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Abstract—This paper proposes an artificial intelligence al-
gorithm that uses the k-nearest neighbor algorithm to predict
its opponent’s attack action and a game simulator to deduce
a countermeasure action for controlling an in-game character
in a fighting game. This AI algorithm (AI) aims at achieving
good results in the fighting-game AI competition having been
organized by our laboratory since 2013. It is also a sample AI,
called MizunoAI, publicly available for the 2014 competition at
CIG 2014. In fighting games, every action is either advantageous
or disadvantageous against another. By predicting its opponent’s
next action, our AI can devise a countermeasure which is
advantageous against that action, leading to higher scores in the
game. The effectiveness of the proposed AI is confirmed by the
results of matches against the top-three AI entries of the 2013
competition.

I. INTRODUCTION

A fighting game is a genre of game in which humanoid
or quasi-humanoid characters, individually controlled by nor-
mally two players, engage in a hand-to-hand combat or a
combat with melee weapons, and the winner is determined
by comparing the the amount of damages taken by each side
within a limited time. Gameplay styles of fighting games
include PvP-Game, in which a human player fights against
another human player, and Versus-AI-Game, where a human
player fights against a character controlled by artificial intelli-
gence algorithms (AIs). Nowadays, the mainstream gameplay
style of fighting games is PvP-Game, and Versus-AI-Game in
fighting games is usually regarded by players as the gameplay
for practices of game control.

However, most of the existing AIs are rule-based ones,
where their actions are merely determined by various attributes
of the game, such as the characters’ coordinates or damage
amounts. Such rule-based actions may unwittingly lead to their
AI being hit by the player and thus taking damages. As a
rule-based AI repeatedly employs the same pattern, it will
employ the same action, even if that tactic has been proven
ineffective against the player, whenever the same condition
arises. Thus, if its opponent player intentionally reproduces
the same condition, the AI will repeatedly employ the same
ineffective tactic.

1The author has joined Dimps Corporation since April 2014.

Fig. 1. Screen-shot of FightingICE where both sides use the same character
from the 2013 competition.

To avoid such situations, an AI must be able to choose
from a variety of action patterns. As such, we can derive
that a fighting-game AI, aimed at being a good practice
partner for human players, should be able to formulate tactics
advantageous to itself [1]–[3], without relying on a definite set
of rules which is often prone to manipulation by its opponent
human-player. This paper utilizes the FightingICE platform1

and solves the aforementioned issue in existing fighting-game
AIs by proposing an AI that predicts its opponent’s next attack
action with the k-nearest neighbor algorithm [4] and deduces
the most reasonable countermeasure action accordingly.

II. FIGHTINGICE AND ITS COMPETITION

Since 2013, our laboratory has been organizing a game
AI competition using the aforementioned FightingICE, a 2D
fighting-game platform [5] for research purposes. FightingICE
is a fighting game where two characters engage in a one-on-one
battle (Fig. 1). In this game, each character is given numerous
actions for performing at its disposal, and, as a restriction, it is
not notified of the latest game information forthwith, but after
a delay of 0.25 second.

1http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/
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A. Game Rules

In FightingICE, 1
60 second represents 1 frame, and the

game progress is advanced at every 1 frame. A 60-second
(3600-frame) fight is considered as 1 round, and the winner is
decided on the scores, defined below, obtained from 3 rounds,
comprising 1 match. In a round, there is no upper limit to the
amount of damages, and the damages inflicted on both charac-
ters are counted towards the scores as follows, where the final
amount of inflicted damages at a given round is represented
as HP , standing for hit points. Let the HP of the character
of interest and that of the opponent character be selfHP and
opponentHP , respectively. The former character’s scores in
the round of interest are calculated by the following formula.

scores =
opponentHP

selfHP + opponentHP
· 1000 (1)

If both sides are taking the same amount of damages, each of
them will be granted 500 scores. The goal in a given match
is to compete for a larger share of the sum of the total scores
for the three rounds in the match.

