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Abstract. Stability is required for real world controlled systems as it
ensures that those systems can tolerate small, real world perturbations
around their desired operating states. This paper shows how stability for
continuous systems modeled by ordinary differential equations (ODEs)
can be formally verified in differential dynamic logic (dL). The key insight
is to specify ODE stability by suitably nesting the dynamic modalities of
dL with first-order logic quantifiers. Elucidating the logical structure of
stability properties in this way has three key benefits: i) it provides a flex-
ible means of formally specifying various stability properties of interest,
ii) it yields rigorous proofs of those stability properties from dL’s axioms
with dL’s ODE safety and liveness proof principles, and iii) it enables
formal analysis of the relationships between various stability properties
which, in turn, inform proofs of those properties. These benefits are put
into practice through an implementation of stability proofs for several
examples in KeYmaera X, a hybrid systems theorem prover based on dL.
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1 Introduction

The study of stability has its roots in efforts to understand mechanical systems,
particularly those arising in celestial mechanics [15,19,30]. Today, it is an im-
portant part of numerous applications in dynamical systems [34] and control
theory [14,18]. This paper studies proofs of stability for continuous dynamical
systems described by ordinary differential equations (ODEs), such as those used
to model feedback control systems [14,18]. For such systems, ODE stability is
a key correctness requirement [2] that deserves fully rigorous proofs alongside
other key properties such as safety and liveness of those ODEs [28,36]. Despite
this, formal stability verification has received less attention compared to proofs
of safety and liveness, e.g., through reachability or deductive techniques [8].

Stability for a continuous system (or ODEs) requires that i) its system state
always stays close to some desired operating state(s) when initially slightly per-
turbed from those operating state(s), and ii) those perturbations are eventually
dissipated so the system returns to a desired operating state. These properties
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Fig. 1. A pendulum (in
green) hung by a rigid
rod from a pivot (in
black) perturbed from its
resting state (bottom)
and from its inverted,
upright position (top).
Perturbed states (with
dashed boundaries) are
faded out to show the
progression of time.

are especially crucial for engineered systems because
they must be robust to real world perturbations de-
viating from idealized system models. Simple pendu-
lums provide canonical examples of stability phenom-
ena: they are always observed to settle in the rest po-
sition of Fig. 1 (bottom) after some time regardless
of how they are initially released. In contrast, the in-
verted pendulum in Fig. 1 (top) is theoretically also
at a resting position but can only be observed tran-
siently in practice because the slightest real world per-
turbation will cause the pendulum to fall due to grav-
ity. Stability explains these observations—the resting
position is (asymptotically) stable while the inverted
position is unstable and requires active control to en-
sure its stability. Proofs of safety and liveness proper-
ties are still required for the inverted pendulum under
control, e.g., its controller must never generate unsafe
amounts of torque and the pendulum must eventually
reach the inverted position. The triumvirate of safety,
liveness, and stability is required for holistic correct-
ness of the inverted pendulum controller.
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Fig. 2. A Lyapunov func-
tion that decreases along
the pendulum trajectory
shown in Fig. 1 (bottom).

The classical way of distinguishing the aforemen-
tioned stability situations is by designing a Lyapunov
function [19], i.e., an energy-like auxiliary measure
satisfying certain arithmetical conditions [14,18,31]
which implies that the auxiliary energy decreases
along system trajectories towards local minima at
the stable resting state(s), see Fig. 2. Prior ap-
proaches [1,12,17,21,33] have emphasized the need to
formally verify those arithmetical conditions in order
to guarantee that a conjectured Lyapunov function
correctly implies stability for a given system.

This paper shows how deductive proofs of ODE stability can be carried out
in differential dynamic logic (dL) [25,26,27], a logic for deductive verification of
hybrid systems.1 The key insight is that stability properties can be specified
by suitably nesting the dynamic modalities of dL with quantifiers of first-order
logic. The resulting specifications are amenable to rigorous proof by combining
dL’s ODE safety [28] and liveness [36] proof principles with real arithmetic and
first-order quantifier reasoning. This makes it possible to syntactically derive sta-
bility for a given system from the small set of dL axioms which, in turn, enables
trustworthy stability proofs in the KeYmaera X theorem prover for hybrid sys-
tems [11,26]. Notably, this approach directly verifies stability specifications, which

1 Hybrid systems are mathematical models describing discrete and continuous dynam-
ics, and interactions thereof. This paper’s formal understanding of ODE stability is
crucial for subsequent investigation of hybrid systems stability [5,13,20].
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goes beyond verifying arithmetic that imply those specifications [1,12,17,21,33].
This is crucial for advanced stability notions because those variations generally
require subtle twists to the required arithmetical conditions on their Lyapunov
functions [14]; proofs of stability specifications alleviate the onus on system de-
signers to correctly pick and check the appropriate conditions for their applica-
tions. Section 3 shows how various stability properties for ODE equilibria can be
formally specified and proved in dL with Lyapunov function techniques. Section 4
generalizes those stability specifications, yielding unambiguous formal specifica-
tions of advanced stability properties from the literature [14,18], along with their
derived proof rules. These specifications also provide rigorous insights into the
logical relationship between various stability notions, which are used to inform
their respective proofs. Section 5 illustrates the practicality of this paper’s dL
approach through several stability case studies formalized in KeYmaera X.

All omitted definitions and proofs are available in the supplement [35].

2 Background: Differential Dynamic Logic

This section briefly recalls the syntax and semantics of dL, focusing on its con-
tinuous fragment which has a complete axiomatization for ODE invariants [28].
Full presentations of dL, including its discrete fragment, are elsewhere [26,27].

