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A B S T R A C T 

  
General group symmetry analysis so-called deductive group-theoretical method is applied to 
analyze the free convective boundary-layer problem due to the motion of an elastic surface into an 
electrically conducting a class of non-Newtonian fluid. The symmetry groups admitted by the 
corresponding boundary value problem are obtained. Particular attention is paid on the deductive 
group which provides the similarity solution of the problem. Also, the admissible form of the data, 
in order to be conformed to the obtained symmetries, is provided. Finally, with the use of the 
entailed similarity variables the problem is transformed into a boundary value problem of ODEs 
and is solved numerically for particular non-Newtonian fluid so-called powell-eyring fluid. 
 

Keywords: Deductive symmetry groups, Similarity solutions, non-Newtonian fluid, laminar boundary-layer 
flow. 
 
MSC 2010 codes: 76A05, 76M55, 54H15. 

© 2013 IJAAMM
 
 
1 Introduction 
 
 The formulation of the group-theoretic method, also called symmetry analysis, is 
contained in the general theories of continuous transformation groups that were introduced 
and treated extensively by Lie (1975) [see also Oberlack (1999)] ] about 130 years ago. Group 
analysis is the only rigorous mathematical method to find all symmetries of a given 
differential equation and no ad-hoc assumptions or a prior knowledge of the equation under 
investigation is needed. The boundary layer equations are especially interesting from a 
physical point of view because they have the capacity to admit number of invariant solutions.  
 
In this paper, we apply the so-called deductive group symmetry methods for a particular 
problem of fluid mechanics. The main advantage of such methods is that they can 
successfully be applied to non-linear differential equations. The symmetries of a differential 
equation are those continuous groups of transformations under which the differential equation 
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remains invariant, that is, a symmetry group maps any solution to another solution. The 
interesting point is that, having obtained the symmetries of a specific problem, one can 
proceed further to find out the group-invariant solutions, which are nothing but the well-
known similarity solutions. The similarity solutions are quite popular because they result in 
the reduction of the independent variables of the problem. In our case, the problem under 
investigation is two-dimensional. Hence, any similarity solution will transform the system of 
PDEs into a system of ODEs.  
 
Most of the researchers in the field of fluid mechanics try to obtain the similarity solutions by 
introducing a general similarity transformation with unknown parameters into the differential 
equation obtaining in this way an algebraic system. Then, the solution of this system, if exists, 
determines the values of the unknown parameters. In our opinion, it is better to attack any 
problem of similarity solutions from the outset, i.e, to find out the full list of the symmetries 
of the problem and then to study which of them are appropriate to provide group-invariant (or 
more specifically similarity) solutions. 
 
 To obtain symmetry of a differential equation is equivalent to the determination of the 
transformation group associated with this symmetry. In Olver (1993); Bluman and Kumei 
(1989); Ibragimov (1985, 1999), one can find the general theory of Lie groups as well as the 
implied methods for determining transformation group via the infinitesimal generator 
components. An alternative way being based on exterior calculus for determining the 
transformation group so-called deductive group can be found in Moran and Gaggioli (1968). 
It is worth noting that there is an extensive literature where the methods arising from exterior 
calculus are used to attack symmetry problems of continuum mechanics [Suhubi (1991, 1994); 
Pakdemirli and Suhubi (1992); Kalpakides (1998, 2001); Koureas et. al (2001, 2003)].  
 