B. Character

Among four characters available in the final version of
FightingICE for the 2014 competition, we used a character
called KFM2, which was the only available character in the
2013 competition. This was done so that we could fairly
evaluate the performance of our AI against the top-three AIs in
the 2013 competition in Section IV. Thereby, the character of
each side has exactly the same ability and is controlled using
seven input keys: UP, DOWN, LEFT, RIGHT, A, B, and C. In
addition, there are two action types: active actions in response
to the player’s or AI’s input and passive actions in response to
the game system. All active actions are categorized into three
categories: movement, attack and defense, details of which are
described below.

1) Movement: A movement is an action that changes the
character’s position. The character can move left or right, and
jump into the air. Every movement has a preset scale, by which
the character’s coordinates are changed. A movement can only
be performed while the character is on ground.

2) Attack: An attack is an action that generates an attack
object. The attack category are further classified into four
types: high-attack, middle-attack, low-attack and throw-attack.
These four types are related to the later-mentioned defense
actions. When an attack object generated by an attack action
coincides with the opponent, the opponent receives a damage,
and the attack object then disappears. Every attack undergoes
three states (Fig. 2): startUp, active and recovery, described as
follows:

StartUp The state between the start of the action and the
generation of an attack object.

Active The state between the generation of the attack
object and its disappearance.

Recovery The state between the disappearance of the attack
object and the character’s readiness for the next
action.

2KFM is, however, not an official character for the 2014 competition. It is
included in the 2014 release so that all AIs entries for the 2013 competition,
available in the competition site, can also be tested on the 2014 platform.

Fig. 2. Three states of an attack action.

Note that a character cannot perform any other action during
execution of an attack action. As an exception, after the attack
object hits the opponent, the character can cancel the current
attack action and perform another action within a period called
cancelFrame, which is individually defined for each attack
action.

3) Defense: A defense is an action that minimizes the
amount of damages inflicted by the opponent. There are three
defense types, stand-defense, crouch-defense, and air-defense,
each of which is effective against different attack types. A
high-attack can be guarded against by a stand-defense, crouch-
defense, or air-defense; a middle-attack can be diverted by a
stand-defense or air-defense; a low-attack can be dodged by
a crouch-defense only. A damage caused by a throw-attack
cannot be mitigated by any kind of defense, but can be avoided
by staying in the air.

C. AI Creation Rules in the Competition

AI creation rules are based on those used in the Ms Pac-
Man vs Ghosts League Competition [6]. They are as follows:

• Initialization time is 5 seconds

• Memory usage is limited to 512MB

• Usage of multithread is forbidden

• Maximum size of file reading/writing is 10MB

• Any conduct deemed fraudulent is prohibited

III. PROPOSED METHODOLOGY

This paper attempts to solve the issue residing in rule-
based fighting-game AIs, discussed in Section I, by proposing
an AI which can predict the opponent’s next attack action and
devise an effective countermeasure against the predicted attack
action. In order to do this task, from the start of a match, our AI
records all of the attack actions by the opponent on relative
coordinates between the player and the opponent (hereafter,
relative coordinates). The next attack action most likely to be
taken by the opponent is then predicted by a representative
attack action among those conducted so far by the opponent
near the current relative coordinates. The approach adopted for
this prediction task is pattern classification of the opponent’s
attack action by the k-nearest neighbor algorithm.

A. Data Collection

Because the opponent’s attack patterns vary for every
opposing player, we have to collect data in real-time. Data
collection is conducted using Algorithm 1.



Algorithm 1 collectData(self , opponent, data)
if opponent.act is an attack action then
x ⇐ opponent.x− self.x
if self is not facing to the right then
x ⇐ −x

end if
y ⇐ self.y − opponent.y
position ⇐ checkPosition(self, opponent)
if position is ground− ground then
data.gg.add(opponent.act, x, y)

else if position is ground− air then
data.ga.add(opponent.act, x, y)

else if position is air − ground then
data.ag.add(opponent.act, x, y)

else if position is air − air then
data.aa.add(opponent.act, x, y)

end if
end if

In this algorithm, self and opponent stand for our
AI’s character and the opponent’s, respectively. The variables
self.x, self.y, opponent.x and opponent.y represent the
characters’ absolute coordinates while x, y are the relative
coordinates. The variable opponent.act denotes the action the
opponent is currently performing. The variable data means the
union of all sets of data, within which the data set for each of
the four positions, gg, ga, ag and aa, described below, resides.

