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Abstract. Multi-scale modelling of biological systems, for instance of
tissues composed of millions of cells, are extremely demanding to simu-
late, even resorting to HPC facilities, particularly when each cell is de-
scribed by a detailed model of some intra-cellular pathways and cells are
coupled and interacting at the tissue level. Model abstraction can play a
crucial role in this setting, by providing simpler models of intra-cellular
dynamics that are much faster to simulate so to scale better the analysis
at the tissue level. Abstractions themselves can be very challenging to
build ab-initio. A more viable strategy is to learn them from single cell
simulation data.

In this paper, we explore this direction, constructing abstract models of
chemical reaction networks in terms of Discrete Time Markov Chains
on a continuous space, and learning transition kernels using deep neural
networks. This allows us to obtain accurate simulations, greatly reducing
the computational burden.

Keywords: deep learning, chemical reaction networks, model abstrac-
tion, stochastic simulation

1 Introduction

Computational modelling is a central ingredient in the quest for understanding
and predicting the dynamics of complex biological systems [8]. A wide range of
interesting biological processes can be modelled as a complex network of bio-
chemical reactions. These reactions take place inside cells, which are themselves
part of networks of intercellular interaction. This is the case, for instance, of tu-
moral tissues [11]. In silico modelling plays a central role also for studying such
multi-scale systems.

At the intra-cellular level, there are fairly established techniques to model
and simulate biochemical reaction networks, taking into account the intrinsic
variability and noise due to the small number of molecules involved and a certain
degree of randomness in their distribution [8]. The most prominent approach
to analyse such models is stochastic simulation, starting from the well known
Gillespie algorithm [1], and moving to more efficient but approximate methods
like tau-leaping [6] and hybrid simulation [9].



When dealing with a multiscale system, it would be desirable to explicitly
model the detailed intracellular mechanics. Unfortunately, simulations times be-
come quickly unfeasible when working with large number of cells 105 or 106 cells,
even using state of the art HPC infrastructures and techniques and approximate
simulation algorithms.
Models of phenomena happening at the tissue level at this scale of complex-
ity require a considerable reduction of single cell simulation times, simplifying
cellular models. This calls model abstraction into play.

While manual crafting of abstract models is always possible, a more scalable
approach is to learn abstract models from single-cell simulation data. The basic
idea is to start from a suitable number of simulated system trajectories, using
available simulation algorithms, and then learn a simpler probabilistic model
from such data. Such model should allow us to generate approximate trajectories,
possibly only for a subset of variables involved in the inter-cellular processes,
in a significantly faster way that the original detailed model, still retaining a
reasonable accuracy.

Related work. This idea was employed by Liu et al. in [13] to approximate
an ODE dynamic and was further refined by Palaniappan et al. in [26] to deal
with a stochastic dynamics. In this work, the authors select a subset of relevant
variables and discretise them using information theoretic tools, and then build
an approximate model based on a dynamic Bayesian network (DBN). Palaniap-
pan et al. were able to perform accurate simulations using their abstract DBN,
reducing simulation times by an order of magnitude compared to the original
model. An alternative approach is that of [25], in which authors learn a simplified
model of the bacteria chemotaxis mechanisms in bacteria exploiting Gaussian
Processes (GP). In particular, they consider a fast equilibrating internal pro-
cess, and use GP to model the choice of movement strategy as a function of the
environmental state.

Contributions In this paper, we focus on the abstraction procedure, starting
from [26]. Their approach is mostly driven by information theoretic considera-
tions, which is extremely effective in isolating the core components needed to
perform an accurate approximation of the original process. Moreover, [26] and
[13] models are discrete in time and space: the domain of each tracked chemical
species is partitioned in a certain number of subintervals and, at each time step,
the system may change its state by jumping to another node of the discrete
state space. The jumping probabilities, properly factored according to the DBN
topology, have to be stored in memory. This becomes troublesome when a high
number of chemical species is involved or when a high level of resolution on the
state of certain variables is required. In this case, the size of the discrete state
space is doomed to explode.

