF 11 = no_area THEN FALSE 

ELSE rest(l) < rest(ll) FI 

NI 

AXIOMS : b2 elem higherAreas(bl) <-> (b2 > bl OR b2 = bl) 

THEORYEND 

Based on the theories AccessLists and AreaLists the procedures Get_Access 

and Set_Access are defined which implement the functions access and setaccess. 

Thus,  Ge t_Access  implements  the lookup whether  a person is allowed to  enter 
a specific area. I t  takes into considerat ion the access r ights  of  visitors and an 
addi t ional  requirement  tha t  persons who have access to a specific area have also 
access to less secure areas, e x t e r n  denotes the area outside the plant  which is 
accessible by all persons. 

FUNCTION Get_Access 

PARAMS : p_person : IN Person; 

p_area : IN Area 

RESULT : BOOL 

BODY : DECLARE 

v_res: Bool:=F; 

IF p_area = extern THEN v_res := T 

ELSE IF visitor(p_person) 

THEN IF AccessToArea(leader(p_person), 

higherAreas(p_area)) = t 

THEN v_res := T ELSE v_res := F FI 

ELSE IF AccessToArea(p_person, 

higherAreas(p_area)) = t 

THEN v_res := T ELSE v_res := F FI 

FI 

FI; 

RETURN v_res 

FUNCTIONEND 

The  procedure  Se t_Acces s  grants  or refuses (depending on the value o f p _ e n t r y )  
a person access to a specific area.. 

PROCEDURE Set_Access 

PARAMS : p_person : IN person; 

p_area : IN area; 

p_entry : IN B00L 

BODY: IF p_entry = t 

THEN IF NOT in_list(p_person, p_area, List) 

THEN List := blst(p_person, p_area, List) 

FI 
ELSE DelAccessToAreas(p_person, higherAreas(p_area)) 
FI 

PROCEDUREEND 
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In a next step we have to link both specifications, the theory P l a n t A c c e s s  
and its implementation.  This is done by so-called Refinement steps as it is shown 
in Figure 2. It consist of a mapping and a module. Modules, as the module 
i _P lan tAcces s  below, contain slots for the import  specifications, e.g. Map or 
A r e a L i s t s ,  the state dependent variables, e.g. l i s t ,  and (references to) proce- 
dures that  implement the abstract operations, e.g. Get_Access or Set_Access.  

MODULE i_PlantAr 

IMPORTSPEC : Map;AreaLists 

DATA : list : AccessList 

ELEMENTS : Get_Access, Set_Access, AccessToArea, DelAccessToAreas 

MODULEEND 

The theory Map provides the relation between the access relations and its im- 
plementation as a property list. Based on A c c e s s L i s t s  the algorithm l i s t 2 r e l  
maps each access list into an access matrix: 

THEORY Map 

USING : AccessLists; 

Rights 

FUNCTIONS : list2rel : AccessList -> AccessRel 

VAKS : 1 : AccessList 

ALGORITHMS : 

DEFFUNC list2rel(1) = 

IF 1 = nil 

THEN emptyRel 

ELSE grant (getPerson(1), getArea(1), 

list2rel(rest(1))) 

FI 

THEORYEND 

The actual correspondence between the a.bove procedures and the operations 
of the specification in P l an tAcces s  is given by the mapping m_PlantAccess.  In 
our case the access matr ix  is implemented by an access list while the operations 
a c c e s s  and s e t a c c e s s  are ilnplemented by the procedures Get_Access and 
Set_Access. 