 We apply this procedure to a boundary layer problem which arises from the motion of 
an elastic surface into an electrically conducting, incompressible, viscous non-Newtonian 
fluid. Particular variants of this problem have been studied by numerous of researchers since 
1961. We mention here the some work of Sakiadis (1961); Erickson et. al (1966); Tsou et. al 
(1967); Gupta and Gupta (1977). It is remarkable that all of them have used the above 
described heuristic method to obtain the similarity transformations and the associated 
similarity solutions of the problem. That is, assuming particular boundary conditions and 
considering a particular form of the magnetic field, they try to fit a similarity solution in these 
data. 
 We deal the problem on another base. First, we do not guess any kind of probable 
symmetry. The question of any possible symmetry for the system of PDEs is examined 
generally. In the same spirit, we do not make any assumption about the data of the problem. 
We consider the most general form for the boundary conditions and the magnetic field 
function involved in the system. Both the specific form of the functions on the boundaries and 
the form of magnetic field arise as a consequence of the requirement to respect the obtained 
symmetries. The similarity equations obtained are more general and systematic along with 
auxiliary conditions. Recently this method has been successfully applied to various non-linear 
problems [See Malek et. al (1999); Darji and Timol (2011, 2012); Adnan et. al (2011)] 
 
 Next, having established the admissible symmetries of the boundary value problem, 
we proceed to the determination of the similarity solutions which, in turn, are used to 
transform the system to a two-point boundary value problem of ODEs. Finally, the reduced 
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problem is solved numerically and its solutions are depicted for different values of the 
physical parameters. 
 The boundary layer flow of Newtonian fluids past stretching sheeting sheet was first 
discussed by Crane (1970. Later on same problem was extended by several authors, few of 
these Soundalgekar and Ramana Murthy (1980); Grubka et. al (1985);  Dutta et. al (1985); 
Jeng et. al (1986); Dutta (1989); Chen and Char (1988) for different physical situations, due 
to its important applications to polymer industry. These studies restrict their analyses to 
Newtonian fluids. Flow due to a stretching sheet also occurs in thermal and moisture 
treatment of materials, particularly in processes involving continuous pulling of a sheet 
through a reaction zone, as in metallurgy, textile and paper industries, in the manufacture of 
polymeric sheets, sheet glass and crystalline materials. It is well known that a number of 
industrial fluids such as molten plastics, polymeric liquids, food stuffs or slurries exhibit non-
Newtonian character. Therefore a study of flow and heat transfer in non-Newtonian fluids is 
of practical importance. 
 
In recent years several industries deal with the non-Newtonian fluids under the influence of 
magnetic field. In view of this, some researchers [Sarpakaya (1961); Saponkov (1967); 
Martinson and Pavlov (1971); Samokhen (1987); Andersson et. al (1992); Cortell (2005); 
Liao (2005)] have presented works on MHD flow and heat transfer in an electrically 
conducting power law fluid over a stretching sheet. However, in the literature rare work has 
been found regarding other non-Newtonian fluids. This may due to mathematical 
complication of its strain-stress relationship. 
 
Motivated by this, we produce similarity analysis via deductive group method based on 
general group transformation is, probably first time, to derive symmetry group and similarity 
solutions for steady of the laminar free convective boundary layer flow of an electrically 
conducting all time independent non-Newtonian fluids over a vertical porous and elastic 
surface. The class of all non-Newtonian fluids is characterized by the property that its stress 
tensor component ijτ can be related to the strain rate component ije by the arbitrary continuous 
functional relation 
 ( ), 0ij ijeτΩ =   (1) 
 
 
2 Mathematical formation 
 
We consider a free convective, laminar boundary-layer flow of an electrically conducting 
incompressible viscous power-law fluid over a vertical porous and elastic surface. The surface 
is stretched vertically upward along the positive x-axis, with a prescribed velocity 
 
 ( ) ( )0, 0u x y u x= =   (2) 

 
while the origin ( ) ( ), 0,0x y =  is kept fixed. The y-axis is vertical to the surface, as it is 
depicted   in Figure 1. Also, due to the fact that the elastic surface is porous, there is a 
component of the velocity of the fluid which has vertical direction to the surface given by 
 
 ( ) ( )0, 0v x y v x= =  (3) 
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Figure 1: Boundary layer around the stretching surface 
 