Instead of working with a DBN, our insight is to resort to a different proba-
bilistic model: a discrete-time Markov chain on a continuous state space, bypass-
ing the difficulties arising from the state space discretization. A Markov chain



{ηk}k2N is completely determined once its transition kernel has been specified,
i.e. a function which maps the previous state sn of the chain to the probabil-
ity distribution on the state space describing the possible outcomes for ηn+1

conditioned on ηn = sn. Transition kernels are the continuous equivalent of a
transition matrix for a Markov chain with a finite number of states.

Our proposal is to model transition kernels as probability mixtures, which
are weighted combinations of a certain number of elementary probability dis-
tributions components (normal, log-normal, etc.). Sampling from a mixture is
fast, while the model itself is extremely flexible and can be used to approximate
fairly complicated probability distributions. Our components are chosen from
the exponential family and are thus completely determined by a fixed number
of parameters. Everything then boils down to an optimization problem: we need
to properly tune the number of components and their parameters in order to
produce a good transition kernel which maximizes the likelihood of our data.

Real world chemical reaction networks involve a high number of different
species, which means that our components are high dimensional probability dis-
tributions: the parameter space we want to explore is expected to be complicated.
Furthermore, parameters will depend on the previous state ηn visited by the dis-
crete abstraction, hence they have to be modelled as (continuous) functions of
this state.

We tackled this supervised learning problem using Deep Neural Networks
(NN). In particular, we exploit Mixture Density Networks, [2], and use different
NN body architectures . We provide a software implementation of the described
approach as a reusable Python library, and show on some case studies the ef-
fectiveness of our method, capable of reducing the computational complexity of
several orders of magnitude.

Paper Structure The paper is organised as follows: In Section 2, we introduce
the relevant background notions, while in Section 3 we discuss the abstraction
procedure. Section 4 is devoted to present the implementation, and Section 5 to
experimental evaluation. Conclusions are drawn in Section 6.

2 Background

Chemical reaction networks Chemical Reaction Networks (CRNs) are the
standard formalism to describe dynamical models of biological systems. Under
the well-stirred assumption, they can be interpreted stochastically as a Contin-
uous Time Markov Chain (CTMC) [8, 1, 27] on a discrete state space S. We
denote by X = {X1, . . . , Xn} the chemical species involved in our CRN and by
ηt = (ηt,1, . . . , ηt,n) 2 S = N

n the state vector at time t: ηt,i is the number of Xi

molecules in the system at time t.
The dynamics is encoded by a set R = {R1, . . . , Rm} of reactions, each

being a tuple (fRi
, νi). fRi

is the propensity function, and gives the rate at
which reaction Ri fires, while νi is the update vector: the firing of reaction Ri

changes the state from ηt to ηt + νi.



P(ηt = s |ηt0 = s0) = Ps0(ηt = s) is the probability of finding our system in
state s at time t given that it was in state s0 at time t0. It satisfies a system of
ODEs known as Chemical Master Equation (CME):

∂tPs0(ηt = s) =

h
X

i=1

[Ps0(ηt = s� νi)fRi
(s� νi)� Ps0(ηt = s)fRi

(s)] (1)

Solving the CME numerically is very challenging (see [27] for further details), and
typically CRNs are simulated. The most commonly used simulation algorithm
is Gillespie’s SSA [1].

