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Abstract: 4mC is a type of DNA alteration that has the ability to synchronize multiple biological
movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accu-
rate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose
of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter
pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and k-mer
composition were used to encode the DNA sequences of Geobacter pickeringii. The obtained features
from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-
based algorithm with incremental feature selection (IFS) method. Then, these optimized features
were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites
in Geobacter pickeringii. The performance of the anticipated model on independent data exhibited
an accuracy of 0.868, which was 4.2% higher than the existing model.

Keywords: deep learning; alteration; features vector; genomics; algorithm

1. Introduction

Alterations in DNA play a significant role in gene expression and regulation, DNA
replication, and transcriptional regulation. Methylcytosine is a key epigenetic trait at 5′-
cytosine-phosphate-guanine-3′ site. Methylcytosine is precisely correlated with cell growth
and chromosomal protection [1,2]. 5-Hydroxymethylcytosine (5hmC), 5-methylcytosine
(5mC), and 4-methylcytosine (4mC) are the familiar cytosine methylations in multiple
genomes of prokaryotes and eukaryotes [3,4]. 5mC is a frequent type of methylcytosine and
responsible for many neurodegenerative and cancerous diseases [5]. 4mC is a significant
alteration that protects genomic knowledge from weakening by restriction enzymes [6].

Precise identification of 4mC sites can give important signs to understand the method
of gene regulation. At present, there are several techniques to recognize 4mC sites, for ex-
ample, single-molecule real-time sequencing [7], mass spectrometry [8], and bisulfite
sequencing [9], but these techniques are time-consuming and expensive when utilized on
next-generation sequencing data. Hence, a computational model to identify 4mC sites is
needed on an urgent basis. Currently, a few computational and mathematical methods
have been introduced to predict 4mC sites in multiple species. In 2017, Chen at al. [10]
introduced the first computational model to predict 4mC sites in multiple species on the
basis of confirmed 4mC dataset. Subsequently, Wei at al. [11] designed the novel iterative
feature illustrative algorithm for the prediction of 4mC sites. Tang et al. [12] introduced
the new linear integration method by merging the existing models for the identification
of 4mC sites. Afterwards, Manavalan et al. [13] established the new tool Meta-4mCpred
to recognize 4mC sites in six different species. Khanal et al. [14] introduced the first deep
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learning model 4mCCNN by utilizing numerous feature combinations [15–17] for the
prediction of 4mC sites in multiple genomes [18]. Although the prediction model 4mCCNN
can yield good outcomes, there is still space for more improvement.

To tackle these hitches, we constructed a 1D CNN model to recognize 4mC sites
in Geobacter pickeringii. Figure 1 illustrates the flowchart of the whole study. Binary
and k-mer nucleotide composition descriptors were used to encode DNA sequences of
Geobacter pickeringii into feature vectors and then these features were optimized by using
a correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental
feature selection (IFS) method. After this, these optimized features were inserted into 1D
CNN-based classifier using 10-fold cross-validation and we attained the finest model to
classify 4mC from non-4mC.
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Figure 1. Flowchart of the whole study.

2. Results and Discussion
2.1. Performance Evaluation

We constructed a 1D CNN-based model named Deep-4mCGP for the identification
of 4mC sites in Geobacter pickeringii. In the first step, we converted the sequence data in to
feature vectors by using k-mer nucleotide composition and binary encodings. Subsequently,
these feature vectors were improved by means of correlation and GBDT-based algorithm
with IFS method. Initially, correlation and then GBDT with IFS were utilized to pick the
finest features. Figure 2A,B displays the IFS curve of top features. Afterward, these finest
features were inserted into 1D CNN by using 10-fold cross-validation to classify 4mC
sites from non-4mC sites in Geobacter pickeringii. In this work, 10-fold cross-validation
was employed to examine the efficiency of the model. The data were arbitrarily divided
into 10 segments of equal proportion. Each segment was independently tested by the
model, which was trained on the outstanding nine segments. Thus, 10-fold cross-validation
technique was executed 10 times, and the average of the outcomes was the ultimate result.
AUROC of the anticipated model was 0.986, which was 6.5% higher than the existing model.
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The accuracy, precision, recall, and F1 are shown in Table 1, and the ROC curve is shown in
Figure 2C.
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Figure 2. (A,B) The IFS technique for recognizing 4mC sites. Initially, 871 best features were picked
from an overall 5624 by correlation measures (A). A total of 50 more optimized features were also
attained from 871 best features by the using of GBDT on 10-fold CV. The Acc increases from 0.894 to
0.908 (B). Plot showing the AUROC curve of Deep-4mCGP on 10-fold CV (C). Nucleotides allocation
along the alteration site (D). Performance comparison of Deep-4mCGP with 4mCCNN on 10-fold
cross-validation (E). AUROC of predictors on training and independent data (F).