MAPPING m_PlantAccess 

EXPORTSPEC : PlantAccess 

IMPLEMENTATION : i_PlantAccess 

MAPS : Get_Access IMPLEMENTS access; 

Set_Access IMPLEMENTS setaccess; 

list2rel(List) IMPLEMENTS matrix 

MAPPINGEND 
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4 S t r u c t u r a l  D e d u c t i o n  

Applying fonnM methods to industrial case studies results in thousands of lines 
of specifications which represent the logic database with the help of which var- 
ious proof obligations have to be established. As mentioned above this speci- 
fication is structured within a development graph (e.g. refer Figure 2 showing 
the development-graph of PlantAccess) and thus, the development graph rep- 
resents also an structuring of the axiomatization. In Figure 2 doubled arrows 
indicate that the target theory of an arrow is (virtually) part of the specification 
of the source theory. This so-called theory-graph (the subgraph of the develop- 
ment graph wrt. double arrows) specifies which axiomatizations are part within 
a theory. E.g. PlantAccess uses the specification of Rights and thus, the axioms 
of Rights are visible within the theory of PlantAccess. 

Proof obligations are always located at elements - e.g. mappings - of the 
development graph. They have to be established wrt. the specifications of the- 
ories accessible from this element via. the arrows of the theory-graph. In case 
of m_PlantAccess the proof of some obligation may use the specifications of 
i_PlantAccess, PlantAccess, and the sub-theories visible in both. Hence, be- 
sides being a notion for structured specification the development graph repre- 
sents also a structured database for the deduction system. Depending on the 
location of the proof obligation the corresponding subgraph of the development 
graph specify the axiomatization to be used for the proof. 

Also each theory contains a set of lemmata formalizing properties on func- 
tions or operations which have been proven within the denoted subgraph. E.g. 
Rights may contain lemmata proven with the help of the theories RighCs, 
Topology, and Persons. 

4.1 Correc tness  M a n a g e m e n t  

Verifying proof obligations with respect to the actual theories ensures the sound- 
ness of the corresponding development step. Since in general specifications con- 
tain errors which are usually detected during establishing the proof obligations 
there is an interleaved process of adapting the specification and proving theo- 
rems. In general changing the specification would invalid all proofs but with the 
help of the development graph the impacts of changing the specification can be 
restricted to specific parts of the graph while the soundness of proofs in other 
parts remains unaffected. 

In general changing the axiomatization of a theory 7" will invalid the proofs 
(and thus also the lemmata) of all theories using T while underlying theories 
used by 7" are not affected. This work can be done without knowing a single 
proof just by a static analysis of the development graph. A more elaborated 
correctness management can be achieved by a dynamic analysis if we save for 
each lemma and proof obligation the set of axioms and lemmata used during the 
proof and build up a more elaborated dependency graph of lemmata and proof 
obligations. 
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Changing the implementation of a procedure (e.g. Get_Access in module 
• has no impacts to other parts of the theory-graph (e.g. the theo- 
ries PlantAccess or Map) but will invalid lemmatain the implementation module 
i_P:[antAccess and cause new proof obligations in the mapping ra_P:[antAccess. 
In order to reduce the amount of new proof obligations which occur after chang- 
ing a procedure we use the implementation dependencies of the procedures in 
order to determine the subset of proof obligations which are affected by the 
change of the procedure. 

4.2 Gu id ing  Proofs  

The first benefit of development graphs to the guidance of proofs is the reduction 
of search space by reducing the number of axioms and lemmata available during 
the proof. According to the theory-graph only a subset of the overall specification 
is available while establishing a proof obligation attached to an element of the 
graph. 

Second, the development graph defines a partial ordering on theories and 
thus, also a partial ordering on functions and predicates defined within these 
theories which is used as a skeleton for a simplification ordering on formulas. 
E.g. hasAr is defined within the theory 1~ights while v i s i t o r  is specified 
within Persons. Thus, the system will orient appropriate equivalences as rewrite 
rules in order to replace occurrences of hasAccess in favor of v i s i t o r  whenever 
possible. 