Running example: the SIR model The SIR epidemiological model, describ-
ing the spread of an infectious disease that grants immunity to those who re-
cover from the acute phase. Despite not being properly a molecular system, it
can be modelled as a CRN. The SIR model describes a population of N indi-
viduals divided in three mutually exclusive groups: Susceptible, Infected and
Recovered/Removed. The system state vector is given by ηt = (St, It, Rt), each
component standing for the total number of individuals in the corresponding
population group. The interactions considered by the SIR model are the follow-
ing:

R1 : S + I ��! 2 I (infection) (2)

R2 : I ��! R (recovery/death) (3)

The propensity functions are of mass action type [8]: fR1 (St, It, Rt) = k1
ItSt

N

and fR2 (St, It, Rt) = k2It, with corresponding update vectors ν1 = (�1,+1, 0)
and ν2 = (0,�1,+1). The ratio k1/k2 is called basic reproduction number and
its value is strongly connected with the overall behaviour of the system: minor
outbreak, serious outbreak, pandemic (see [10]). The SIR model dynamic is well
understood and we shall use it as testing ground for our abstraction protocol.

Neural Networks Machine learning can be loosely defined as a collection of
algorithms and techniques employed to automatically tune (learn) an analyti-
cal model from a (possibly huge) set of data [23, 5]. Learned models are used to
perform a wide range of different tasks: image recognition, time series analysis,
machine translation, speech recognition, etc.

Artificial neural networks (NN) date back to the 50s and have recently con-
quered the spotlight thanks to an impressive set of achievements [23]. The ba-
sic (feed-forward) NN architecture can be represented as a weighted directed
graph where each vertex stands for a node (or neuron). It can be divided in
three blocks: an input layer, a set of hidden layers3 and an output layer. Data

3 A node is said to be hidden if it does not belong to the input or the output layer.
A layer is, roughly, a collection of nodes at the same depth level with respect to the
input layer. A layer composed of hidden nodes is called hidden layer.
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Fig. 1: A visual summary of what happens at hidden and output nodes.

are fed to the input layer and flow through the network undergoing a certain
number of (non-linear) transformations determined by hidden block design. The
transformed data are then returned to the user through the output layer. This
procedure is called forward propagation. The value of an output node is thus
the result of the stacked application of linear transformations and a (non-linear)
function. Despite their mathematical simplicity, NNs can approximate any mea-
surable function from the input to the output nodes with arbitrary precision
[23].

In a supervised machine learning problem we are given a training dataset:
each input data is associated with the desired output. Training a NN is a
(stochastic) optimization problem: we try to minimize an error function, which is
computed using the values of the output nodes, with respect to the NN weights
and biases.

Mixture Density Networks A typical regression approach would try to learn
the value of ηt using ηt�1 as input minimizing a sum-of-squares error function.
This corresponds, implicitly, to the task of learning the mean of a multivariate
normal variable via maximum likelihood estimation (see section 5.2 of [5]). This
scheme, however, does not capture information about the distribution of ηt given
ηt�1, and is going to perform particularly poorly if the system exhibits a certain
degree of multimodality.

To circumvent such problem, we are going to learn the parameters needed
to specify a mixture distribution: these are going to be our output nodes, as
anticipated in Section 1. The error function associated with the output layer is
naturally the negative log-likelihood of the mixture density distribution. This
type of NNs are called Mixture Density Networks (MDN). All the models in this
work are MDNs. A detailed explanation of MDNs can be found in [2], where
they made their first appearance. MDNs are also well explained in section 5.6 of
Bishop’s book, [5].

3 MDN-based abstraction procedure

Model abstraction Let {ηt}t�0 be a CTMC describing a CRN system with
state space S = N

m. To construct our abstraction, we assume to be interested
only in the behaviour of the model in a grid of time points at a fixed temporal



distance. Hence, we fix a time step ∆t and an initial time instant t0 2 R and
define

η̃i := ηt0+i∆t 8i 2 N. (4)

The stochastic process {η̃i}i, thanks to the Markov property enjoyed by CTMCs,
is a time-homogeneous Discrete Time Markov Chain (DTMC) with transition
kernel

Kd(s | s0) = P(η∆t = s | η0 = s0) (5)

for all s, s0 2 S.
Our model abstraction procedure introduces two approximations:

1. The state space S = N
m is embedded into the continuous space X̃ = R

m
�0.

The abstract model takes values in X̃.
2. The kernel Kd is approximated by a new kernel K(x | x0) taking values in

the continuous space X̃.