The motion of the surface within the fluid creates a boundary layer, which is extended along 
the x-axis. The whole system is under the influence of a magnetic field ( )B x  which applies 
to the y-direction. We consider that the temperature of the surface changes along the x-axis 
and its distribution is described by a given function ( )0T x . The stress-strain relation, under 
the boundary layer assumption can be found in the form of arbitrary function with only non-
vanishing component. Then the relation (2) can be given by yxτ . Then equation (1) can be 
given by 

 , 0yx
u
y

τ⎛ ⎞∂Ω =⎜ ⎟∂⎝ ⎠
 (4) 

 
Under the assumption that the viscous dissipation term in the energy equation and the induced 
magnetic field can be neglected, the basic boundary layer equations of the mass, momentum 
and energy for the steady flow of Boussinesq type are respectively as follows, with the stress-
strain relationship  given by (4) 
 

 0u v
x y

∂ ∂+ =
∂ ∂

 (5) 

 

 ( )
21 yxu v Bu v u g T T

x y y
τ σ β

ρ ρ ∞
∂∂ ∂+ = − + −

∂ ∂ ∂
 (6) 

 

 
2

2
T T Tu v
x y y

α∂ ∂ ∂+ =
∂ ∂ ∂

 (7) 

 
where σ  is the electric conductivity,  β  is the volumetric coefficient of thermal expansion,  
ρ  is the mass density and α  is the thermal diffusivity, which are assumed to be constants. 
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Also, g is the gravity field assumed to be parallel to the x-axis, ( ),T T x y= is the temperature 
field and T∞  is the temperature at infinity. According to the above description, the boundary 
conditions of the problem should be of the form 
 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0

0

0

,0

,0 , 0

,0 , 0

, 0, , 0 as , 0

u x u x

v x v x x

x x x

u x y x y y x

θ θ
θ

= ⎫
⎪

= > ⎪
⎬

= > ⎪
⎪→ → → ∞ > ⎭

 (8) 

 
where T Tθ ∞= − . Also, 0 0T Tθ ∞= −  is a prescribed function along the boundary surface

0y = .  
 
Introducing following non-dimensional quantities: 
 

 

( )

( ) ( )

( )

1/2

1/2

0 0

1/2

0
02

0 0

3
0

2

, ,

, ,

, , ,

, ,

τ θτ θ θ
ρ

ν β
ν α ν

∗ ∗

∗ ∗

−
∗ ∗ ∗

∞ ∞

∞

⎫= = ⋅ ⎪
⎪
⎪⎛ ⎞

= = ⎜ ⎟ ⎪
⎝ ⎠ ⎪

⎬
⎛ ⎞ ⎪= = =⎜ ⎟ ⎪− −⎝ ⎠ ⎪

⎪
= = = − ⎪

⎭

x x

x

x

yxx
y x

x

x x w

Gr yx x y Re Gr
L L

u Re vu v
u Gr u

Re T
Gr U T T T T

u L LRe Pr Gr g T T

 (9) 

 
where L is the reference length, ν  is the kinematic viscosity, xRe  is the local Reynolds 
number, xGr  is local Grashof number, Pr  is Prandtl number. 
 
Substitute the values in equations (1), (5)-(7) and dropping the asterisks (for simplicity), we 
get 

 

 0u v
x y

∂ ∂+ =
∂ ∂

 (10) 

 

 yxu vu v Mu
x y y

τ
λθ

∂∂ ∂+ = − +
∂ ∂ ∂

 (11) 

 

 
2

2u v
x y y
θ θ θα∂ ∂ ∂+ =

∂ ∂ ∂
 (12) 

 

where 
2BM σ

ρ
=  is the magnetic field strength and 

2

3
Gr

L
νλ =  is the buoyancy parameter. 
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Now introducing the stream function ψ  , which is related to the components of the velocity 

field  such that ,u v
y x
ψ ψ∂ ∂= = −

∂ ∂
, above system of PDEs reduce to: 

 
2

2, 0yx y
ψτ

⎛ ⎞∂Ω =⎜ ⎟⎜ ⎟∂⎝ ⎠
 (13) 

 