Syntax and Semantics. The grammar of dL terms is as follows, where x ∈ V
is a variable and c ∈ Q is a rational constant. These terms are polynomials over
V (extensions with Noetherian functions [28] such as exp, sin, cos are possible):

p, q ::= x | c | p+ q | p · q

The grammar of dL formulas is as follows, where ∼ ∈ {=, 6=,≥, >,≤, <} is a
comparison operator and α is a hybrid program:

φ, ψ ::= p ∼ q | φ ∧ ψ | φ ∨ ψ | ¬φ | ∀v φ | ∃v φ | [α]φ | 〈α〉φ

This grammar features atomic comparisons (p ∼ q), propositional connectives
(¬, ∧, ∨), first-order quantifiers over the reals (∀ , ∃ ), and the box ([α]φ) and
diamond (〈α〉φ) modality formulas which express that all or some runs of hybrid
program α satisfy φ, respectively. The modalities [·], 〈·〉 can be freely nested
with first-order and modal connectives, which is crucial for the specification of
stability properties in Sections 3 and 4. Formulas not containing the modalities
are formulas of first-order real arithmetic and are written as P,Q,R.

This paper focuses on the continuous fragment of hybrid programs α ≡
x′ = f(x) &Q, where x′ = f(x) is an n-dimensional system of ordinary differen-
tial equations (ODEs), x′1=f1(x), . . . , x′n=fn(x), over variables x = (x1, . . . , xn),
the LHS x′i is the time derivative of xi and the RHS fi(x) is a polynomial over
variables x. The evolution domain constraint Q specifies the set of states in
which the ODE is allowed to evolve continuously. When Q is the formula true,
the ODE is also written as x′ = f(x). For n-dimensional vectors x, y, the dot
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product is x·y def
=
∑n
i=1 xiyi and ‖x‖2 def

=
∑n
i=1 x

2
i denotes the squared Euclidean

norm. Variables z ∈ V \ {x} not occurring on the LHS of ODE x′ = f(x) are
parameters that remain constant along ODE solutions. The following parametric
ODE model of a simple pendulum is used as a running example.

Example 1 (Pendulum model). The ODE αp ≡ θ′ = ω, ω′ = − g
L sin(θ) − bω

models a pendulum (illustrated below) suspended from a pivot by a rod of length
L, where θ is the angle of displacement, ω is the angular velocity of the pendulum,
and g > 0 is the gravitational constant. Parameter a = g

L is a positive scaling
constant and parameter b ≥ 0 is the coefficient of friction for angular velocity.
The symbolic parameters a, b make analysis of αp apply to a range of concrete
values, e.g., pendulums that are suspended by a long rod (with large L) are
modeled by small positive values of a, while frictionless pendulums have b = 0.

L

g

ω

θ

A simplification of αp is used because stability analyses of-
ten concern the behavior of the pendulum near its resting (or
inverted) state where θ = 0. For such nearby states with θ ≈ 0,
the small angle approximation sin(θ) ≈ θ yields a linear ODE:2

αl ≡ θ′ = ω, ω′ = −aθ − bω (1)

g

u

ω

θ

An inverted pendulum is modeled by a similar ODE (illus-
trated on the right) under a change of coordinates. Such a pen-
dulum requires an external torque input u(θ, ω) to maintain its
stability; u(θ, ω) is determined and proved correct in Section 5.

αi ≡ θ′ = ω, ω′ = aθ − bω − u(θ, ω) (2)

States ν : V → R assign real values to each variable in V; the set of all states
is S. The semantics of dL formula φ is the set of states [[φ]] ⊆ S in which φ is
true [26,27], where the semantics of first-order logical connectives are defined as
usual, e.g., [[φ∧ψ]] = [[φ]]∩ [[ψ]]. For ODEs, the semantics of the modal operators
is as follows.3 Let ν ∈ S and ϕ : [0, T )→ S for some 0 < T ≤ ∞, be the unique,
right-maximal solution [6] to ODE x′ = f(x) with initial value ϕ(0) = ν:

ν ∈ [[[x′ = f(x) &Q]φ]] iff for all 0 ≤ τ < T where ϕ(ζ)∈ [[Q]] for all 0 ≤ ζ ≤ τ :

ϕ(τ) ∈ [[φ]]

ν ∈ [[〈x′ = f(x) &Q〉φ]] iff there exists 0 ≤ τ < T such that:

ϕ(τ) ∈ [[φ]] and ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ τ

For a formula P the ε-neighborhood of P with respect to x is defined as

Uε(P )
def≡ ∃y

(
‖x− y‖2 < ε2 ∧ P (y)

)
, where the existentially quantified variables

y are fresh in P . The neighborhood formula Uε(P ) characterizes the set of states
within distance ε from P , with respect to the dynamically evolving variables x.

2 This linearization is justified by the Hartman-Grobman theorem [6]. A nonlinear

polynomial approximation, such as sin(θ) ≈ θ − θ3

6
, can also be used.

3 The semantics of dL formulas is defined compositionally elsewhere [26,27].
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This is useful for syntactically expressing small ε perturbations in the stability
definitions of Sections 3 and 4. For formulas P of first-order real arithmetic, the
ε-neighborhood, Uε(P ), can be equivalently expressed in quantifier-free form by
quantifier elimination [4]. For example, Uε(x = 0) is equivalent to the formula
‖x‖2 < ε2. Formulas P and ∂P are the syntactically definable topological closure
and boundary of the set characterized by P , respectively [4].

Proof Calculus. All derivations and proof rules are presented in a classical
sequent calculus. The semantics of sequent Γ ` φ is equivalent to the formula
(
∧
ψ∈Γ ψ) → φ. A sequent is valid iff its corresponding formula is valid. Com-

pleted branches in a sequent proof are marked with ∗. Assumptions ψ ∈ Γ that
have only ODE parameters as free variables remain true along ODE evolutions
and are soundly kept across ODE deduction steps [26,27]. First-order real arith-
metic is decidable [4] so we assume such a decision procedure and label proof
steps with R when they follow from real arithmetic. Axioms and proof rules are
derivable iff they can be deduced from sound dL axioms and proof rules [26,27].