In constructing the approximate kernel K(x |x0), Rather than trying to preserve
the full behaviour of the process, we restrict our attention to a time-bounded
reward function r : SM ! T from SM to an arbitrary space T (i.e. R, N, B, or
R

k). Here M is an upper bound on the duration of discrete time trajectories we
consider to evaluate the reward; we indicate time-bounded trajectories by η̃[0,M ].
Such a function r can be a projection, thus monitoring the number of molecules
belonging to a certain subset of chemical species at a certain time step, or it can
take Boolean values in B = {0, 1}, representing the truth of a linear temporal
property, for example checking if the system has entered into a dangerous region.
Note that r(η̃[0,M ]) is a probability distribution on T .

The second ingredient we need is a way to measure the error introduced by
the abstract model, i.e. how much the abstract distribution differs from r(η̃[0,M ]).
This can be accomplished by fixing a distance among distributions. In our ex-
periments, we rely on the L1 norm, typically used to measure the goodness of
fit:

d(X,Y ) :=

Z

Rk

|pX(z)� pY (z)| d z (6)

This metric will be practically evaluated statistically, resulting in the so called
histogram distance [7]. We now give a formal definition of model abstraction.

Definition 1. Let η = {ηi}
M
i=0 be a discrete time stochastic process over an

arbitrary state space S, with M 2 N+ a time horizon, and let r : SM ! T be the
associated reward function. An abstraction of (η, r) is a quadruple (S0, p, r0, A =
{Ai}

M
i=0) where:

– S̄ is the abstract state space;
– p : S ! S̄ is the abstraction function;
– r̄ : S̄M ! T is the abstract reward;
– η̄ = {η̄i}

M
i=0 is the abstract discrete time stochastic process over S̄.

Let ε > 0. η̄ is said to be ε-close to η with respect to d if, for almost any s0 2 S,

d
�

r(η[0,M ]), r̄(η̄[0,M ])
�

< ε conditioned on η0 = s0, η̄0 = p(s0) (7)



It is common enough to choose a projection over a subset of chemical species
as abstraction function p - as in [26], possibly identified by information theoretic
criteria to be those most influencing the reward of interest. Alternatively, we
could follow [13] and use a projection over a certain number of sub-regions of
the original state space in order to get a finite abstract state space S̄. Equation
7 is typically experimentally verified simulating a sufficiently high number of
trajectories from both the original system η and the abstraction η̄ starting from
a common initial setting. There is no way to ensure, with this experimental
procedure, that equation 7 holds for almost every s0 in S. What can be done,
instead, is to choose a high number of different initial settings which were not
in the training set and check if the condition holds for them - the classical
training/validation procedure which is used in Machine Learning to estimate
the generalization error of a model.

Dataset Generation We build our model abstraction reframing the situation

as a supervised learning problem. Choose N random starting states {s
(j)
0 }Nj=1

from (a finite subset of) X̃. For each s
(j)
0 run a simulation from t0 to t1 := t0+∆t.

Denote by η
(j)
t1

the system state at time t1 for each one of these simulations.

Define: x(j) := s
(j)
0 and y(j) := η

(j)
t1

for all j 2 {1, . . . , N}.

We have thus builtD := {(x(j), y(j))}Nj=1, where each y(j) is a sample from the

probability distribution P(η∆t | η0 = x(j)). We can as well simulate trajectories
from t0 to th := t0 + h∆t, h 2 N+. It is then sufficient to extract the system
state at time instants {t0, t0+∆t, . . . , t0+h∆t} in order to consider consecutive
datapoints

�

ηt0+i∆t, ηt0+(i+1)∆t

�

, i 2 {0, . . . , h � 1} as an (x, y) pair, like we
described above.