 
2 2

2
yx M

y y x x y y y
τψ ψ ψ ψ ψ λθ

∂∂ ∂ ∂ ∂ ∂− = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (14) 

 

 
2

2
1
Pry x x y y

ψ θ ψ θ θ∂ ∂ ∂ ∂ ∂− =
∂ ∂ ∂ ∂ ∂

 (15) 

 
The associated boundary conditions can be written as, 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

,0

,0

,0

, 0, , 0

x u x
y

x v x
x
x x

x y x y as y
y

ψ

ψ

θ θ
ψ θ

∂ ⎫= ⎪∂
⎪

∂ ⎪= ⎪∂ ⎬
⎪=
⎪

∂ ⎪→ → → ∞⎪∂ ⎭

 (16) 

 
 
3 Application of deductive group symmetry method 
 
 In this section, we will look for any possible symmetry group of the boundary value 
problem described by PDEs (13) to (15) subject to boundary conditions (16). 
 
 The procedure is initiated with the application of the class of a one-parameter 
continuous deductive group of transformations to the system of PDEs (13) to (16). Under this 
class, first, we search the subgroup of transformations, through which one will reduce the two 
independent variables by one and the system of non-linear partial differential equations (13) 
to (15) will transform to the system of ordinary differential equations. 
 

3.1  Group formulation and invariance analysis 
 
Consider the group GC , a class of transformation of one-parameter ‘ a ’of the form: 
 
 ( ) ( ): Q Q

GC Q a s a= ℵ + ℜ   (17) 
 
Where Q  stands for , , , , , yxx y Mψ θ τ whereas ' sℵ  and ' sℜ  are real-valued and are at least 
differentiable in the real argument a.  
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To transform the differential equation, transformations of the derivatives of ψ  are obtained 
from GC  via chain-rule operations: 
 

 ; , , , ; , ,

Q

ii i

yxQ

i ji j i j

Q Q

Q M i j x y

Q Q

ψ θ τ

⎫⎛ ⎞ℵ= ⎪⎜ ⎟⎜ ⎟ℵ ⎪⎝ ⎠ = =⎬
⎛ ⎞ℵ ⎪= ⎜ ⎟ ⎪⎜ ⎟ℵ ℵ⎝ ⎠ ⎭

 (18) 

Now Equation (13)-(15) are said to be invariantly transformed, for some functions ( )1 aχ  and 

( )2 aχ whenever, 
 

( )

( ) ( )

( )

2 2

2

2 2

1 2

2 2

22 2

2 2

2 2

1 1
Pr Pr

, ,

y x

y x

y x y x

M
y y x x y yy

a M
y y x x y yy

a
y x x y y x x yy y

y y

ψ ψ ψ ψ ψτ λθ

ψ ψ ψ ψ ψχ τ λθ

ψ θ ψ θ θ ψ θ ψ θ θχ

ψ ψτ τ

⎫∂ ∂ ∂ ∂ ∂ ∂− − + − ⎪∂ ∂ ∂ ∂ ∂ ∂∂ ⎪
⎪⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ⎪= − − + −⎢ ⎥ ⎪∂ ∂ ∂ ∂ ∂ ∂∂⎣ ⎦ ⎪
⎪
⎬

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎪− − = − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎣ ⎦

⎛ ⎞ ⎛ ⎞∂ ∂Ω = Ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎭

⎪
⎪
⎪
⎪
⎪
⎪

 

 
Substituting the values from the equation (17) and (18) in above system, yields 
 

 

( )
( )

( ) ( ) ( )

( ) ( )

2 2 2

2 2

2 2

1 2

y x
M M

y xy yx y

y x

M
y y x x yy

a M
y y x x y yy

τ ψψ θ θψ ψ ψ ψ τ λ θ

ψ ψ ψ ψ ψχ τ λθ

⎡ ⎤∂ ∂ ∂ ∂ ℵ ∂ ℵℵ − − + ℵ + ℜ − ℵ + ℜ⎢ ⎥∂ ∂ ∂ ∂ ∂∂ ℵ ℵℵ ⎣ ⎦ℵ
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂= − − + −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂∂⎣ ⎦