Besides the explicit structure given by the development graph each axioma- 
tization of a theory is structured again by itself. The a xiomatization is build up 
by type declarations, specification of algorithms or procedures, arbitrary first- 
order formulas etc. Each of these types of specification result in a set of formulas 
which are part of the theory axiom. They differ in the way the deduction system 
uses them in order to guide a proof. E.g. algorithms (which are proved to be 
terminating) and type declarations are used to create induction schemes. Addi- 
tionally, algorithms are used to refine the simplification ordering and to generate 
new simplification rules in order to enable symbolic evaluation. 

Consider the freely generated datatype a r eaL i s t  inside the theory AreaLists .  
Its definition introduces a new (structural) induction scheme: 

q~(no_area) A Vx: areaList x • no_area -+ ~P(rest(x)) --+ ~ ( x )  

-+ Vx : areaListqS(x) 

Also the definitions of elem and < of the theory AreaLists  which are proved 
to be terminating suggest (using their recursion orderings) induction schemes 
which are (in these cases) identical to the previous structural induction scheme. 
The algorithm of l i s t 2 r e l  creates the simplification rules 

list2rel( nil) --+ emptyRel  and 

list2rel( blst (p, a, tl ) ) -+ grant(p, a, l ist  2rel ( tl ) ) 
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5 A u t o m a t i o n  

Passive proof assistance where the system only controls the user (proof-checking) 
is not sufficient in situations where we are faced with proofs of thousands of de- 
duction steps. On the other hand conventional fully automated theorem proving 
systems that  carry out an exhaustive search following some complete (and there- 
fore problem independent) strategy also turned out to be inadequate for our kind 
of applications. One reason for this is the limited possibility for user interaction 
where the activities of the user are restricted to certain preparations (format- 
ting the input, choosing the search strategy and additional parameters) before 
the system is run. 

Proof  construction in VSE therefore follows the paradigm of interactive strate- 
gic theorem proving. A suitable representation of problem-specific knowledge 
which often is available in this context enables the system to exhibit an active 
behavior. It is this way that  a routine generation of large and often technically 
complex proofs becomes possible. The main prerequisite for a strategic user in- 
teraction is an architecture that  allows the user (and of course also the system) 
to analyze the state of a proof. In our architecture a proof state is given by a 
partial proof tree. The leaves of such a tree are open subgoals, lemmata  or ax- 
ioms. The basic activity is to refine a given subgoal by applying (backwards) 
proof steps thereby generating new subgoals. These proof steps are given by the 
general formalism and by local axioms. The user may also give more precise hints 
for a proof plan, which includes directives to apply a certain rule as the next 
step if the system gets stuck or he may replace hints. Backtracking, initialized 
either by the user or the system itself, allows proof steps to be undone and a 
previous situation to be restored. Thus, at each stage of the proof synthesis, the 
human user can revise the proof a t tempt  specified so far or to give advice how 
to fill in the gaps of the proof tree. 

Specifying, for instance, the mapping m ~ l a n t t c c e s s  the system comes up 
with a proof obligation 

(Get_Access(p, b, res))true 

which states that the procedure Get .Access  terminates on all inputs p, b, and 
res. Get_Access uses a procedure A c c e s s T o A r e a  which is defined as follows: 

FUNCTIDN AccessToArea 

PARAMS : p_person : IN person; 
p_areaList : IN areaList 

RESULT : bool 
BODY : DECLARE 

v res2: bool:=f; 
WHILE (NOT p_areaList = no_area) AND v_res2 = f DO 

IF in_list(p_person, first(p_areaList), List) 
THEN v_res2 := t 
ELSE p_areaList := rest(p_areaList) FI 

OD; 
RETURN v_res2 

FUNCTIONEND 
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The deduction system reduces the proof obligation and comes up with a partial 
proof tree which contains a single open goal concerning the termination of the 
while- loop in AccessToArea (called by Get_hccess) .  Now, it is up to the user to 
select an appropriate induction rule. After that the system continues and finish 
the proof automatically. During the proof several first order subgoals have to be 
proven like for instance, 

Vx : areaList x ~ no_area -+ res t (x)  < x 

This goal is proven automatically by induction. The system uses the knowledge of 
the termination ordering of < in the theory A r e a L i s t s  in order to synthesize an 
appropriate induction scheme which results in this case in a structural induction. 
In case of 

rest(x) = add_area(first(rest(x)), res t ( res t (x ) ) )  

we obtain an induction step. The system analyses the syntactical differences 
between the induction hypothesis 

rest(x) ~ no_area--+ rest(rest(x)) < rest(x) 

and the induction conclusion 

x # no_area -+ res t (x)  < x. 