Model training Fix a parametrized family of mixture distributions M. Let gθ
be a MDN with gθ(x) 2 M for each feature vector x, where θ are the network
weights. gθ is trained on the dataset D, the simulation data, to learn the desired
approximation K of Kd:

Kd(s | s0) = P(η∆t = s | η0 = s0) ⇡ P(gθ(s0) 2 Bs) := K(Bs | s0) (8)

where Bs :=
n

x 2 X̃
�

�

�
kx� sk1 < 1

2

o

is the ball with respect to the infinity

norm of radius 1/2, centred in s. Training gθ has a cost: neural networks are com-
putationally intensive models. Nonetheless, once the network has been tuned, its
evaluation is extremely fast, considering that all modern deep learning frame-
works provide a GPU implementation.

Abstract Model Simulation In order to simulate the abstract model, we
just need to sample up to time horizon M > 0 from the approximate kernel
K, starting from the initial state s0 and initial time t0. While sampling, we do
not restrict to be in the discrete state space S, but rather simulate trajectories



on the continuous state space X̃. Each timestep of our simulations has thus a
fixed computational cost, and requires us to evaluate gθ at the current state x
and draw a sample from the resulting distribution. This means that, choosing
∆t equal to the timescale of interest, we can simulate arbitrary long trajectories
at the needed level of time resolution without wasting computational resources.
This algorithm can be easily employed in a multiscale setting: we just need to
train gθ once, while a high number of agents can be simulated in parallel levering
the computational power of one or more GPUs.

4 Implementation

Our implementation is in Python, and builds on several available tools and
libraries, developed in the research communities of deep learning and computa-
tional systems biology. Integrating tools of different communities in a common
pipeline has not been straight-forward and a considerable amount of work is re-
quired to design a robust experimental setup. This was the main reason behind
the development of StochNet, which hides the difficulties of such integration to
the user, which can then focus on the design and tuning of models. The library,
at the present stage of development, offers the following functionalities through
a high-level API:

– Concurrent simulation of CRN models starting from different initial states
using SSA/τ -leaping;

– A wide collection of implemented random variables to be used on their own
or in mixtures to approximate complex probability distributions. Mixtures
can be build using random variables from different families, as long as their
samples have the same dimensionality;

– Seamless integration with Keras and Tensorflow to train and deploy Mixture
Density Networks - there is no low-level scripting required to define, train
and run a complete model;

– Simulation of trajectories from a Mixture Density Networks model using a
GPU-based concurrent sampling strategy;

– A ready-to-run fault-tolerant pipeline to manage long-running numerical ex-
periments (abstraction building). The pipeline can be easily customized and
extended with custom computational tasks.

Most of these functionalities are built on top of existing Python packages: Ten-
sorflow ([18]) and Keras ([20]) for neural networks, Gillespy ([22]) as an interface
to StochKit 2.0 ([14]) for CRN simulations and Luigi ([15]) as work-flow manager.

StochNet is currently hosted on GitHub, where we are going to provide a de-
tailed package documentation: https://github.com/LukeMathWalker/StochNet.

https://github.com/LukeMathWalker/StochNet


5 Experimental Results

In this section, we validate our approach on two case studies: the simple SIR
model, and a more computationally intensive genetic network. Our focus is in
the accuracy of the abstract model and on its computational efficiency.

Experimental setting To perform all the simulations described in the next
sections we used a desktop personal computer, equipped with an AMD Ryzen
1700 (3GHz), 8 cores CPU, an Nvidia GeForce GTX 1080Ti, 11GB, 3’584 CUDA
cores GPU, and 32GB DDR4 of RAM.

Data preparation Neural network convergence is enhanced if each component
of the training dataset has zero mean and unit variance (cfr. Section 4.3 in [3] or
Chapter 12 in [24]). We have thus followed this established procedure for all our
datasets. No other forms of data cleaning or preprocessing have been performed.

5.1 SIR model

We start by presenting experimental results on the SIR model, first discussing the
MDN architecture we used to build the approximate kernel, and then presenting
the experimental results.