(19) 

 

 
( )

( )
2 2

22 2 2
1 1
Pr Prx y y

a
y x x y y x x yy y

ψ θ θψ θ ψ θ θ ψ θ ψ θ θχ
⎡ ⎤ ⎡ ⎤⎡ ⎤ℵ ℵ ∂ ∂ ∂ ∂ ℵ ∂ ∂ ∂ ∂ ∂ ∂− − = − −⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ℵ ℵ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ℵ

 (20) 

 

 
( )

2 2

2 2 2, ,y x y x
y x y x

y y y

ψτ τ ψ ψτ τ
⎛ ⎞ ⎛ ⎞ℵ ∂ ∂⎜ ⎟Ω ℵ + ℜ = Ω ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ℵ⎝ ⎠

 (21) 

 
The invariance of equations (19)-(21) together with boundary conditions, implies that 
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( )
( )

( )

( )
( )

( )

2

12

22

2

0,

,

1

y x

y x

y x

y M

M

y yx y

x y y

y

a

a

τθ ψ

τ ψψ θ

ψ θ θ

ψτ

χ

χ

⎫ℜ = ℜ = ℜ = ℜ = ℜ =
⎪
⎪ℵ ℵ ℵℵ = = = ℵ = ⎪

ℵ ℵℵ ⎪ℵ
⎪
⎬ℵ ℵ ℵ= = ⎪

ℵ ℵ ⎪ℵ
⎪

ℵ ⎪ℵ = =
⎪ℵ ⎭

 (22) 

These yields, 
 

 ( ) ( )
( )

3 2
2

1 11y xx My y
y y

, , , ,τψ θℵ = ℵ = ℵ = ℵ = ℵ =ℵ ℵ ℵ ℵ
 (23) 

 
Finally, we get the one-parameter group G, which transforms invariantly the differential 
equations (13)-(15) and the auxiliary conditions (16), as 
 

 

( )

( )

( )

3

2

2

:

1:

1

xy
H y

y

y

y

y x y x

x x
G

y y

G

M M

ψ ψ

θ θ

τ τ

⎧ ⎧ = + ℜ⎪ ℵ⎪ ⎨
⎪ = ℵ⎪⎩⎪
⎪ = ℵ⎪⎪
⎨ =
⎪ ℵ
⎪
⎪ =
⎪ ℵ⎪

=⎪⎩

 (24) 

 
3.2 The complete set of absolute invariants 
 
Now we have proceeded in our analysis to obtain a complete set of absolute invariants. If 

( ),x yη η= is the absolute invariant of the independent variables then, 
 
 ( ) ( ), , , , , , 1,2,3,4j y x jg x y M jψ θ τ η= Π =  (25) 

 
are absolute invariants of dependent variables. 
 
The application of the basic theorem in group theory, [Moran and Gaggioli (1968); Morgan 
(1952)], states that: 
 
A function ( ), , , , , yxg x y Mψ θ τ  is an absolute invariant of a one-parameter group if it satisfies 
the following first-order linear partial differential equation, 
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 ( )
5

1

0, , , , , ,i i i i yx
ii

gQ Q x y M
Q

α β ψ θ τ
=

∂+ = =
∂∑  (26) 

 
where   

 
0 0

and 1,...6
i i

i i
a a a a

i
a a

α β
= =

∂ℵ ∂ℜ= = =
∂ ∂

 (27) 

 
and ‘ 0a ’denotes the value of parameter ‘ a ’ which yields the identity element of the group G.
  

Since 0yxM y τθ ψℜ = ℜ = ℜ = ℜ = ℜ =  implies that 2 3 4 5 6 0β β β β β= = = = =  and from (27) 

we get 1 2 3 4 5 6
3 1 33 , 0
2 3 2

α α α α α α= = = − = − = .  