These differences (which are underlined above) guide the prover in order to 
enable the use of the hypothesis [Hut90]. In this case the prover uses an axiom 

Vu, v :  areaLis t  = a d_area(frst(u), rest(u))  A v = add_area(f  t(v), res t (v) )  
-+ (u < v) ++ (rest(u) < rest(v)) 

derived from the algorithm defined in the theory t r e a L i s t s  to minimize the 
syntactical differences and we obtain: 

x # no_area --+ rest(rest(x))  < rest(x). 

Using the above precondition of the induction step the proof of the induction 
step is finished. 

6 F i x i n g  B u g s  

So far, we have looked at the question of how to create proofs for correct the- 
orems. In general, however, we will be confronted with errors in specifications, 
implementations, or both. Unless we have introduced "corresponding" errors in 
specifications and implementations, such errors will result in proof obligations 
which are not provable, i.e. we will reach open premises in the proof tree which 
can' t  be closed. As opposed to e.g. resolution based proofs, one can derive infor- 
mat ion about  the potential problem by investigating the open premise and the 
path from the root of the proof tree to that  premise. 
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As an example, consider the proof obligation for the Set_Access operation: 

I = l' F- (Set_Access(p, b, z ) ) ( z  = t -4  list2rel(l) = grant(p, b, list2rel(l '))) 
A (z # t --4 list2rel(l) = refuse(p, b, list2rel(l '))) , 

As mentioned before, list2rel maps access lists to the access matrix.  This asserts 
that  Set_Access will terminate, and afterwards the new value of the access 
relation, list2rel(l), will correspond to the old value, list2rel(l '),  with p granted 
or refused access to b according to the flag z. 

While working on the proof, we will encounter an open goal 

in_list(p, a, l) F- list2rel(l) = grant(p, a, list2rel(l) ) , 

since the implementation will add an entry only if it is not yet there (i.e. if 
"-~in_list(p, a, l) is true), while the specification does not treat that  case separately. 
The goal is true if granting p access to a a second time (since if it is already 
in l, it will be in list2rel(1) as well) has no effect. To prove this goal, we need 
axioms for the equality on relations. A quick look at the theory R ig h t s  reveals 
that  such axioms have been forgotten. 

Here, a sophisticated correctness management pays off. If we add the missing 
axioms to the theory Rights ,  the validity of the proofs for m__Planttccess is not 
affected (since we only enlarge the axiom base, and our logic is monotonic).  The 
change does, however, influence the correctness of an implementation of Righ ts .  
As a whole, it becomes invalid. The actual consequence of the change is a larger 
set of proof obligations, so that the existing proofs can remain valid. If we have 
to change the implementation as well to satisfy the additional proof obligations, 
even (some of) the proofs have to become invalid. 

In general, an unprovable premise like the one above may hint at an error in 
any of the involved procedures or specifications, and a careful analysis is needed 
to find out the true reason for the problem. 

A large number of bugs were uncovered during the verification process, in 
specifications as well as in implementations. In both case studies, bugs in specifi- 
cations were more common, and were discovered when proving the security model 
or the correctness of an implementation. Also, aspects which were only vaguely 
described in the original documents and also difficult to formalize, proved to be 
those which significantly delayed the original projects. For the PERSEUS case 
study, for example, this included the t reatment  of visitor groups, the reaction to 
messages which are inconsistent with the current system state (e.g. staff mem- 
bers being detected in areas to which they have no access), and combinations 
of these problems (e.g. members of a visitor group who 'got lost'). The  formal 
t reatment  of these parts uncovered intricate problems which had been overlooked 
in the original design. 