MDN architecture Considering the simple dynamic of the SIR model we opted
for a fairly straight-forward architecture: our final setup uses a single hidden
layer composed of 150 units with a ReLU4 activation function; the output layer
is designed to learn the parameters of a mixture of 2 multivariate normal random
variable with a diagonal covariance matrix. We used the Adam algorithm (with
default settings) to optimize our loss function (cfr. [16]).
In order to avoid overfitting we introduced two forms of regularization:

– Max-norm regularization([17]);
– Early stopping (cfr. Section 7.8 of [24]).

For the SIR model we constrained the weights euclidean norm to be below 3.
Each epoch used 300000 training datapoints, processed in batches of 32 data-
points each. Our early stopping patience was set to 6 epochs and we evaluated
the validation error on 50000 held-out validation datapoints.
The number of nodes in the hidden layer, the number of normal random vari-
ables in the mixture, the weight max-norm and the usage of other regularization
techniques (such as Dropout [17] or gaussian noise injection) have been com-
pared using the loss on the validation dataset as a measure of the generalization
error.
It is worth to point out that even though the system dynamic is essentially uni-
modal in the chosen time step ∆t, we experienced a significant worsening in the

4 Rectified Linear Unit: f(x) = max{0, x}, cfr. [12].



Task Time: SIR Time: GeneNet

GenerateDataset (training) 35 s 2,328 s (∼ 39 min)

GenerateDataset (validation) 35 s 2,319 s (∼ 39 min)

FormatDataset (training) 0.015 s 0.07 s

FormatDataset (validation) 0.015 s 0.07 s

GenerateHistogramData (training) 45 s 26,650 s (∼ 7 h & 24 min)

GenerateHistogramData (validation) 36 s 27,299 s (∼ 7 h & 30 min)

TrainNN 31 s 1,337 s (∼ 22 min)

Table 1: Execution time required to complete each step of the abstraction
pipeline for the SIR model and the gene network model.

MDN performances when using a single multivariate normal random variable
as output schema, with several training attempts failed due to a divergent be-
haviour in the loss minimization procedure. This never happened when using a
mixture of two normal random variables: the possibility to distribute ”errors”
on two different gaussians seems to stabilize the learning phase, leading to more
consistent results. This is consistent with current practice in deep learning, which
prefers a high model-capacity coupled with strong regularisation.

Results The execution time of whole pipeline takes slightly more than 3 min-
utes, of which roughly the 16% is used to train the MDN - see Table 1.

Our MDN has been trained to predict the system state after 0.5 units of
simulation time. We computed the mean histogram distance on 1-step and 5-
steps predictions between the MDN and the SSA algorithm with respect to the
projection on the S population. A sample of the histograms after 5 steps can be
seen in Figure 2. The mean histogram (over 25 different initial conditions) after
1 step is 0.3 and after 5 steps is 0.33.

We can see from the figures that the MDN model captures the system dy-
namic quite accurately - the mode is almost always perfectly aligned with the
SSA mode, while the reconstructed variance is sometimes slightly defective or
excessive. Even though 5-steps performances are slightly worse than their respec-
tive single-step analogues, we do not observe any significant error-propagation
phenomenon in place, considering the level of resolution we are using for our his-
tograms (200 bins on [0, 200]). Nonetheless we cannot affirm that the MDN dis-
tribution is consistently indistinguishable from the SSA distribution: the upper-
bound on the mean of the self-distance using 200 bins and 100000 samples (cfr.
[7]) is ⇠0.16 with a variance upper-bound of ⇠0.015; the lowest mean histogram
distance achieved by our MDN on the training histogram dataset, with single-
step simulations, is 0.24 (cfr. ??).

5.2 Gene Regulatory Network

Introduction Stochasticity plays a prominent role in a CRN dynamics when-
ever some key chemical species in the network have low molecular counts: adding
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Fig. 2: Comparison of SSA and MDN histograms after 5 simulation steps over 3
different initial settings sampled from the validation dataset. K = 200 equally
sized bins are being used. The mean histogram distance, over 25 different initial
settings, is 0.33.