 
Hence, equation (26) reduces to  
 

 ( ) ( ) 1

1

2 2 0 0,
3 3 3 3 yx

g y g g g M g gx
x y M

ψ θ ββ β
ψ θ τ α

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + − + − + = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (28) 

 
The absolute invariant of independent variables owing the equation (28) is ( ),x yη η=  if it 
will satisfies the first order linear partial differential equation 
 

 ( ) 0.
3
yx

x y
η ηβ ∂ ∂+ + =

∂ ∂
 (29) 

 
Applying the variable separable method we get, 
 
 ( ) ( ) 1/3,x y y xη β −= +  (30) 
 
Further the absolute invariants of dependent variables owing the equation (28) are followed 
by  
 

( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( ) ( )

1 1 2 22/3 1/3

3 3 4 42/3

, , , , ,

, , , , , y x y x

g x y g x y
x x

Mg x y M g x y
x

ψ θψ η θ η
β β

η τ τ η
β

−

−

= = Π = = Π
+ +

= = Π = = Π
+

 

Hence, 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2/3 1/3
1 2

2/3
3 4

, , , ,

, ,y x

x y x x y x

M x x y

ψ β η θ β η

β η τ η

−

−

= + Π = + Π

= + Π = Π
 (31) 
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4 Group invariant solution 
 
Since ( )M x  is independent of y, ( )3 ηΠ  must be constant say m. (Referred as magnetic field 
parameter) 
 
Thus, finally we get the complete set of absolute invariants for the group G that transforms the 
system of partial differential equations (13)-(15) into ordinary differential equation together 
with auxiliary conditions (16), as 
 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2/3 1/3

2/3

, , , ,

, ,y x

x y x F x y x G

M m x x y H

ψ β η θ β η

β τ η

− −= + = +

= + =
 (32) 

 
Using the similarity transformation (32) in equation (13)-(15), yields to following non-linear 
ordinary differential equations 
 

 

( )
( )2

, 0

2 3 0
12 0
Pr

λ

⎫′′Ω = ⎪
⎪

′ ′ ′ ′− − + − = ⎬
⎪
⎪′ ′ ′′+ − =
⎭

H F

F FF H mF G

FG F G G

 (33) 

 
Further to transform the boundary conditions in to constant form the temperature near surface 

wθ  must be proportional to ( ) 1/3x β −+ , that is of the form ( ) 1/3
0 1c xθ β −= + ,  1c  is non-

vanishing arbitrary constant and the prescribe velocities are of the form 

( ) ( ) ( ) ( )1/3 1/3
0 2 0 3,u x c x v x c xβ β −= + = + . These are the precise restrictions for the 

existence of similarity solution.  
 
Hence the auxiliary conditions reduce to, 
 

 1 2 30 : , ' ,
: 0, ' 0

F c F c G c
G F

η
η

= = = = ⎫
⎬→ ∞ → → ⎭

 (34) 

 
Eqs. (33) and (34) describe the new form of our problem. Thus, the initial boundary value 
problem of PDEs has been transformed into a boundary value problem of ODEs which is 
generally easier to be solved by some numerical method.  
 
 
5 Results and discussions 

 
Many Non-Newtonian fluid models based on functional relationship between shear-stress and 
rate of the strain, are available in real world applications Bird et. al (1960). Among these 
models most research work is so far carried out on power-law fluid model, this is because of 
its mathematical simplicity. On the other hand rest of fluid models are mathematically more 
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complex and the natures of partial differential equations governing these flows are too non-
liner boundary value type and hence their analytical or numerical solution is bit difficult. For 
the present study the partial differential equation model, although mathematically more 
complex, is chosen mainly due to two reasons. Firstly, it can be deduced from kinetic theory 
of liquids rather than the empirical relation as in power-law model. Secondly, it correctly 
reduces to Newtonian behavior for both low and high shear rate. This reason is somewhat 
opposite to pseudo plastic system whereas the power-law model has infinite effective 
viscosity for low shear rate and thus limiting its range of applicability. 