Table 1. Outcomes of single encodings and their fusion based-models on training and independent
data by using different classification algorithms. Bold is used to highlight the best results.

Training Data Independent Data

Algorithm FS Method Accuracy Precision Recall F1 AUROC Accuracy Precision Recall F1 AUROC

LSTM 5460 k-mer 0.861 0.872 0.861 0.811 0.943 0.825 0.820 0.812 0.819 0.882
164 Binary 0.834 0.828 0.837 0.838 0.875 0.801 0.804 0.798 0.801 0.872

5624 Fusion 0.868 0.865 0.859 0.862 0.937 0.810 0.814 0.808 0.813 0.902
871 Fusion 0.859 0.857 0.847 0.857 0.925 0.808 0.801 0.807 0.800 0.876
50 Fusion 0.884 0.878 0.881 0.879 0.959 0.841 0.842 0.839 0.842 0.921

RF 5460 k-mer 0.831 0.862 0.758 0.664 0.936 0.809 0.838 0.761 0.648 0.909
164 Binary 0.772 0.763 0.755 0.770 0.863 0.753 0.748 0.753 0.756 0.832

5624 Fusion 0.844 0.847 0.839 0.845 0.891 0.795 0.788 0.783 0.794 0.887
871 Fusion 0.847 0.849 0.851 0.846 0.897 0.801 0.800 0.800 0.798 0.878
50 Fusion 0.866 0.858 0.861 0.854 0.915 0.812 0.808 0.814 0.812 0.898

GBDT 5460 k-mer 0.848 0.881 0.776 0.676 0.962 0.828 0.861 0.770 0.669 0.931
164 Binary 0.827 0.821 0.823 0.827 0.895 0.782 0.778 0.779 0.781 0.862

5624 Fusion 0.835 0.832 0.830 0.832 0.893 0.786 0.780 0.786 0.786 0.882
871 Fusion 0.851 0.853 0.848 0.854 0.901 0.814 0.810 0.815 0.810 0.893
50 Fusion 0.875 0.874 0.868 0.860 0.945 0.836 0.835 0.830 0.841 0.920

CNN

5460 k-mer 0.880 0.879 0.887 0.880 0.949 0.848 0.844 0.841 0.845 0.927
164 Binary 0.868 0.836 0.834 0.832 0.928 0.798 0.802 0.807 0.790 0.881

5624 Fusion 0.868 0.865 0.859 0.862 0.937 0.810 0.814 0.808 0.813 0.903
871 Fusion 0.894 0.877 0.897 0.889 0.955 0.846 0.845 0.841 0.838 0.920
50 Fusion 0.908 0.914 0.910 0.908 0.986 0.868 0.876 0.773 0.859 0.961
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2.2. Sequence Composition Analysis

The pattern of sequence along the alteration site is a crucial phase to recognize and
understand the definition of genomic disparities [19]. In this work, we utilized Two Sample
Logo [20] to inspect the dispersal of nucleotides along the 4mC site. Figure 2D illustrates the
dispersal of nucleotides. Nucleotides ‘A’ and ‘T’ were separately rich at the upstream and
downstream of the positive sequences, e.g., five consecutive ‘A’ nucleotides (30–34) and four
successive ‘A’ (15–18, 24–27) originated in positive sequences. Nucleotides ‘C’ and ‘G’ were
abundant at the upstream and downstream of the negative sequences, e.g., five repeated
‘G’ nucleotides (30–34) and four repeated ‘G’ nucleotides (3–6, 24–27) and four consecutive
‘C’ nucleotides (15–18) were noticed in negative sequences. Figure 2D shows that there was
a significant variance amongst 4mC sequences and non-4mC sequences. The consequences
proposed that the dispersal of nucleotides in diverse places are supportive for the precise
identification of 4mC.