Formula I is an invariant of the ODE x′ = f(x) &Q iff the formula I →
[x′ = f(x) &Q]I is valid. The dL proof calculus is complete for ODE invari-
ants [28], i.e., any true ODE invariant expressible in first-order real arithmetic
can be proved in the calculus. The calculus also supports refinement reason-
ing [36] for proving ODE liveness properties P → 〈x′ = f(x) &Q〉R, which says
that the goal R is reached along the ODE x′ = f(x) &Q from precondition P .

An important syntactic tool for reasoning with ODE x′ = f(x) is the Lie

derivative of term p defined as
.
p

def
=
∑
xi∈x

∂p
∂xi

fi(x), whose semantic value is
equal to the time derivative of the value of p along solutions ϕ of the ODE [26,28].
They are provably definable in dL using syntactic differentials [26].

3 Asymptotic Stability of an Equilibrium Point

This section presents Lyapunov’s classical notion of asymptotic stability [19]
and its formal specification in dL. This formalization enables the derivation of
dL stability proof rules with Lyapunov functions [14,18,19,31]. Several related
stability concepts are formalized in dL, along with their relationships and rules.

3.1 Mathematical Preliminaries

An equilibrium point of ODE x′ = f(x) is a point x0 ∈ Rn where f(x0) = 0, so a
system that starts at x0 stays at x0 along its continuous evolution. Such points
are often interesting in real-world systems, e.g., the equilibrium point θ = 0, ω =
0 for αl from (1) is the resting state of a pendulum. For a controlled system,
equilibrium points often correspond to desired steady system states where no
further continuous control input (modeled as part of f(x)) is required [18].

For brevity, assume the origin 0 ∈ Rn is an equilibrium point of interest. Any
other equilibrium point(s) of interest x0 ∈ Rn can be translated to the origin
with the change of coordinates x 7→ x− x0 for the ODE (see supplement [35]).
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Fig. 3. Solutions from points in the δ ball around the origin, like the green initial point
x, remain within the ε ball around the origin 0 ∈ Rn (black dot) and asymptotically
approach the origin. The latter two plots illustrate how asymptotic stability for an ODE
can be broken down into a pair of (quantified) ODE safety and liveness properties.

The following definition of asymptotic stability is standard [14,18,31].4

Definition 2 (Asymptotic stability [14,18,31]). The origin 0 ∈ Rn of ODE
x′ = f(x) is

– stable if, for all ε > 0, there exists δ > 0 such that for all initial states
x = x(0) with ‖x‖ < δ, the right-maximal ODE solution x(t) : [0, T ) → Rn
satisfies ‖x(t)‖ < ε for all times 0 ≤ t < T ,

– attractive if there exists δ > 0 such that for all x = x(0) with ‖x‖ < δ, the
right-maximal ODE solution x(t) : [0, T )→ Rn satisfies limt→T x(t) = 0,

– asymptotically stable if it is stable and attractive.

These definitions can be understood using the resting state of the pendulum
from Fig. 1 (bottom) which is asymptotically stable. When the pendulum is given
a light push from its bottom resting state (formally, ‖x‖ < δ), it gently oscillates
near that resting state (formally, ‖x(t)‖ < ε). In the presence of friction, these
oscillations eventually dissipate so the pendulum asymptotically returns to its
resting state (formally, limt→T x(t) = 0). This behavior is local, i.e., for any given
ε > 0, there exists a sufficiently small δ > 0 perturbation of the initial state that
results in gentle oscillations with ‖x(t)‖ < ε, see Fig. 3 (left). A strong push,
e.g., with δ > ε, could instead cause the pendulum to spin around on its pivot.

Remark 3. Stability and attractivity do not imply each other [31, Chapter I.2.7].
However, if the origin is stable, attractivity can be defined in a simpler way. This
is proved in dL, after characterizing stability and attractivity syntactically.

3.2 Formal Specification

The formal specification of asymptotic stability in dL combines i) the dynamic
modalities of dL, which are used to quantify over the dynamics of the ODE, and
ii) the first-order logic quantifiers, which are used to express combinations of
(topologically) local and asymptotic properties of those dynamics.

4 Some definitions require, or implicitly assume, right-maximal solutions x(t) to be
global, i.e., with T = ∞, see [18, Definition 4.1] and associated discussion. The
definitions presented here are better suited for subsequent generalizations.



Deductive Stability Proofs for Ordinary Differential Equations 187

Lemma 4 (Asymptotic stability in dL). The origin of ODE x′ = f(x) is,
respectively, i) stable, ii) attractive, and iii) asymptotically stable iff the
dL formulas i) Stab(x′ = f(x)), ii) Attr(x′ = f(x)), and iii) AStab(x′ = f(x))
respectively are valid. Variables ε, δ are fresh, i.e., not in x, f(x).

Stab(x′ = f(x)) ≡ ∀ε>0 ∃δ>0 ∀x
(
Uδ(x = 0)→ [x′ = f(x)]Uε(x = 0)

)
Attr(x′ = f(x)) ≡ ∃δ>0 ∀x

(
Uδ(x = 0)→ Asym(x′ = f(x), x = 0)

)
AStab(x′ = f(x)) ≡ Stab(x′ = f(x)) ∧Attr(x′ = f(x))

Formula Asym(x′ = f(x), P ) ≡ ∀ε>0 〈x′ = f(x)〉[x′ = f(x)]Uε(P ) charac-
terizes the set of states that asymptotically approach P along ODE solutions.

Formula Stab(x′ = f(x)) is a syntactic dL rendering of the corresponding
quantifiers from Def. 2. The safety property Uδ(x = 0) → [x′ = f(x)]Uε(x = 0)
expresses that solutions starting from the δ-neighborhood of the origin always
(for all times) stay safely in the ε-neighborhood, as visualized in Fig. 3 (middle).