At the outset of each action by the opponent, the algorithm
judges whether the action being performed is an attack or not.
If it is an attack, the algorithm will acquire the type of attack
and the current relative coordinates. The absolute coordinate
origin for the in-game values of self.x, self.y, opponent.x
and opponent.y is set at the upper left corner. Thereby, the
variables self.x and opponent.x increase as the corresponding
character moves to the right while self.y and opponent.y
increase as the corresponding character moves towards the
bottom.

It should be noted that when collecting attack data on rela-
tive coordinates, our character’s position is regarded as the co-
ordinate origin. In addition, the plus direction for the x value is
the direction the character is facing, and the plus direction for
the y value is upward. Using checkPosition(self, opponent),
the algorithm determines the current positions of both char-
acters. Such positions are classified into the following four
categories:

• Both characters are on ground (ground− ground)

• Our character is on ground while the opponent’s is in
the air (ground− air)

• Our character is in the air while the opponent’s is on
ground (air − ground)

• Both characters are in the air (air − air)

Using add(opponent.act, x, y), the algorithm adds the op-
ponent’s current attack data, consisting of the current attack
action and relative coordinates, into the data set corresponding
to the current positions of both characters.

Algorithm 2 decideAction(self , opponent, data,
distThreshold, numAct, k, game)
x ⇐ opponent.x− self.x
if self is not facing to the right then
x ⇐ −x

end if
y ⇐ self.y − opponent.y
position ⇐ checkPosition(self, opponent)
if position is ground− ground then
actData ⇐ data.gg

else if position is ground− air then
actData ⇐ data.ga

else if position is air − ground then
actData ⇐ data.ag

else if position is air − air then
actData ⇐ data.aa

end if
count ⇐ 0
for i = 1 to actData.num do
distance ⇐ calculateDist(actData[i], x, y)
if distance < distThreshold then
count++

end if
end for
if count >= numAct then
predictAct ⇐ kNN(k, actData, x, y)
self.playAct
⇐ simulate(self, opponent, predictAct, game)

else
self.playAct ⇐ guardAction

end if

B. Action Decision

When the opponent is about to perform an attack action,
our AI compares the relative coordinates at that time with the
opponent’s attack data collected hitherto and it predicts which
attack action the opponent is going to perform. First, the AI
predicts whether its opponent is going to perform an attack or
not. To do this, the AI finds the current relative coordinates. If
there are a certain number of the opponent’s past attack actions
conducted within a predefined area around the current relative
coordinates, the AI will judge that the opponent is going to
perform an attack and classify the opponent’s attack action
using the k-nearest neighbor algorithm. The AI then decides
its own action based on the result from a game simulator. The
details of this decision making are given in Algorithm 2.

In this algorithm, actData.num is the number of data
recorded in the data set of the corresponding positions of
both characters. The parameter distThreshold is the distance
threshold used in judging whether the opponent is going to
perform an attack action or not; it will be judged that the
opponent is going to attack if the number of nearby past
attack actions – with the distance from the current relative
coordinates less than distThreshold – exceeds the threshold
value numAct. The parameter k is a reference number of
neighbor data to be used in judging which action will be
performed by the opponent while guardAction represents the
default defense action of the character: CROUCH GUARD.

At first, this algorithm collects the current relative co-



Fig. 3. Prediction of the opponent’s next attack action with the k-nearest
neighbor algorithm (k = 5).

ordinates and both characters’ current positions. And then,
the algorithm selects the data set which corresponds to those
positions. For each data in the selected data set, the dis-
tance from the current relative coordinates is calculated using
calculateDist(actData[i], x, y). If the number of data whose
distance is less than distThreshold is numAct and above, the
algorithm will start action prediction. Applying the k-nearest
neighbor algorithm to the action data set and the current rel-
ative coordinates, the algorithm uses kNN(k, actData, x, y)
to extract the type of attack action which bears the highest
number of occurrences in the k nearest data around the current
relative coordinates (Fig. 3). If there are several such action
types, all of them will be extracted. Several values of the
parameter k are examined in Section IV.