7 R e l a t e d  W o r k ,  C u r r e n t  R e s e a r c h  

In order to compare VSE to other methods and systems we recall the most 
important  features of the system. The VSE methodology combines data  type 
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specifications with an abstract machine notation. Abstract machines are based 
on a notion of persistent states. The current version of VSE allows to specify 
operations causing state transitions as shown in section 2.1. In that aspect VSE 
is similar to Z [Spi92] and systems like EHDM [RvHO91], VDM [Jon90], and 
the B Tool [ALN+91]. 

The methodology for developing abstract machines in B corresponds to that 
for state based systems in VSE. In VSE there is, however, a distinction between 
the problem of proving the implementation of a state based system correct, 
for which dynamic logic proof obligations are generated, and proving that one 
specification of a state based systems entails another. The latter is reduced to 
predicate logic proof obligations, and used to verify safety conditions and/or 
security models developed separately from a specification. 

Reasoning about state based systems in the current version of VSE is re- 
stricted to invariance properties (given by a separate safety/security model) and 
the proof of refinements. However, the approach is compatible for example with 
Lamport's TLA, [Lam94]. Current work is concerned with an embedding of the 
specification technique into a temporal framework in order to cover for example 
eventuality properties and provide more general refinement concepts. 

The data type part of VSE is based on abstract data types as compared 
to model based techniques like Z and VDM. Here and also in the case of ab- 
stract machines VSE supports algorithmic elements. In particular this concerns 
recursive definitions in constructive specifications and refinements. The correct- 
ness proof for an implementation, which usually involves assertions about the 
interplay between recursive procedures, also guarantees the consistency of the 
implemented data types relative to the consistency of the data types used for 
the implementation. 

The algorithmic constructs allow for bridging the gap between concepts in 
abstract specifications and the concepts available in real programming languages. 
Proof support heavily relies on techniques for proving program properties and for 
guiding inductive proofs. In these aspects there is a different emphasis compared 
to Z-based systems. 

From a more technical point of view considerable effort was made with respect 
to the integration of different proof techniques and the integration of the entire 
deduction component into a system for editing and storing formal developments. 

Powerful proof support relies on specia] tailor-made calculi and an adequate 
representation of domain specific knowledge. The deduction component of the 
VSE system offers extensive proof support beyond the level of experimental or 
ad hoc systems. Up to now it is a heterogeneous system in that it combines two 
separated theorem proving systems. In the next version the various strategies will 
share a common deductive mechanism but still use different additional structures 
that allow for an efficient and highly automated proof generation. 

VSE differs from systems with a loose integration of the deduction compo- 
nent or stands-alone deduction systems, like HOL, [GM93], or the Boyer-Moore 
prover, IBM79], not only by an automatic generation of proof obligations but 
also by offering a correctness management that maintains a consistent state 
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of the development including the databases of logical objects. This correctness 
management  is indispensable for an efficient t reatment  of changes. [BTo94] 

With respect to both quantitat ive as well as qualitative aspects VSE is ad- 
equate for many industrial applications. However, this does not mean that  no 
improvements are necessary. The VSE consortium is currently working on an en- 
hanced version of the system to take notions like object orientation, concurrency, 
and real t ime into account. 

Research at the DFKI is concerned with the extension of the formal basis of 
VSE and a further development of the deduction component.  State transition 
systems as used in VSE are extended to cover concurrent and embedded systems 
based on an interleaving semantics. Temporal  logics will be used in order to 
reason about these execution sequences. 

With respect to the deduction component,  we are working on a closer inte- 
gration of KIV and INKA and a fl'amework for proof planning which provides 
generic concepts and a more explicit representation of proof plans. 
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