Formula Attr(x′ = f(x)) uses the subformula Asym(x′ = f(x), x = 0) which
characterizes the limit in Def. 2. Recall limt→T x(t) = 0 iff for all ε > 0 there
exists a time τ with 0 ≤ τ < T such that for all times t with τ ≤ t < T ,
the solution satisfies ‖x(t)‖ < ε, i.e., the limit requires for all distances ε > 0,
the ODE solution will eventually always be within distance ε of the origin, as
visualized in Fig. 3 (right). This limit is characterized using nested 〈·〉[·] modali-
ties, together with first-order quantification according to Def. 2. More generally,
formula Asym(x′ = f(x), P ) characterizes the set of initial states where the
right-maximal ODE solution asymptotically approaches P ; this set is known as
the region of attraction of P [18]. Thus, attractivity requires that the region of
attraction of the origin contains an open neighborhood Uδ(x = 0) of the origin.

From Lemma 4, proving validity of the formula AStab(x′ = f(x)) yields a
rigorous proof of asymptotic stability for x′ = f(x). However, if the origin is
stable, then attractivity can be provably simplified with the following corollary.

Corollary 5 (Stable attractivity). The following axiom is derivable in dL.
SAttr Stab(x′ = f(x))→

(
Asym(x′ = f(x), x=0)↔∀ε>0 〈x′ = f(x)〉 Uε(x=0)

)
Corollary 5 simplifies the syntactic characterization of the region of attrac-

tion for stable equilibria from a nested 〈·〉[·] formula to a 〈·〉 formula, which is
then directly amenable to ODE liveness reasoning [36]. This corollary is used to
simplify proofs of asymptotic stability, as explained next.

3.3 Lyapunov Functions

Lyapunov functions are the standard tool for showing stability of general, non-
linear ODEs [14,18,31] and finding suitable Lyapunov functions is an important
problem in its own right [1,9,12,17,21,23,24,33,37]. This section shows how a
candidate Lyapunov function, once found, can be used to rigorously prove sta-
bility. The following proof rules derive Lyapunov stability arguments [14,18,31]
syntactically in dL.
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Lemma 6 (Lyapunov functions). The following Lyapunov function proof
rules are derivable in dL.

Lyap≥
` f(0) = 0 ∧ v(0) = 0 ` ∃γ>0 ∀x

(
0<‖x‖2≤γ2 → v > 0 ∧ .

v ≤ 0
)

` Stab(x′ = f(x))

Lyap>
` f(0) = 0 ∧ v(0) = 0 ` ∃γ>0 ∀x

(
0<‖x‖2≤γ2 → v > 0 ∧ .

v < 0
)

` AStab(x′ = f(x))

Rules Lyap≥, Lyap> use the Lyapunov function v as an auxiliary, energy-
like function near the origin which is positive and has non-positive (resp. nega-
tive Lyap>) derivative

.
v. This guarantees that v is non-increasing (resp. decreas-

ing) along ODE solutions near the origin, see Fig. 2. The right premise of both
rules use ∃γ>0 ∀x

(
0<‖x‖2≤γ2 → · · ·

)
to require that the Lyapunov function

conditions are true in a γ-neighborhood of the origin. The subtle difference in
sign condition for

.
v between rules Lyap≥, Lyap> is illustrated for the pendulum.

Example 7 (Pendulum asymptotic stability). For ODE αl from (1), a suitable

Lyapunov function for proving its stability [18] is v = a θ
2

2 + (bθ+ω)2+ω2

4 , where

the Lie derivative of v along αl is
.
v = − b

2 (aθ2+ω2). Stability5 is formally proved
in dL for any parameter values a > 0, b ≥ 0 using rule Lyap≥ because both of
its resulting arithmetical premises are provable by R. The full dL derivation, also
used in KeYmaera X (Section 5), is shown in the proof of Lemma 6 [35].

When b > 0, i.e., friction is non-negligible, an identical derivation with Lyap>
instead of Lyap≥ proves asymptotic stability because − b

2 (aθ2 + ω2) is negative
except at the origin. Indeed, displacements to the pendulum’s resting state can
only be dissipated in the presence of friction, not when b = 0.

3.4 Asymptotic Stability Variations

Asymptotic stability is a strong guarantee about the local behavior of ODE
solutions near equilibrium points of interest. In certain applications, stronger
stability guarantees may be needed for those equilibria [18]. This section exam-
ines two standard stability variations, shows how they can be proved in dL, and
formally analyzes their logical relationship with asymptotic stability.

Exponential stability As the name suggests, the first stability variation, ex-
ponential stability, guarantees an exponential rate of convergence towards the
equilibrium point from an initial displacement. This is useful, e.g., for bounding
the time spent by a perturbed system far away from its desired operating state.

Definition 8 (Exponential stability [14,18,31]). The origin 0 ∈ Rn of ODE
x′ = f(x) is exponentially stable if there are positive constants α, β, δ > 0 such
that for all initial states x = x(0) with ‖x‖ < δ, the right-maximal ODE solution
x(t) : [0, T )→ Rn satisfies ‖x(t)‖ ≤ α‖x(0)‖ exp (−βt) for all times 0 ≤ t < T .

5 For the trigonometric pendulum ODE αp from Example 1, the Lyapunov function

v = a(1− cos(θ)) + (bθ+ω)2+ω2

4
with Lie derivative

.
v = − b

2
(aθ sin(θ) +ω2) proves its

stability [18] but requires arithmetic reasoning over trigonometric functions.
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Exponential stability bounds the norm of solutions to ODE x′ = f(x) near
the origin by a decaying exponential. It is specified in dL as follows.

Lemma 9 (Exponential stability in dL). The origin of ODE x′ = f(x) is
exponentially stable iff the following dL formula is valid. Variables α, β, δ, y
are fresh, i.e., not in x, f(x).

EStab(x′ = f(x)) ≡∃α>0 ∃β>0 ∃δ>0 ∀x
(
Uδ(x = 0)→

[y :=α2‖x‖2;x′ = f(x), y′ = −2βy] ‖x‖2 ≤ y
)

The discrete assignment y :=α2‖x‖2 sets the value of variable y to that of α2‖x‖2
and ; denotes sequential composition of hybrid programs [26,27].