  
Mathematically, the Powell-Eyring model can be written as [Bird et al (1960); Skelland 
(1967)] 
 

 11 1sinhτ μ − ⎛ ⎞∂ ∂= + ⎜ ⎟∂ ∂⎝ ⎠
yx

u u
y B C y

 (35) 

 
where B and C are rheological parameters. 
 
Introducing the dimensionless quantities into equation (35) and using similarity variables, we 
get 
 

 ( )
( ){ }

3
1 0

1 2 22
2

1,   where   ,
1

ε ρη ε ε
μ με

′′′′ ′′′= + = =
′′+

f u GrH f
BC LCf

 (36) 

 
where 1ε  and 2ε  are referred as rheological flow parameters. 
 
Substituting the value from (36), the system (33) reduce to, 
 

 
( ){ } ( ){ }

( ){ }

1/22 22 2
2 2

1/222
1 2

1 2 3 3 1
3

1

λ ε

ε ε

′ ′′ ′ ′′− − + − +
′′′ =

′′+ +

F FF c mF G F
F

F
 (37) 

 

 12 0.
Pr

′ ′ ′′+ − =FG F G G  (38) 

 
Also the dimensionless local skin-friction confident ( )fxC  expression is given by 
 

 1 Re
2

τ⋅ ≡fx x x wC Gr   (39) 

 
 where τ w   is local shear stress. That is 

0
τ τ

=
=w yx y

 . 

 
In terms of defined rheological flow parameters (39) yields, 
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 ( ) ( ){ }11
2 1

2

1 Re 0 sinh 0
2

εε ε
ε

−′′ ′′⋅ = +fx x xC Gr F F   (40) 

 
In order to face numerically problem (33)–(34), we have used a numerical solver of 
MATLAB package which solves any two-point boundary value problem for ODEs by 
collocation. To enhance the effect of magnetic field, without loss of generality, each 
parameter assumed appropriately in boundary conditions (34). The numerical solutions are 
produced graphically in Figures (2)-(4).  
 
The effect of magnetic field M, on the functions ( )F η′ related to velocity along x direction, 

( )F η′′  related to relate to local skin-friction and ( )G η  related to temperature is analyzed 
graphically in the Figures (2)-(4).  
 
Figure (2) shows that boundary layer decrease as the magnetic field increase. Figure (3) 
depicts behavior of  ( )F η′′  throughout the domain. In particular it is interesting to observe 
that, as M increases ( )0F ′′  decrease and hence the local shear-stress (see Table 1), which 
decreases local skin-friction fC .  
 
Influence of magnetic field on thermal boundary layers displayed by Figure 4. It shows that 
increase in magnetic field will precisely increase thermal boundary layer within the boundary 
layer domain.  
 

Table 1: Local shear stress 
M 0.01 0.1 0.3 0.8 1 
( )0′′F  0.3374 0.2725 0.1385 -0.1477 -0.2473 

τ w  0.6687 0.5417 0.2766 -0.2949 -0.4921 
 
 
6 Conclusion 
 
First time the general group of transformations using the deductive group symmetry method a 
typical case of lie group method for a particular boundary layer problem including a class of 
Non-Newtonian fluids. The governing system of PDEs transformed into the system of ODEs 
subject to the similarity requirement, by employing the derived transformations. Numerical 
solutions for special Non-Newtonian fluid so-called prendtl-etring fluid, are produced by 
MATLAB computational algorithm. An interesting effect of magnetic field is observed. All 
the numerical solutions are generated for dimensionless quantity and hence it is executed for 
all types of under considered fluids. An interesting effect of magnetic field is observed. 
 
 
 
 
 
 
 
7 Figures 
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Figure 2: Influence of magnetic field on horizontal velocity 

 

 
 

Figure 3: Influence of magnetic field on shear stress within boundary layer domain 
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Figure 4: Thermal boundary layer domain under the effect of magnetic field 
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