In the example shown in Fig. 3, the value of k is set to 5.
The point “now” is the current relative coordinates while all the
other points are the relative coordinates of the opponent’s pre-
vious actions whose shape represents their action type. In this
example, there are two action types: actionA and actionB. The
circle encircling “now” represents the area within the range of
distThreshold and contains six previous data points. Those
five data points connected to “now” by lines are the neighbor
data points identified by the k-nearest neighbor algorithm, i.e.,
one actionA and four actionB’s; according to majority voting
adopted therein, actionB is thus extracted. The extracted action
is passed to simulate(self, opponent, predictAct, game),
which simulates all possible countermeasures and calculates
their evaluation values and then decides the next action of our
AI’s character. The details of the simulator are described in
the coming section.

C. Simulator

The simulator is incorporated within the AI and conducts
simulation with all combinations of the opponent’s predicted
attack actions and each of the actions which can be performed
by our AI. For each combination, the simulator simulates the
game up to one second from the current time. The AI then
chooses the action with the highest evaluation value as its
next action. The evaluation value for each action of the AI is
determined by the amount of damages of the opponent minus
that of the AI. The details of this are given in Algorithm 3.

Algorithm 3 simulate(self, opponent, predictAct, game)

for i = 1 to self.action.size do
E[i] ⇐ 0
for j = 1 to predictAct.size do
fight(self.data, opponent.data, game.data)
for k = 1 to 60 do
updateCharacter()
if self is controllable then
self.act ⇐ self.action[i]

end if
if opponent is controllable then
opponent.act ⇐ predictAct[j]

end if
calculateAttackParameter()
calculateHit()

end for
E[i] ⇐ E[i] + opponent.damage− self.damage

end for
end for
iMax ⇐ arg max E
if E[iMax] < 0 then

return guardAction
end if
return self.action[iMax]

In this algorithm, action.size is the number of active
actions which can be performed by our AI. Due to restricted
computation time, instead of using all active actions available
in FightingICE, the simulator only considers 24 typical active
actions, i.e., 16 on-ground actions and 8 air actions, listed in
Table I. In addition, predictAct.size is the number of the
opponent’s predicted attack actions from Algorithm 2 while
game.data represents the aggregation of all data used in the
game. The variables self.damage and opponent.damage are
the amount of damages of the AI’s character and that of the
opponent’s character in the simulation, respectively.

First of all, the AI calls all 24 active actions. Using brute
force, the AI conducts simulation of each called action with
each of the opponent’s predicted actions. The information of
both characters and that of the game are input into the sim-
ulator through fight(self.data, opponent.data, game.data).
Then, the simulator executes those two actions, when they can
be performed, or controllable, by their character, for the period
simulating the next 60 frames or 1 second.

Any changes to each character in each frame are ap-
plied in updateCharacter(). For each character, when it
is ready for an action, the selected action is performed.
Any changes to all issued attack objects in each frame
are applied in calculateAttackParameter(). The function
calculateHit() identifies a collision between an attack object
and its target character and handles the necessary process fol-
lowing the collision. The three functions updateCharacter(),
calculateAttackParameter() and calculateHit() reuse sim-
ilar functions available in the Fighting class of the main
FightingICE program.

After 60 frames, the algorithm calculates the difference
between the amount of damages inflicted on the opponent’s
character and that on the AI’s character, which is taken as the
evaluation value for the action performed by the AI. After all



TABLE I. LIST OF ACTIONS USED IN THE SIMULATOR

JUMP FOR JUMP
BACK JUMP THROW A
THROW B STAND A

CROUCH A STAND FA
CROUCH FA STAND D DF FA

STAND D DF FB STAND F D DFA
STAND F D DFB STAND D DB BA
STAND D DB BB STAND D DF FC

AIR GUARD AIR A
AIR DA AIR FA
AIR UA AIR D DF FA

AIR F D DFA AIR D DB BA

TABLE II. AVERAGE SCORES AGAINST T (2013 WINNER) FOR 100
MATCHES

k Round 1 Round 2 Round 3 Total
1 513.6 598.4 502.8 1614.8
3 571.1 556.5 512.7 1640.2
5 584.4 542.1 532.2 1658.6
7 566.8 639.3 571.3 1777.5
9 556.5 657.7 602.0 1816.2
11 496.0 617.2 600.3 1713.4

combinations have been simulated, the algorithm returns the
action with the highest evaluation value as its output.