Formula EStab(x′ = f(x)) uses a fresh variable y with ODE y′ = −2βy
and initialized to α2‖x‖2 so that y differentially axiomatizes [28] the (squared)
decaying exponential function α2‖x(0)‖2 exp (−2βt) along ODE solutions. Such
an implicit (polynomial) characterization of exponential decay allows syntactic
proof steps to use decidable real arithmetic reasoning.

Lemma 10 (Lyapunov function for exponential stability). The following
Lyapunov function proof rule for exponential stability is derivable in dL, where
k1, k2, k3 ∈ Q are positive constants.

LyapE

` ∃γ>0 ∀x
(
‖x‖2≤γ2 → k21‖x‖2 ≤ v ≤ k22‖x‖2 ∧

.
v ≤ −2k3v)

` EStab(x′ = f(x))

Rule LyapE enables proofs of exponential stability in dL. In fact, the proof
of Lemma 10 (see supplement [35]) yields concrete, quantitative bounds, where
EStab(x′ = f(x)) is explicitly witnessed with scaling constant α = k2

k1
and decay

rate β = k3. These can be used to calculate time bounds when the system
state will return sufficiently close to the origin. Similarly, the disturbance δ in
EStab(x′ = f(x)) is quantitatively witnessed by k1

k2
γ for any γ witnessing validity

of the premise of rule LyapE. This yields a provable estimate of the region around
the origin where exponential stability holds; this latter estimate is explored next.

Region of attraction Formulas Attr(x′ = f(x)) and EStab(x′ = f(x)) both
feature a subformula of the form ∃δ > 0 ∀x (Uδ(x = 0) → · · · ) which expresses
that attractivity (or exponential stability) is locally true in some δ neighborhood
of the origin. In many applications, it is useful to find and rigorously prove that
a given set is attractive or exponentially stable with respect to the origin [18,
Chapter 8.2]. The second stability variation yields provable subsets of the region
of attraction, including the special case where it is the entire state space. This is
formalized using the following variants of Attr(x′ = f(x)) and EStab(x′ = f(x))
within a region given by a formula P .

AttrP(x′ = f(x), P ) ≡ ∀x
(
P → Asym(x′ = f(x), x = 0)

)
EStabP(x′ = f(x), P ) ≡ ∃α>0 ∃β>0 ∀x

(
P →

[y :=α2‖x‖2;x′ = f(x), y′ = −2βy] ‖x‖2 ≤ y
)
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The formula AttrP(x′ = f(x), P ) is valid iff the set characterized by P is
a subset of the origin’s region of attraction [18]. For example, Attr(x′ = f(x))
is ∃δ > 0 AttrP(x′ = f(x),Uδ(x = 0)). This generalization is useful for for-
malizing stronger notions of stability in dL, such as the following global stability
notions [14,18]. For brevity, dL specifications of the stability properties (in bold)
are given below with mathematical definitions deferred to the supplement [35].

Lemma 11 (Global stability in dL). The origin of ODE x′ = f(x) is glob-
ally asymptotically stable iff the dL formula Stab(x′ = f(x)) ∧ AttrP(x′ =
f(x), true) is valid. The origin is globally exponentially stable iff the dL for-
mula EStabP(x′ = f(x), true) is valid.

Global stability ensures that all perturbations to the system state are even-
tually dissipated. Their proof rules are similar to Lyap> and LyapE respectively.

Lemma 12 (Lyapunov function for global stability). The following Lya-
punov function proof rules for global asymptotic and exponential stability are

derivable in dL. In rule LyapG
E , k1, k2, k3 ∈ Q are positive constants.

LyapG
>

` f(0)=0∧v(0)=0 x 6=0 ` v>0 ∧ .
v<0 ` ∀b ∃γ>0 ∀x

(
v≤b→Uγ(x=0)

)
` Stab(x′ = f(x)) ∧AttrP(x′ = f(x), true)

LyapG
E

` k21‖x‖2 ≤ v ≤ k22‖x‖2 ∧
.
v ≤ −2k3v

` EStabP(x′ = f(x), true)

Example 13 (Pendulum global exponential stability). For simplicity, instantiate
Example 7 with parameters a = 1, b = 1. The Lyapunov function then simplifies

to v = θ2

2 + (θ+ω)2+ω2

4 with Lie derivative
.
v = − (θ2+ω2)

2 , which satisfies the real

arithmetic inequalities θ2+ω2

4 ≤ v ≤ θ2 + ω2 and
.
v ≤ − 1

2v. Thus, rule LyapG
E

proves global exponential stability of αl with k1 = 1
2 , k2 = 1, and k3 = 1

4 . An
important caveat is that Example 7 used a local small angle approximation, so
this global phenomenon does not hold for a real world pendulum (nor for αp).

Logical relationships With the proliferation of stability variations just in-
troduced, it is useful to take stock of their logical relationships. An important
example of such a relationship is shown in the following corollary.

Corollary 14 (Exponential stability implies asymptotic stability). The
following axioms are derivable in dL.
EStabStab EStab(x′ = f(x))→ Stab(x′ = f(x))

EStabAttr EStabP(x′ = f(x), P )→ AttrP(x′ = f(x), P )

Derived axioms EStabStab, EStabAttr show that exponential stability im-
plies asymptotic stability. In proofs, EStabAttr allows the region of attraction
to be estimated using the region where solutions are exponentially bounded.
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4 General Stability

This section provides stability definitions and proof rules that generalize stability
for an equilibrium point from Section 3 to the stability of sets. These definitions
are useful when the desired stable system state(s) is not modeled by a single
equilibrium point, but may instead, e.g., lie on a periodic trajectory [18], a
hyperplane, or a continuum of equilibrium points within the state space [14].
The generalized definition is used to formalize two stability notions from the
literature [14,18], and to justify their Lyapunov function proof rules.