2.3. Comparison on the Basis of Independent Data

Features fusion were inserted into LSTM [21], GBDT [22], and RF [23,24] to compare
with the CNN-based model [25]. Ultimately, on the basis of AUROC, we achieved a per-
fect model for each predictor, which is shown in Table 1 and Figure 2F. Comparison of
anticipated model with 4mCCNN by using 10-fold cross-validation is shown in Figure 2E.
On the independent data (200 Pos. seq and 200 Neg. seq) the efficiency of Deep-4mCGP
was checked and then compared with the existing 4mCCNN. The accuracy, precision, recall,
F1, and AUROC of the 4mCCNN were 0.826, 0.818, 0.823, 0.825, and 0.920, respectively.
The accuracy, precision, recall, F1, and AUROC of Deep-4mCGP were 0.868, 0.876, 0.773,
0.859, and 0.961, respectively. The performance of the anticipated Deep-4mCGP on inde-
pendent data exhibited the accuracy of 0.868, which was 4.2% higher than the 4mCCNN.
The performance comparison is shown in Table 2.

Table 2. Performance comparison of Deep-4mCGP with 4mCCNN.

Predictor CV Accuracy Precision Recall F1 AUROC Reference

4mcCNN 10 (folds) 0.871 0.857 0.893 0.750 0.921 [14]
Deep-4mCGP 10 (folds) 0.908 0.914 0.910 0.908 0.986 Deep-4mCGP

4mcCNN Test (Ind) 0.826 0.818 0.823 0.825 0.920 [14]
Deep-4mCGP Test (Ind) 0.868 0.876 0.773 0.859 0.961 Deep-4mCGP

3. Materials and Methods

Authentic data are a significant requirement for the construction of a machine learning-
based model [26,27]. Thus, we acquired the data of 1138 (569 Pos. seq and 569 Neg. seq)
sequences of Geobacter pickeringii from the work of Chen et al. [10] for training and testing
the model. Moreover, we attained the data of 400 sequences (200 Pos. seq and 200 Neg. seq)
from the work of Manavalan et al. [13] for the sake of independent testing.

3.1. Feature Descriptors

Selecting useful and ideal features is an important step in developing machine learning
models [4,28–37]. Converting the DNA sequences into numerical feature vectors is key
in the recognition of functional elements, e.g., physiochemical properties, natural vectors,
binary composition, and k-mer nucleotide compositions, which have been utilized in com-
putational biology and bioinformatics [38,39]. In this study, binary and k-mer composition
were used to encode DNA sequences of Geobacter pickeringii.
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3.1.1. k-mer

k-mer composition has the ability to show interactions between nucleotides of DNA
sequences [40]. The residues of nucleotides can be attained by setting the size of window
and steps. A random sample F with n sequence length can be designated as

F = S1 S2 S3 . . . ..Si . . . ..S(n−1) Sn (1)

where Si indicates the i-th nucleotide of the DNA sequences and can be converted in to 4k

D features vector with the help of k-mer.

Fk =
[
dk−tuple

1 dk−tuple
2 . . . . . . .dk−tuple

i . . . ..dk−tuple
4k

]T
(2)

where d1
k-tuple denotes the incidence of i-th k-mer and T represents the transposition. If the

value of k is equal to 1, then DNA sequence will be decoded in to 4D features vector, and if
the value of k is equal to 2, then DNA sequence will be 16D features vector. In this work,
k was set as 1, 2, 3, 4, 5, 6. Consequently, DNA sequences were converted into (41 + 42 + 43

+ 44 + 45 + 46 = 5460D) formulated as

F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ F6 (3)

3.1.2. Binary

Binary encodings such as 0s and 1s have the ability to illustrate any information.
Therefore, we can transform DNA sequence in the form of 0s and 1s. In this work, DNA
sequences of Geobacter pickeringii with length of 41bp was encoded into the (4 × 41 = 164D)
features vector.

