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Abstract
We present the DeeDP system for automatic vulnerabilities detection and patch providing. DeeDP allows to detect
vulnerabilities in C/C++ source code and generate patch for fixing detected issue. This system uses deep learning methods
to organize rules for deciding whether a code fragment is vulnerable. Patch generation processes can be performed based
on neural network and rule-based approaches. The system uses the abstract syntax tree (AST) representations of the
source code fragments.
We have tested effectiveness of our approach on different open source projects. For example, Microsoft/Terminal
(https://github.com/microsoft/Terminal) was analyzed with DeeDP: our system detected security issue and generated
patch which was successfully approved and applied by Microsoft maintainers.
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Introduction
There are many cyber attacks which are rooted in

software vulnerabilities. Prevention of software prod-
ucts compromising is related to application of different
techniques e.g. Microsoft Security Development Lifecy-
cle (SDL) and deep software analysis on early stages
of development process. But involving huge amount of
security experts for software analysis is too expensive,
so most promising way is automation of each step: from
code examination to errors correction.

This paper represents technology and system DeeDP
for detection of vulnerabilities in source code and pro-
viding of a patch to fix detected errors. Our technology
is based on deep learning approach [1] for extraction of
vulnerable fragments of code represented as ASTs [2]
and automatic patch generation.

This work is a continuation of research on automat-
ing the detecting and fixing vulnerabilities in software.
The method of automating vulnerability detection is
deeply described in the article [3]. Now we consider the
procedure for fixing errors - generating patches.

In section Related works we review existing solutions
in the field of patch generation and their disadvantages.
Next, we consider overall design and approaches that
were used for system creation, as well as a result of
technology application.

1. Related works
Automatic patch generation allows you to fix vulner-

abilities in software without spending time and money
necessary for developers to understand process and cor-
rect detected defects[4]. There are two main methods
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of patch generation: 1) based on the study of a valid
code (human patches) (Prophet, SPR, RSRepair, Gen-
Prog, AE), 2) based on the use of fixed patterns (Senx,
PAR)[5].

The best-known “generate-and-validate” patch ap-
proach starts with collection of test input data, where
at least one piece of it identifies vulnerability in the
software. The patch generation system modifies the
program and generates space of patches, then looking
for plausible patches in this space (i.e. patches that give
the correct output for all test input data).[4] Prophet,
SPR, GenProg, RSRepair, AE work is based on this
approach[6, 7, 8, 9, 10].

GenProg, AE and RSRepair use various search algo-
rithms (genetic programming, stochastic search, ran-
dom search) in combination with transformations that
remove, insert or change existing program operators[11].
Prophet is focused on study of existing valid human
patches [12]. It uses a parameterized logarithmic proba-
bilistic model based on two features extracted from the
abstract syntax trees (AST) of each patch: 1) the way
the patch changes the source program, 2) the relation-
ship of how the values associated with the patch are
used in the source program and in the patched program.
Prophet ranks the possible patches generated for the
defect according to the probabilities of their correctness
[5].

SPR [13] uses a set of conversion schemes to generate
patch set. Then it uses a step-by-step program fix
process to validate the generated patches by checking
them on the original test suite, in which at least one
detects vulnerability in the original program. Prophet
works with the same search space as SPR, but differs in
that it uses its own model for correctness studies and,
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according to the study [4], shows better results than
hand-coded SPR heuristics.

This approach has a significant drawback, which was
confirmed by research [4], namely, the difficulty in cor-
rect evaluation of patches validity due to the small
amount of input test data. In regards to this, these
systems generate incorrect patches that pass the initial
test cases, but remove the functionality of the program
and create new vulnerabilities.

In the second method, patches are generated by ap-
plying fixed patterns that are written by a person based
on the generalization of the rules to correct common
vulnerabilities. PAR and Senx work in this way [5], [14].
The disadvantage of this method is the need to review
and summarize a large number of written patches to
fix vulnerabilities, as well as to write a large number of
patterns and correctly process all the variables that are
influenced by patch [15].

2. Task statement
Based on aforementioned discussion about fixing is-

sues in software, let discuss our approaches. Before we
want to determine some entities: P – product, some
software project C/C++ language with available source
code; X – fragment of vulnerable source code, which in-
cludes target function and context of execution (target
function – it is function which can be used in wrong way
and will lead to vulnerabilities in software); ̃︀𝑋 – patch,
fragment of code is related to X, but without vulner-
ability (target function is used in right way). General
feature set and functionalities of product P have been
the same as before applying changes ̃︀𝑋.

We want to build function: ̃︀𝑋 = 𝐹 (𝑋,𝐴) , where
𝐹 (∙) – is transformation of source code X (C/C++)
represented as AST to respective source code ̃︀𝑋 without
weaknesses, A – additional parameters.