4.1 General Stability and General Attractivity

The following general stability formula defines stability in dL with respect to an
ODE x′ = f(x) and formulas P,R. The quantified variables ε, δ are assumed to
be fresh by bound renaming, i.e., do not appear in x, f(x), P or R.

StabP
R(x′ = f(x), P,R) ≡ ∀ε>0 ∃δ>0 ∀x

(
Uδ(P )→ [x′ = f(x)]Uε(R)

)
This formula generalizes stability of the origin Stab(x′ = f(x)) by adding two

logical tuning knobs that can be intuitively understood as follows. The precon-
dition P characterizes the initial states from which the system state is expected
to be disturbed by some disturbance δ. The postcondition R characterizes the
set of desired operating states that the system must remain close (within the ε
neighborhood of R) after being disturbed from its initial states.

The general attractivity formula similarly generalizes AttrP(x′ = f(x), P )
with a postcondition R towards which the ODE solutions from initial states
satisfying precondition P are asymptotically attracted.

AttrPR(x′ = f(x), P,R) ≡ ∀x
(
P → Asym(x′ = f(x), R)

)
Lemma 15 (General Lyapunov functions). The following Lyapunov func-
tion proof rule for general stability with two stacked premises is derivable in dL.

GLyap

` P → R

` ∀ε>0 ∃0<γ≤ε ∃k

∀x (∂(Uγ(R))→ v ≥ k)∧
∃0<δ≤γ ∀x (Uδ(P )→ R ∨ v<k)∧
∀x
(
R∨v<k → [x′ = f(x) &Uγ(R)](R∨v<k)

)


` StabP
R(x′ = f(x), P,R)

Rule GLyap proves general stability for precondition P and postcondition
R. It generalizes the Lyapunov function reasoning underlying rule Lyap≥ to
support arbitrary pre- and postconditions. The conjunct ∀x (∂(Uγ(R))→ v ≥ k)
requires v≥k on the boundary of Uγ(R) while the middle conjunct requires v<k
for some small neighborhood of P excluding R. The conjunct ∀x

(
R∨v<k → · · ·

)
asserts that R ∨ v < k is an invariant of the ODE within closed domain Uγ(R).
When R is a formula of first-order real arithmetic, this invariance question is
provably equivalent in dL to a formula of real arithmetic [28], so the premise



192 Y. K. Tan and A. Platzer

of rule GLyap is, in theory, decidable by R for a given candidate Lyapunov
function v. In practice, it is prudent to consider specialized stability notions, for
which the premise of rule GLyap can be arithmetically simplified. Proof rules
for generalized attractivity are also derivable for specialized instances.

4.2 Specialization

General stability specializes to several stability notions in the literature. For
brevity, dL specifications of the stability properties (in bold) are given below
with mathematical definitions deferred to the supplement [35].

Set Stability An important special case is when the desired operating states
are exactly the states from which disturbances are expected, i.e., R ≡ P . This
leads to the notion of set stability of the set characterized by P [14,18].

Lemma 16 (Set Stability in dL). For the ODE x′ = f(x), the set character-
ized by formula P is i) stable, ii) attractive, iii) asymptotically stable, and
iv) globally asymptotically stable iff the following dL formulas are valid:

i) StabP
R(x′ = f(x), P, P ),

ii) ∃δ>0 AttrPR(x′ = f(x),Uδ(P ), P ),
iii) StabP

R(x′ = f(x), P, P ) ∧ ∃δ>0 AttrPR(x′ = f(x),Uδ(P ), P ), and
iv) StabP

R(x′ = f(x), P, P ) ∧AttrPR(x′ = f(x), true, P )

The intuition for Lemma 16 is similar to Lemmas 4 and 11, except formula
P (instead of the origin) characterizes the set of desirable states. An application
of set stability is shown in the following example.

Example 17 (Tennis racket theorem [3]). The following system of ODEs models
the rotation of a 3D rigid body [6,14], where x1, x2, x3 are angular velocities and
I1 > I2 > I3 > 0 are the principal moments of inertia along the respective axes.

αr ≡ x′1 =
I2 − I3
I1

x2x3, x′2 =
I3 − I1
I2

x3x1, x′3 =
I1 − I2
I3

x1x2

When such a rigid object is spun or rotated on each of its axes, a well-known
physical curiosity [3] is that the rotation is stable in the first and third axes,
whilst additional (unstable) twisting motion is observed for the intermediate
axis. Mathematically, a perfect rotation, e.g., around x1, corresponds to a (large)
initial value for x1 with no rotation in the other axes, i.e., x2 = 0, x3 = 0.
Accordingly the real world observation of stability for rotations about the first
principal axis is explained by stability with respect to small perturbations in
x2, x3, as formally specified by formula (3) below. Note that the set characterized
by formula x2 = 0∧x3 = 0 is the entire x1 axis, not just a single point. Similarly,
rotations are stable around the third principal axis iff formula (4) is valid.

StabP
R(αr, x2 = 0 ∧ x3 = 0, x2 = 0 ∧ x3 = 0) (3)

StabP
R(αr, x1 = 0 ∧ x2 = 0, x1 = 0 ∧ x2 = 0) (4)

The validity of formulas (3) and (4) are proved in Example 20.
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The formal specification of set stability yields three provable logical conse-
quences which are important stepping stones for the set stability proof rules.

Corollary 18 (Set stability properties). The following axioms are derivable
in dL. In axiom SClosure, formula P characterizes the topological closure of
formula P . In axiom SClosed, formula P characterizes a closed set.