3.2. Feature Selection
3.2.1. Correlation

Correlation is a familiar comparison amongst two different features, e.g., if the features
are un-correlated, then the correlation will be zero; otherwise, it will be ±1. Two complete
modules named classical linear correlation and correlation on the basis of information
theory were implemented to compute the correlation amongst the two unique variables.
Linear correlation coefficient is the most acquainted and utilizable. The linear correlation
coefficient ‘r’ for a pair of (p, q) variables is specified as

r =
∑ (pi − pi)(qi − qi)√

∑ (pi − pi)
2
√

∑ (qi − qi)
2

(4)

Correlation generates good results in smaller datasets, but the performance of correla-
tion coefficient is not up to the mark on gigantic amounts of data. Therefore, it is necessary
to determine the substantial relationship amongst the features. Thus, we utilized the t-test
to investigate the statistical correlation between the features and picked the significant
features. The value of ‘t’ can be computed as

t = r
√

n− 2
1− r2 (5)

where ‘r’ signifies the coefficient of correlation and ‘n’ represents the occurrences. ‘n−2′

denotes the degree of freedom. Probability of the significance relation is 0.05. If ‘t’ is greater
than the probability of the significance relation 0.05, then the feature will be selected.

3.2.2. GBDT with IFS

GBDT is a popular machine learning-based classifier that has been utilized in various
mathematical, cheminformatics, and bioinformatics tools [41,42]. It has the ability to
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establish a scalable and reliable prediction model by utilizing non-linear joints of weak
learners [43].

{(x1, y1 ) . . . ( xn, yn )} (∴ xiε x ⊆ Sn, and yiε y ⊆ S) qk (x):=
k

∑
k=1

D (x; θk) (6)

where θk is minimal risk of the decision tree and Dk(x; θk) is the decision tree.

θ̂k = argmin
n

∑
i=1

P (yi, qk−1(x) + D (x; θk) )(∴ P is the loss function) (7)

GBDT also computes the concluding evaluations in an advancing mode.

qk(x)= qk−1(x)+D (x; θk) (8)

Negative gradient loss function qk−1 is applied for residual computation.

Ski = −
[

∂P(yi, q(xi))

∂q(yi)

]
q(x)=qk−1(x)

(∴ i = 1, 2, 3 . . . .n) (9)

Hence, we trained the anticipated model through Ski to compute the minimal risk θk.
This kind of trees rationally represents the relations between variables, e.g., plotting the
input X into J fragments S1 . . . SJ , and output is ZJ for area SJ .

D(x; θ) =
J

∑
j=1

zj I
(
xj ε Sj

)
(10)

The IFS [44,45] method was implemented in this work to pick the finest feature. IFS
estimates the performance of the best q-ranked features repetitively for q ε (1, 2, 3, . . . n),
where ‘n’ is the overall number of the features. IFS frequently stops at the first scrutiny
of performance. In IFS, features were picked incrementally from a randomly taken initial
feature and the finest result from several randomly re-instated IFS processes were outputted.
A brief explanation of the IFS technique can be found in [46].

Algorithms 1: Correlation and GBDT-based Feature Selection Algorithm

Input: Training Data: = Q (L1, L2, . . . . . . , Lk, Lc)
Output: Qbest

1st Round
1 Begin
2 for i = 1 to k do
3 r = calculate correlational coefficient (Li, Lc)
4 end
5 p = 0.05
6 ρ= 0 (∴ if there is no correlation among the Fi and Fc)
7 for i = 1 to k do
8 t = to calculate the significance (r, ρ) for Li (∴ by utilizing the t-test value from Equation (5))
9 if t > critical value
10 Qbest = Q list
11 end
12 return Qbest
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Algorithms 1: Cont.

2nd Round
Input: Qbest: = (xi, yi)

n
i=1

Where, (xi = data and yi = label)
LF: = P (yi, q (x))

13 By initializing the model
14 q◦ (x): = argument minimum ∑n

i=1 P(yi, z)
15 for I = {1, 2, 3, 4, 5 . . . , n} do
16 for k = {1, 2, 3, 4, 5 . . . , K} do
17 Pseudo residual error calculations: Ski = −

[
∂P(yi ,q(xi))

∂q(yi)

]
q(x)=qk−1(x)