We are considering two approaches:
• creation patch ̃︀𝑋, based on deterministic approach

(rule-based), when 𝐹 (∙) is represented as rule
(pattern) how to transform X, according to type
of CWE [16]. So, in this case 𝐴 = 𝐶𝑊𝐸𝑡𝑦𝑝𝑒,
𝐹 (𝑋,𝐶𝑊𝐸𝑡𝑦𝑝𝑒)

• Generation ̃︀𝑋 from X, with neural network - 𝐹 (∙).
Training neural network will be supervised, based
on collected samples from existed open source
repositories with detected weaknesses and after
patch-fix from contributor. In this case transfor-
mation function doesn’t need any additional pa-
rameters ̃︀𝑋 = 𝐹 (𝑋), so neural network should
remember dependency how was fixed such issue in
represented dataset.

It means that the first approach more reliable, be-
cause it assumes that developer which create respec-
tive rule is high experience, but this approach cannot
be scaled. The second approach can be fully auto-
mated and can be expanded on different cases: fixing
known weaknesses; automatic converting code to ap-
proved project style (handling exception, using specific
functions and etc.); applying specific code style. The
trained neural network 𝐹 (∙) will apply extracted from

dataset dependencies. The second approach is much
more promising, but it needs enough examples for train-
ing procedure. In Result section we provided examples
how was generated patch with rule and based on neural
network.

3. General architecture of proposed
method

Fig. 1. General architecture of DeeDP

This paper discusses the automation technology of
source code analysis for finding vulnerabilities and fixing
detected errors. There are two main steps: vulnerability
detection and patch generation figure 1.

A subsystem of DeeDP for vulnerability detection
is based on deep learning approach and performs the
following steps: source code preprocessing, AST cre-
ation, code gadget extraction, code gadget vectorization
(word2vec), application of trained BLSTM neural net-
work, preparation of human-readable report. We have
pushed off the concepts for source code analysis which
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are described in [14] and improved the steps with code
representations.

DeeDP subsystem for patch generation performs
transformation of code fragment (code gadget) which
was identified as vulnerable with specific function to
obtain a patch with improved code fragment. Transfor-
mation can be done with rule-based approach (specific
AST transformation according to detected issue) and
based on code generation with neural network (LSTM).

4. Patch generation based on rules
The procedure for generating patches based on rules

consists of the four steps: collecting data from static
analyzer; source code preprocessing, patch generation,
final verification. Current investigation was targeted
on the next list of weaknesses: division by zero pattern,
closed resource patterns, double free pattern, out of
bounds pattern, string buffer overflow pattern. Rule-
based approach allows to apply specific transformation
to source code represented as AST that relates to de-
tected issue.
1) Collecting data from static analyzer: verification

the source code with a static analyzer and detect-
ing vulnerabilities/weaknesses. We used on this
step VulDetect (our own solution for detection vul-
nerabilities based on deep learning approach [3]
and SVACE [17]. Based on result analysis we are
creating specific file with meta-information about
issue location.

2) Source code preprocessing: building an AST repre-
sentation of a code (with clang), extracting frag-
ment of AST (code gadget) according to issue loca-
tion. Code gadget – it is fragment of general AST
representation of all source code, which includes
detected issue and context of this function, based
on data flow analysis. Extract useful information
for each token in AST related to detected issue.
After this we are transforming AST representation
for the next step (replacing user names, functions
etc.).

3) Patch generation: according to type of detected
weaknesses we have specific rules (patterns) which
determines how we have to transform AST for re-
moving issue. After we are transforming the AST
according to the pattern. The next step is convert-
ing the received AST into a patch and applying
the patch to product.

4) Final verification: checking again the received code
with static analyzer to determine if the weaknesses
has been fixed and if new ones have been created.

Patterns format
∙ F i l e path : s r c / pat t e rn s / [VUL_NAME] / [

PATTERN_FILE]
∙ Patch pattern number (PPN) name format :

1 . Name o f pattern : "ppn_" + #
2 . F i l e format : . cpp
3 . In case s e v e r a l pa t t e rn s f o r one
v u l n e r a b i l i t y : add

"a"/"b"/"c" / . . .
( example : "ppn_1a . cpp" , "ppn_1b . cpp" )

∙ Requirements i n s i d e pattern :
1 . Entity name with v u l n e r a b i l i t y : ARG_1 or

func t i on name from CWE

2 . Entity type with v u l n e r a b i l i t y : TYPE_1
3 . Entity name f o r check : ARG_2
4 . Entity type f o r check : TYPE_2
5 . Var iab le name a f t e r v u l n e r a b i l i t y
opera t i on : ARG_3

6 . Var iab le type a f t e r v u l n e r a b i l i t y
opera t i on : TYPE_3

7 . Name f o r new va r i ab l e : [NAME] + "
_target_"