SetSAttr
StabP

R(x′ = f(x), P, P )

→
(

Asym(x′ = f(x), P )↔ ∀ε>0 〈x′ = f(x)〉 Uε(P )
)

SClosure StabP
R(x′ = f(x), P, P )↔ StabP

R(x′ = f(x), P , P )

SClosed StabP
R(x′ = f(x), P, P )→ ∀x

(
P → [x′ = f(x)]P

)
Axiom SetSAttr generalizes SAttr and provides a syntactic simplification of

the region of attraction for formula P when P is stable. Axiom SClosure says
that stability of P is equivalent to stability of its closure P , because for any
perturbation δ > 0, the neighborhoods Uδ(P ) and Uδ(P ) are provably equivalent
in real arithmetic. Axiom SClosed says that for closed formulas P , invariance
of P is a necessary condition for stability of P . Without loss of generality, it
suffices to develop proof rules for stability of formulas characterizing closed (using
SClosure) and invariant (using SClosed) sets. Indeed, standard definitions of set
stability [14,18] usually assume that the set of concern is closed and invariant.

Lemma 19 (Set stability Lyapunov functions). The following Lyapunov
function proof rules for set stability are derivable in dL. In derived rules SLyap≥
and SLyap>, formula P characterizes a compact (i.e., closed and bounded) set.
In derived rule SLyap∗≥, the two premises are stacked.

SLyap≥
P ` [x′ = f(x)]P ¬P ` v > 0 ∧ .

v ≤ 0 ∂P ` v ≤ 0

` StabP
R(x′ = f(x), P, P )

SLyap>
P ` [x′ = f(x)]P ¬P ` v > 0 ∧ .

v < 0 ∂P ` v ≤ 0

` StabP
R(x′ = f(x), P, P ) ∧ ∃δ>0 AttrPR(x′ = f(x),Uδ(P ), P )

SLyap∗≥

P ` [x′ = f(x)]P

` ∀ε>0 ∃0<γ≤ε

∃k (∀x (∂(Uγ(P ))→ v ≥ k)∧
∃0<δ≤γ ∀x (Uδ(P ) ∧ ¬P → v < k)

)
∧

∀x (Uγ(P ) ∧ ¬P → .
v ≤ 0)


` StabP

R(x′ = f(x), P, P )

All three proof rules have the necessary premise P ` [x′ = f(x)]P which says
that formula P is an invariant of the ODE x′ = f(x). Rules SLyap≥, SLyap>
are slight generalizations of Lyapunov function proof rules for set stability [14]
and they respectively generalize rules Lyap≥, Lyap> to prove stability for an
invariant P . Importantly, both rules assume that P characterizes a compact,
i.e., closed and bounded set, which simplifies the arithmetical conditions on v in
their premises. The rule without the boundedness requirement on P suggested
in the remark after [18, Definition 8.1], is unsound, see supplement [35].
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For asymptotic stability (in rule SLyap>), boundedness also guarantees that
perturbed ODE solutions always exist for sufficient duration, which is a funda-
mental step in the ODE liveness proofs [36]. Rule SLyap∗≥ is derived from rule
GLyap using invariance of P by the first premise; it provides a means of formally
proving the set stability properties (3) and (4) from Example 17.

Example 20 (Stability of rigid body motion). The proof for (3) uses the Lya-
punov function v = 1

2 ( I1−I2I3
x22 − I3−I1

I2
x23), whose Lie derivative is

.
v = 0, and

rule SLyap∗≥ with formula P ≡ x2 = 0 ∧ x3 = 0. The proof for (4) is symmetric.
For the top premise of rule SLyap∗≥, formula P is a provable invariant [28] of
the ODE αr. The bottom premise, although arithmetically complicated, can be
simplified by choosing γ = ε and deciding the resulting formula by R.

Recall that the x1 axis is not a compact set so neither of the standard proof
rules for set stability SLyap≥, SLyap> would be sound for this proof.

Epsilon-Stability Motivated by numerical robustness of proofs of stability,
Gao et al. [12] define ε-stability for ODEs. The following dL characterization
shows how ε-stability can be understood as an instance of general stability.

Lemma 21 (ε-Stability in dL). The origin of ODE x′ = f(x) is ε-stable for
constant ε > 0 iff the dL formula StabP

R(x′ = f(x), x = 0,Uε(x = 0)) is valid.

Unlike set stability, ε-stability is an instance of general stability where the
pre- and postconditions differ. In ε-stability, systems are perturbed from the
precondition x = 0 (the origin), but the postcondition enlarges the set of desired
states to a ε > 0 neighborhood of the origin, which is considered indistinguish-
able from the origin itself [12]. An immediate consequence of Lemma 21 is that
rule GLyap can be used to prove ε-stability, as shown in the next section.

5 Stability in KeYmaera X

This section puts the dL stability specifications and derivations from the pre-
ceding sections into practice through proofs for several case studies in the KeY-
maera X theorem prover [11].6 Examples 7, 13, 17, 20 have also been formalized.
The insights from these proofs are discussed after an overview of the case studies.

Inverted Pendulum. The stability of the resting state of the pendulum is in-
vestigated in Examples 7 and 13. For the inverted pendulum αi from (2), the
controlled torque u(θ, ω) must be designed and rigorously proved to ensure feed-
back stabilization [18] of the inverted position. A standard PD (Proportional-
Derivative) controller can be used for stabilization, where the control input has
the form u(θ, ω) = k1θ+ k2ω for tuning parameters k1, k2. Asymptotic stability
of the inverted position is achieved for any control parameter choice where k1 > a
and k2 > −b. The sequent a > 0, b ≥ 0, k1 > a, k2 > −b ` AStab(αi) is proved

in KeYmaera X using the Lyapunov function (k1−a)θ2
2 + (((b+k2)θ+ω)

2+ω2)
4 .

6 See https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability

https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability
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Frictional Tennis Racket Theorem. The stability of a 3D rigid body is inves-
tigated for αr in Examples 17 and 20. The following ODEs model additional
frictional forces that oppose the rotational motion in each axis of the rigid body,
where α1, α2, α3 > 0 are positive coefficients of friction:

αf ≡ x′1=
I2 − I3
I1

x2x3−α1x1, x
′
2=

I3 − I1
I2

x3x1−α2x2, x
′
3=

I1 − I2
I3

x1x2−α3x3

In the presence of friction, rotations of the rigid body are globally asymptot-
ically stable in the first and third principal axes, as proved in KeYmaera X.