(a) (b)

Fig. 3: Two sample trajectories for the gene regulatory network.

or removing a single copy might result in significant fluctuations. A typical ex-
ample of this behaviour can be observed in a simple self-regulated gene network
[19]: a single gene G is transcribed to produce copies of a mRNA signal molecule
M, which are in turn translated into copies of a protein P; P acts as a repressor
with respect to G - it binds to a DNA-silencer region, inhibiting gene transcrip-
tion. In other words, the gene activity is regulated through a negative-feedback
loop, a common pattern in biological systems. The system chemical equations
are the following:

R1 : GON
kprodM

GON + M (transcription) (9)

R2 : M
kprodP

M + P (translation) (10)

R3 : GON + P
kact

GOFF (protein binding) (11)

R4 : GOFF kdeact
GON + P (protein unbinding) (12)

R5 : M
kdegM

∅ (mRNA degradation) (13)

R6 : P
kdegP

∅ (protein degradation) (14)



kprodM kprodP kact kdeact kdegM kdegP

350 300 1 166 0.001 1.5

Table 2: Reaction rates used in our simulations of the gene regulation network.

All propensity functions are assumed to be of mass-action type, with the name of
their respective rate specified on the reaction arrow. The system dynamic varies
significantly with respect to the choice of reaction rates. The parameters values
for our simulations are reported in Table 2 while Figure 3 shows some of the
simulated system trajectories: the systems exhibits several well-separated stable
configurations which are roughly determined by the number of available mRNA
molecules. It is worth mentioning that, on a smaller scale, each stable point is
actually noisy - we can in fact observe a high number of small amplitude oscil-
lations. These characteristics can be easily detected looking at the probability
density function of Ps0(ηt), for t > t0: we have 5 or 6 distinguishable modes, with
a certain amount of gaussian noise affecting each one of them (see Figure 5).

Approximating this system dynamics with a normal regression NN is an
impossible task, considering that the system dynamic is definitely not unimodal:
this makes of this model a perfect testing ground for our MDNs.

MDN architecture To model the dynamic of the gene regulation network we
devised a more sophisticated architecture than for the SIR case, see Figure 4. We
are no longer dealing with a shallow neural network: our architecture uses two
hidden layers. The learning capabilities of deep neural networks are significantly
higher, even though depth increases the chance of overfitting and introduces the
vanishing/exploding gradient problem, an issue affecting the minimization of the
loss function (cfr. [4]).

ReLU activation functions avoid the problem of exploding gradients (ReLU
derivative is either 0 or 1) but they still do not solve the issue of vanishing
gradients. A variety of different strategies have been devised (changing weight
initialization, gradient clipping, etc.): we chose to follow in the footsteps of [21]
authors - the first to introduce the ResNet architecture. Their proposal is strik-
ingly simple: instead of stacking hidden layers directly on top of each other we
use skip-connections to regularize the network behaviour. In other words, instead
of learning a map of the form NN(x) = f1(x) we try to learn NN(x) = f1(x)+x.
If H(x) is the true function we are trying to fit, then f1 is actually trying to
approximate H(x)�x which is called residual function. Despite of its simplicity,
this adjustment allowed [21] authors to train effectively neural networks with
152 hidden layers. We do not need such extreme configurations, but deeper ar-
chitectures can help improve performance of our approximations.

In terms of regularisation, we constrained the euclidean norm of layer weights
to be below 3, we used early stopping with 6 epochs of patience and we injected
gaussian noise (0 mean, 0.01 variance) between the input layer and the first
hidden layer. Noise addition is another common regularisation technique which
tries to force the network to learn a more robust representation, i.e. a mapping
robust enough to be insensible to small perturbation of the inputs. Each epoch



Fig. 4: Architecture of the MDN trained for the gene regulation network.

used 300000 training datapoints, which were processed in batches of 32 datapoints
each. We evaluated the validation error at the end of each epoch using 50000 held-
out validation datapoints. All model hyper-parameters have been tuned using
the loss on the validation dataset as a measure of the generalisation error.