18 end
19 end
20 On the basis of Ski , θk= {Skj j = [1, 2, 3 . . . J]}, we built a decision tree Dk(x; θk)
21 for j = {1, 2, 3, 4, 5 . . . ., J} do
22 zkj = argument minimum ∑n

xi∈ Skj
P(yi, qk−1(x) + z)

23 end
24 Updating the model qk(x) = qk−1(x) + ∑

j
j=1 zkj I

(
xÎSkj

)
25 q (x) = ∑K

k=1 ∑J
j=1 zkj I

(
xÎSkj

)
Output: The decision tree function q (x)

3.3. Convolutional Neural Network

LeCun at al. [47] introduced convolutional neural network, and now it has been
roughly utilized in many biological and bioinformatics advances [48–50]. The fundamental
principle of CNN is to create abundant filters that have the ability to produce hidden
topological features from data by executing pooling procedures and layer-wise convolu-
tions. The performance of CNN on 2D data of images and matrices is exceptional [51].
Subsequently, 1D CNN has been used to tackle the difficulties of biomedical sequence data
identification and the research associated with natural language processing [41,52]. In this
work, we implemented 1D CNN to identify 4mC sites in Geobacter pickeringii. We employed
Keras 2.3.1 [53], TensorFlow 2.1.0, and Python 3.5.4 to perform this experiment. The best
tuning parameters are recorded in Table 3.

Table 3. Program in TensorFlow 2.1.0 with employed parameters.

Classifier Parameters

RF N-estimators = 100, Learning-rate = 0.001, Mean absolute error = 0.143, Mean square
error = 0.220

GBDT N-estimators = 120, Learning-rate = 0.01, Mean absolute error = 0.117, Mean square
error = 0.212

LSTM

nn.LSTM(input_size = feature_size, hidden_size = 128)
nn.Linear(int_features = 128, out_features = 1)

nn.Sigmoid()
learning-rate = 0.001, Epoch = 100, Batch-size = 32

CNN

nn. Conv1d (in_channels = feature size, out_channels = 32, padding = valid, strides
= 1, kernel_size = 2)

nn.ReLU()
nn.MaxPool 1d (padding = valid, strides = 2, pool_size = 2)

nn. Dropout (p = 0.5)
nn.Sigmoid()

Learning-rate = 0.01, epoch = 80, batch-size = 32
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3.4. Metrics Evaluation

Precision, accuracy, recall, and F1 [54–56] were employed to examine the effectiveness
of the anticipated prediction model and formulated as

Precision = TP
TP+FP

Recall = TP
TP+FN

Accuracy = TP+TN
TP+FP+TN+FN

F1 = 2× Precision×Recall
Precision+Recall

(11)

where ‘TP’ symbolizes the accurately predicted 4mC sequences, ‘TN’ represents the per-
fectly predicted non-4mC sequences, ‘FP’ indicates the non-4mC sequences predicted as
4mC sequences, and ‘FN’ indicates the 4mC sequences predicted as non-4mC sequences.

4. Conclusions

4mC is a type of DNA alteration that has the ability to synchronize multiple biological
movements for example DNA replication, gene expressions, and transcriptional regula-
tions. Accurate prediction of 4mC sites can provide exact information to their hereditary
functions. Currently, several machine learning models have been used to predict 4mC
sites in multiple genomes [10,12,13,57–60]. However, there is only one deep learning-based
model, 4mCCNN [14], that exists for Geobacter pickeringii. In this work, a deep learning
model was constructed to recognize 4mC sites in Geobacter pickeringii. In the anticipated
model, two kinds of feature descriptors, namely, binary and k-mer composition were used
to encode the DNA sequences of Geobacter pickeringii. The obtained features from their
fusion were optimized by using correlation and GBDT-based algorithm with IFS method.
Then, these optimized features were inserted into a 1D CNN-based classifier using 10-fold
cross-validation, and we attained the finest model to classify 4mC from non-4mC. The per-
formance of the anticipated Deep-4mCGP on independent data exhibited an accuracy of
0.868, which was 4.2% higher than the 4mCCNN. The source code and data are available at
GitHub: https://github.com/linDing-groups/Deep-4mCGP (accessed on 19 January 2022).
In future work, we have a plan to release a web-based application to make our anticipated
model more convenient for the users without programming and statistical knowledge.
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