Γ ≡ I1 > I2, I2 > I3, I3 > 0, α1 > 0, α2 > 0, α3 > 0

Γ ` StabP
R(αf , x2=0 ∧ x3=0, x2=0 ∧ x3=0) ∧AttrPR(αf , true, x2=0 ∧ x3=0)

Γ ` StabP
R(αf , x1=0 ∧ x2=0, x1=0 ∧ x2=0) ∧AttrPR(αf , true, x1=0 ∧ x2=0)

Both asymptotic stability properties are proved using SLyap∗≥ and the live-

ness property [36] that the kinetic energy I1x
2
1 + I2x

2
2 + I3x

2
3 of the system tends

to zero over time. The latter property implies that solutions of αf exist glob-
ally and that the values of x1, x2, x3 asymptotically tend to zero, which proves
global asymptotic stability with the aid of SetSAttr. Even though a proof rule for
(global) asymptotic stability of general nonlinear ODEs and unbounded sets is
not available (Section 4), this example shows that formalized stability properties
can still be proved on a case-by-case basis using dL’s ODE reasoning principles.

Moore-Greitzer Jet Engine [12]. The origin of the ODE modeling a simpli-
fied jet engine αm ≡ x′1 = −x2 − 3

2x
2
1 − 1

2x
3
1, x

′
2 = 3x1 − x2 is ε-stable for

ε = 10−10 [12]. The sequent ε = 10−10 ` StabP
R(αm, x

2
1 + x22 = 0, x21 + x22 < ε2)

is proved in KeYmaera X. The key proof ingredients are an ε-Lyapunov func-
tion [12] and manual arithmetic steps, e.g., instantiating existential quantifiers
appearing in the specification of ε-stability with appropriate values [12].

Other Examples [1]. Stability for several ODEs with Lyapunov functions gen-
erated by an inductive synthesis technique [1, Examples 5–11] were successfully
verified in KeYmaera X. The proof for the largest, 6-dim. nonlinear ODE [1,
Example 5] required substantial manual arithmetic reasoning in KeYmaera X.7

The arithmetical conditions in [1, Equation 1] are identical to the premises
of rule Lyap≥ except it unsoundly omits the condition v(0) = 0, see supple-
ment [35]. The generated Lyapunov functions remain correct because the induc-
tive synthesis technique [1] implicitly guarantees this omitted condition.

Summary. These case studies demonstrate the feasibility of carrying out proofs
of various (advanced) stability properties within KeYmaera X using this paper’s
stability specifications. The proofs share similar high-level proof structure, which
suggests that proof automation could significantly reduce proof effort [10]. Such
automation should also support user input of key insights for difficult reasoning
steps, e.g., real arithmetic reasoning with nested, alternating quantifiers.

7 The Lyapunov function in [1, Example 5] does not work for its associated ODE. It
works if the ODE is corrected with ẋ1 = −x31 + 4x32−6x3x4, as in the literature [23].
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6 Related Work

Stability is a fundamental property of interest across many different fields of
mathematics [6,15,19,30,31,34] and engineering [14,18,20]. This related work dis-
cussion focuses on formal approaches to stability of ODEs.

Logical specification of stability. Rouche, Habets, and Laloy [31] provide a pio-
neering example of using logical notation to specify and classify stability prop-
erties of ODEs. Alternative logical frameworks have also been used to specify
stability and related properties: stability is expressed in HyperSTL [22] as a hy-
perproperty relating the trace of an ODE against two constant traces; ε-stability
is studied in the context of δ-complete reasoning over the reals [12]; region sta-
bility for hybrid systems [29] is discussed using CTL*; the syntactic specification
of Asym(x′ = f(x), P ) resembles the limit definition using filters [16]. This pa-
per uses dL as a sweet spot logical framework, general enough to specify various
stability properties of interest, e.g., asymptotic or exponential stability, and the
stability of sets, while also enabling syntactic proofs of those properties.

Formal verification of stability. There is a vast literature on finding Lyapunov
functions for stability, e.g., through numerical [24,23,37] and algebraic meth-
ods [9,21]. Formal approaches are often based on finding Lyapunov function can-
didates and certifying the correctness of those generated candidates [1,12,17,33].
This paper’s approach enables highly trustworthy certification of those candi-
dates in dL and KeYmaera X, with stability proof rules that are soundly de-
rived from dL’s parsimonious axiomatization [25,26,27], as implemented in KeY-
maera X [11,26]. Sections 4 and 5 further show that this paper’s approach sup-
ports verification of advanced stability properties [12,14,18] within the same dL
framework. New stability proof rules like GLyap can also be soundly and syntac-
tically justified in dL without the need for (low-level) semantic reasoning about
the underlying ODE mathematics. As an example of the latter, semantic ap-
proach, LaSalle’s invariance principle is formalized in Coq [7] and used to verify
the correctness of an inverted pendulum controller [32].

7 Conclusion

This paper shows how ODE stability can be formalized in dL using the key idea
that stability properties are ∀ /∃ -quantified dynamical formulas. These speci-
fications, their proof rules, and their logical relationships are all syntactically
derived from dL’s sound proof calculus. This further enables trustworthy KeY-
maera X proofs that rigorously verify every step in an ODE stability argument,
from arithmetical premises down to dynamical reasoning for ODEs. Directions
for future work include i) formalization of stability with respect to perturbations
of the system dynamics, and ii) generalizations of stability to hybrid systems.

Acknowledgments. We thank Brandon Bohrer, Stefan Mitsch, and the anony-
mous reviewers for their helpful feedback on KeYmaera X and this paper.
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vol. 1, pp. 798–799. IEEE (1991). https://doi.org/10.1109/CDC.1991.261424

10. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: Tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS,
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