Results Executing the whole pipeline requires ⇠16 hours and 30 minutes: the
training of the MDN is responsible for a mere 2% of the overall computational
cost - see Table 1. Our MDN has been trained to predict the system state
after 400.0 units of simulation time. We computed the mean histogram distance
on 1-step and 50-steps predictions between the MDN and the SSA algorithm
with respect to the projection on the protein P , just like we did for the SIR
model. A sample of the resulting histograms for the 50 step case can be seen
in Figure 5. The mean histogram distance after 1 step is 0.34, stabilising to
0.28 after 50 steps. Although the distributions are not distinguishable (mean
histogram self distance is XXXX), the true and the approximate distributions Missing data:

please fill
Missing data:
please fillare quite similar, and the main qualitative characteristics of the process are well



(a) (b) (c)

Fig. 5: Comparison of SSA and MDN histograms of species P after 50 steps
of simulation time over 3 different initial settings sampled from the validation
dataset. K = 200 equally sized bins are being used. The mean histogram dis-
tance, over 25 different initial settings, is 0.28.

Algorithm SIR - Time GRN - Time

SSA 40 s ∼60’650 s (∼ 17 h)

τ -leaping NA ∼10’750 s (∼ 3 h)

MDN (trained) 7 s 35 s

Table 3: Time required to simulate 100000 trajectories of the SIR and of the gene
regulatory network (GRN) for 25 different initial settings with endtime 5 for SIR
and 100000 for the GRN. For SIR: The MDN returns a datapoint every 0.5 units
of simulation time. for GRN: The MDN and τ -leaping return a datapoint every
400 units of simulation time.

captured. In particular, the MDN model is able to identify quite consistently
the four modes associated with the highest probabilities, with a quite accurate
reconstruction of the respective variances (prone to be overestimated, more than
underestimated). The two rarest modes, instead, are usually ignored.

The speed gain, though, is quite remarkable (see Table 3): simulating 100000
trajectories for 25 different initial settings with endtime 100000 takes ⇠ 17 hours
using SSA, while the MDN model is capable of doing it in 35 seconds - it is
roughly 1730 times faster than SSA. We also compared our MDN approach
to τ -leaping. Using τ = 400.0 in order to achieve the greatest possible speed-
up, τ -leaping produces trajectories that are indistinguishable from SSA-generate
trajectories, achieving a mean histogram distance of ⇠ 0.1. However, it took τ -
leaping ⇠ 3 hours to generate 100000 trajectories for 25 different initial settings
with endtime 100000: almost 6 times faster than SSA but still 300 slower than
our MDN abstraction.

6 Conclusions

In the paper we presented a pipeline to build abstract models in order to increase
simulation efficiency of Biochemical Reaction Networks. Our approach leverages
recent advances in theory and tools for deep learning, approximating a CTMC



as a Discrete Time process whose transition kernel is learned from simulation
data using Mixture Density Neural Networks.

In the paper, we have shown that the method has a significant potential: we
have been able to capture with significant accuracy the qualitative behaviour of
a genuinely multimodal CRN without introducing any kind of prior knowledge
into our procedure. The achieved speed-up is impressive and it would enable,
on similar systems, to actually perform multiscale simulations with population
of 106 or 107 cells. Future work is mostly on performing further experiments
and studies in this direction, and integrating these approaches for multi-scale
models.

Moreover, even though MDNs are quite an old model (they were first intro-
duced in 1991) they have not seen wide adoption so far. There is not a consistent
record of publications in the ML literature trying to specifically address the lim-
itations and the best practices concerning these models. It is thus worthwhile
to further research MDNs on their own, trying to work out the best way to de-
sign and train these neural networks, in particular for the applications we are
concerned with.
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