( example : idx_target_ , len_target_ )
8 . Type f o r new va r i ab l e : TYPE_4 or more

∙ Spe c i a l cha r a c t e r s :
1 . R − At s t a r t o f l i n e . Mean that need
r ep l a c e cur rent l i n e on l i n e that conta in s
v u l n e r a b i l i t y

2 . _ − Pre f i x f o r en t i t y that marks i t f o r
d e l e t i o n

3 . X − Some binary operator

5. Patch generation based on neural net-
work

After building patches using rule-based approach we
have understood that creating and applying patterns are
monotonous and requires a lot of intensive manual labor,
so we decided to automatize collecting and applying rule-
based patterns. According to Microsoft SDL procedure
there are may exists examples of good and bad usage of
some target calls, so according to this examples we can
generate some data set and fit Neural Network. Other
data set can be generated from project source code,
for example, most common usages of target calls, style
patterns, etc.

First of all, idea was in replacing bad code to good
code or adding some code for bad code become good
code, so we need to replace some text on other. In
one hand we can create bijection function (one-to-one
correspondence) for replacing bad code to good code.

Eventually, we need to create application that can
understand context of code and transform it to good
code, so we tried to use method that translating sen-
tences from one language to other with some modifica-
tions. One of standard methods of translating from one
language to other is seq2seq model (encoder-decoder
model). This model can be splitted up on two parts:
-encoder and -decoder part. On figure 2 illustrated stan-
dard encoder-decoder architecture. Encoder takes a raw
input text data just like any other RNN architectures
do. At the end, Encoder outputs a neural represen-
tation (‘thought’ vector). The output of Encoder is
going to be the input data for Decoder. Then Decoder
transform neural representation to words.

All models vary in terms of their architecture. A
natural choice for sequential data is the recurrent neural
network (RNN). Usually an RNN is used for both the
encoder and decoder parts [18]. The RNN models differ
in some aspects:

• directionality: unidirectional or bidirectional
• depth: single or multi-layer
• type: Long Short-term Memory (LSTM), or a

gated recurrent unit (GRU)
In this article, we used a single RNN which is uni-

directional and uses GRU as a recurrent unit. figure
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Fig. 2. Standard encoder-decoder architecture

3. Is an example of model that translate a source code
«fclose(arg_1);» to «if (arg_1) fclose(arg_1);». Here
«<s>» marks the start of the decoding process while
«</s>» tells the decoder stop.

For creating more quality model we need to add at-
tention mechanism [19]. The main idea of the attention
mechanism is to establish direct short-cut connections
between the target and the source by paying ‘atten-
tion’ to relevant source content as we translate. A
nice byproduct of the attention mechanism is an easy-
to-visualize alignment matrix between the source and
target sentences.

In the simple seq2seq model we pass the last source
state from the encoder to the decoder when starting
the decoding process. This works well for short and
medium-length sentences; but for long sentences, the
single fixed-size hidden state becomes an information
bottleneck. Instead of discarding all of the hidden states
computed in the source RNN, the attention mechanism
provides an approach that allows the decoder to peek at
them (treating them as a dynamic memory of the source
information). By doing so, the attention mechanism
improves the translation of longer sentences. Nowadays,
attention mechanisms are the defacto standard and have
been successfully applied to many other tasks (including
image caption generation, speech recognition, and text
summarization).

The attention computation happens at every decoder
time step. It consists of the following stages:
1) The current target hidden state is compared with

all source states to derive attention weights.
2) Based on the attention weights we compute a con-

text vector as the weighted average of the source
states.

3) Combine the context vector with the current target
hidden state to yield the final attention vector.

4) The attention vector is fed as an input to the next
time step (input feeding).

6. Results

Training BLSTM neural network for vulnerabilities
detection module was performed on dataset with more
than 15000 code gadgets (code samples with presence
of buffer overflow vulnerability, as well as samples with
vulnerabilities associated with incorrect resource man-
agement). Training samples were created based on
source codes taken from the National Vulnerability
Database (NVD), and from the NIST Software Assur-
ance Reference Dataset (SARD) [20].

Table 1. Confusion matrix of weaknesses detection

Name of metric Counts %
Total test code gadgets 6164 100%
True positive 4091 66%
True negative 1257 22%
Total true 5348 87%
False positive 524 8.5%
False negative 292 5%
Total false 816 13%

6.1. Weaknesses detection based on
deep learning

Results of detection procedure were described deeply
in previous paper [3], but we have updated our detector
with retraining on expanded data set.