IV. PERFORMANCE EVALUATION

Performance evaluation was done by matching the pro-
posed AI with the top three AI entries of the 2013 competition:
T (the winner), SejongAI (the runner-up), and Kaiju (the 3rd
place). We used the latest version of FightingICE for the 2014
competition and used the character KFM for both sides. Since
we wanted to examine the effect of k in the k-nearest neighbor
algorithm, k was regarded as a variable in this evaluation. The
value of k was set to 1, 3, 5, 7, 9 and 11. For each value
of k, the AI played 100 matches with each opponent, and its
average scores were recorded. Parameters other than k were
set as follows: distThreshold = 40, numAct = k.

Tables II - IV list the average scores of each round and the
average total scores for each value of k. As the two sides were
competing for the maximum total scores of 3000 in a match,
one side could be said to have earned higher scores than the
other if it had earned more than 1500 scores.

The results of the performance evaluation showed that the
proposed AI was able to earn more average total scores than
all of its opponents. For Round 1, our AI lost to T and Kaiju
for k = 11 and k = 5, 9, 11, respectively, but it could recover
and outperform these two opponents in the subsequent rounds.
This indicates future work on how to cope with Round 1 where
the amount of the opponent’s recorded data is insufficient.

The best value of k, in terms of the average total scores is
9, 11 and 3 for T, SejongAI and Kaiju, respectively. For each
opponent, this value of k is also the best k for Rounds 2 and
3, but the best k for Round 1 is smaller, i.e., 5, 9 and 1, for T,
SejongAI and Kaiju, respectively. We, therefore, deduce that
the best value of k is different for different opponents who
have different tendencies in their behaviors. In addition, by
switching the value of k appropriately in each round, it would
be possible for the proposed AI to achieve higher scores.

TABLE III. AVERAGE SCORES AGAINST SEJONGAI (2013
RUNNER-UP) FOR 100 MATCHES

k Round 1 Round 2 Round 3 Total
1 515.1 533.4 565.6 1614.1
3 546.9 574.3 584.1 1705.2
5 575.4 579.2 596.9 1751.6
7 594.5 622.4 578.6 1795.5
9 621.1 629.5 567.1 1817.7
11 614.7 651.5 602.4 1868.6

TABLE IV. AVERAGE SCORES AGAINST KAIJU (2013 3RD PLACE)
FOR 100 MATCHES

k Round 1 Round 2 Round 3 Total
1 618.2 623.9 633.3 1875.4
3 539.0 677.8 672.2 1889.0
5 492.7 640.6 650.4 1783.7
7 526.4 604.7 632.5 1763.6
9 459.8 570.2 628.1 1658.1
11 495.1 537.6 631.4 1664.1

V. CONCLUSIONS AND FUTURE WORK

The method proposed in this paper works effectively
against the top three AI entries in the 2013 computation.
Hence, predicting the opponent’s attack action and devising
a countermeasure accordingly is an effective approach for
designing a strong fighting-game AI. However, the current
version of our AI starts with the null sets of data.gg, data.ga,
data.ag, and data.aa, and it collects data throughout a given
match. As such, the AI suffers from inaccurate prediction of
the opponent’s attack actions before sufficient data have been
accumulated. To cope with this issue, a rule-based algorithm
could be used to guide the AI’s actions during such a period.
We have also found that the best k varies for different
opponents and rounds. Hence, as our future work, we plan
to focus on a mechanism for switching k to its effective value
by analyzing the behaviors and tendencies of the opponents.
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