Training BLSTM neural network for vulnerability
detection module was performed on dataset with more
than 15000 code gadgets (code samples with presence
of buffer overflow vulnerability, as well as samples with
vulnerabilities associated with incorrect resource man-
agement). Training samples were created based on
source codes taken from the National Vulnerability
Database (NVD), and from the NIST Software Assur-
ance Reference Dataset (SARD) [21]. Moreover, we
improved step with converting code gadget representa-
tion to vector based on word2vec method. Result of
estimation accuracy of weaknesses detection performed
in the table 1.

6.2. Results of generation rule-base
patches

Proposed technology was verified on different open
source projects, for example, jsoncpp, Microsoft/Termi-
nal, and others.

DeeDP detected a security issue with re-
source management in Microsoft/Terminal and
created a patch which was successfully ap-
proved and applied by Microsoft maintainers:
(https://github.com/microsoft/Terminal/commit/
99555ef9e9ba89b03bbeedf238b7e65375775b56).

6.3. Results of generation patches base
on neural network

We have performed test of approach for creation
patch with seq2seq concept, when neural network it-
self extracts statistical dependency between code with
weaknesses and improved code.
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Fig. 3. Example of a deep recurrent architecture for transforming

Fig. 4. Example of generated automatic patch for Microsoft Terminal

Collect dataset. Our data set was collected from com-
mon usages of target call of Microsoft popular projects.
Then, for removing user variables we replace by ARG_1,
ARG_2, etc. Prepare dataset:
1) Add a «<start>» and «<end>» token to each

sentence.
2) Clean the sentences by removing special characters.
3) Create a word index and reverse word index (dictio-

naries mapping from word → id and id → word).
4) Pad each sentence to a maximum length.

Build and train model:
1) Pass the «input» through the Encoder which return

«encoder output» and the «encoder hidden state».
2) The encoder output, encoder hidden state and the

decoder input (which is the «start token») is passed
to the decoder.

3) The decoder returns the «predictions» and the
«decoder hidden state».

4) The decoder hidden state is then passed back into
the model and the predictions are used to calculate
the loss.

5) Use «teacher forcing» to decide the next input to
the decoder.

6) «Teacher forcing» is the technique where the «tar-
get word» is passed as the «next input» to the
decoder.

7) The final step is to calculate the gradients and
apply it to the optimizer and backpropagate.

Create patch

• The evaluate function is similar to the training
loop, except we don’t use «teacher forcing» here.
The input to the decoder at each time step is its
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previous predictions along with the hidden state
and the encoder output.

• Stop predicting when the model predicts the «end
token».

• And store the «attention weights for every time
step».

trans form (u ’ f c l o s e (ARG_1) ; ’ )
Input : <s ta r t > f c l o s e ( arg_1 ) ; <end>
Pred ic ted trans form : i f ( arg_1 ) {

f c l o s e ( arg_1 ) ; } <end>
========================================

transform (u ’FILE ∗ARG_1 = fopen (ARG_2,
ARG_3) ; ’ )

Input : <s ta r t > f i l e ∗ arg_1 = fopen (
arg_2 , arg_3 ) ; <end>

Pred ic ted trans form : f i l e ∗ arg_1 =
fopen ( arg_2 , arg_3 ) ; i f ( arg_1
= = nu l l ) re turn f a l s e ; <end>

========================================

transform (u ’FILE ∗ARG_1; ARG_1 = fopen (
ARG_2, ARG_3) ; ’ )

Input : <s ta r t > f i l e ∗ arg_1 ; arg_1 =
fopen ( arg_2 , arg_3 ) ; <end>

Pred ic ted trans form : f i l e ∗ arg_1 ;
arg_1 = fopen ( arg_2 , arg_3 ) ;
i f ( arg_1 = = nu l l ) { p r i n t f ( \
unable to open f i l e \ \ r \ \ n ) ;
arg_3 = 1 ; re turn arg_3 ; } <end>

Listing 1. Examples of generated patches based on
neural network

We have developed DeeDP system with web UI where
in which direct links to GitHub can be pasted for anal-
ysis. After analysis the system shows results of vulner-
ability verification and suggested patches. The next
steps of our investigation are expansion list of detectable
vulnerabilities and improvement of patch generation
techniques.

Conclusion

This paper describes approaches for automation of
detection and fixing vulnerabilities in C/C++ source
code based on different approaches. Presented rule-
based approach for fixing issue shows robustness, but
cannot be easily scaled. We implemented this approach
first of all for baseline and collecting dataset, which will
be used in the second method.

We have verified ability to use neural network for
generation patch and got very good result. In future we
are planning to expend set of weaknesses which can be
detected with our VulDetect module and can be auto-
matically fixed by Patch generation module. Moreover
we want to use Generative adversarial network (GAN)
for generation code without issue from primary source
code. In general we need to add ability to continu-
ously train both neural networks (for detection and for
generation processes) on new appeared samples.
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