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+e demand for transfer learning methods for mechanical fault diagnosis has considerably progressed in recent years. However,
the existing methods always depend on the maximum mean discrepancy (MMD) in measuring the domain discrepancy. But
MMD can not guarantee the different domain features to be similar enough. Inspired by generative adversarial networks (GAN)
and domain adversarial training of neural networks (DANN), this study presents a novel deep adaptive adversarial network
(DAAN). +e DAAN comprises a condition recognition module and domain adversarial learning module. +e condition
recognition module is constructed with a generator to extract features and classify the health condition of machinery auto-
matically. +e domain adversarial learning module is achieved with a discriminator based on Wasserstein distance to learn
domain-invariant features.+en spectral normalization (SN) is employed to accelerate convergence.+e effectiveness of DAAN is
demonstrated through three transfer fault diagnosis experiments, and the results show that the DAAN can converge to zero after
approximately 15 training epochs, and all the average testing accuracies in each case can achieve over 92%. It is expected that the
proposed DAAN can effectively learn domain-invariant features to bridge the discrepancy between the data from different
working conditions.

1. Introduction

Bearings and gears are widely used transmission parts in
rotating machinery, and their failure directly affects the
healthy operation of machinery and even causes serious
incidents. +erefore, monitoring and diagnosing the health
condition of these transmission parts is crucial [1, 2]. In
recent years, the Internet of +ings (IoT) based infra-
structure is often adopted for condition monitoring and
analysis because it can directly handle massive monitoring
data with minimal manual intervention [3, 4]. Lei et al. [5]
developed an intelligent method based on sparse filtering for
bearing fault diagnosis. Jia et al. [6] presented a stacked
autoencoders (SAE) based network to diagnose the fault
problems of bearing and planetary gearbox. Xu et al. [7] used
a deep convolutional neural network (CNN) to achieve a
bearing fault diagnosis problem under different working
conditions. An et al. [8] adopted a recurrent neural network

(RNN) to process variable size sequences of bearing fault
samples and achieved satisfactory performance. Xiao et al.
[9] proposed a deep mutual information maximization
(DMIM) method using a variational divergence estimation
approach to maximize the mutual information between the
input and output of a deep neural network and achieved
motor fault diagnosis. Wang et al. [10] presented a capsule
neural network for bearing fault diagnosis and obtained a
high classification accuracy. Although these methods have
achieved excellent diagnosis performance, they require
plenty of labeled data. Besides, the training and testing data
must own the same probability distribution. But obtaining a
considerable amount of labeled data is quite hard for some
machines, and the probability distribution of the fault
samples constantly changes due to variable speeds and loads.
Transfer learning provides a promising idea of

addressing these problems [11, 12]. In recent years, various
related methods have been investigated for fault diagnosis.
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Wen et al. [13] introduced maximum mean discrepancy
(MMD) into SAE and achieved feature transfer learning
under variable speeds. Lu et al. [14] developed a transfer
learning-based model with domain adaptation for bearing
fault diagnosis. Guo et al. [15] presented a deep convolu-
tional transfer learning network (DCTLN) and used six cases
to test the effectiveness of DCTLN. Yang et al. [16] offered a
domain-shared CNN model to learn the transferable fea-
tures from bearing used in the laboratory machines and real-
case machines simultaneously. An et al. [17] proposed a
multilayer multiple kernel variant of MMD, which intro-
duced the kernel method to replace the high dimensional
map of MMD and achieved bearing fault diagnosis under
different working conditions. Zhang et al. [18] developed a
novel sparse filtering based domain adaptation (SFDA) for
the mechanical fault diagnosis, which employed l1-norm
and l2-norm to MMD to obtain high dimensional adaptive
features. +ese studies utilized MMD to minimize the target
loss by using the source loss to achieve the learning of cross-
domain-invariant features. However, MMD measures the
discrepancy using a high dimensional map based on
reproducing kernel Hilbert space (RKHS), which cannot
guarantee the sufficient closeness of different domain fea-
tures close enough in RKHS.
In recent years, adversarial learning represented by the

generative adversarial networks (GAN) [19] has drawn
widespread attention. Various emerging GANs based vari-
ant networks have remarkably improved the learning effect
compared with traditional GANs [20–22]. In the field of
fault diagnosis, GAN has also been successfully used for data
augmentation to enrich training datasets. Wang et al. [23]
utilized GAN to generate synthetic fault signals from fre-
quency spectra to expand the training amount and achieve
effective fault diagnosis of the gearbox. Mao et al. [24] also
used GAN to solve the imbalance fault diagnosis problem
and provided a comprehensive comparative study. Liu et al.
[25] trained an autoencoder based on the adversarial
training process of GAN to perform bearing fault diagnosis.
GAN aims to generate training samples different from those
of transfer learning. However, since there are naturally a
source domain and a target domain existing in transfer
learning, Ganin et al. [26] thought the process of generating
samples can be avoided and the data in one of the domains
(usually the target domain) can be directly treated as the
generated samples. At this point, the generator extracts
features instead of generating new samples by continuously
learning the characteristics of domain data and making it
impossible for the discriminator to distinguish the differ-
ences. +us, the original generator can also be referred to as
the feature extractor. So a domain adversarial training of
neural networks (DANN) is developed in reference [26].
However, the gradient of DANN is always unstable when
training the discriminator. In order to overcome these
limitations, Wasserstein distance [27] is employed in the
discriminator to evaluate the difference between the two
distributions. +e Wasserstein distance is also called earth-
mover distance, which is a distance metric for measuring the
discrepancy of the distribution between the two domains. It
can improve the stability of the optimization process, and

the Wasserstein distance-based domain adversarial method
can directly extract the domain-invariant features from the
original signal. Furthermore, Spectral Normalization (SN)
[28] is applied to the discriminator to stabilize the training
process. SN controls the Lipschitz constant of discriminator
function by strictly restricting the spectral norm of each
layer so that the discriminator does not make intensive
adjustment while Lipschitz constant is the only hyper-
parameter. In contrast, other normalized terms impose
stronger constraints on the weight matrix than expected,
which limits the discriminator to recognize the generated or
real distribution. +erefore, a novel deep adaptive adver-
sarial network (DAAN) is developed in this study. +e main
contributions can be summarized as follows:(1) +e Was-
serstein distance-based domain adversarial method for
transferring fault diagnosis is proposed. (2) A new dis-
criminator is designed using the SN strategy to stabilize the
training process and accelerate convergence.
+e remainder of this paper is organized as follows.

Section 2 describes the transfer learning problem. Section 3
details the proposed DAAN model. Section 4 presents the
fault diagnosis experiments under different working con-
ditions. Section 5 finally provides conclusions.

2. Theory Background

2.1. Wasserstein Distance. +e Wasserstein distance, also
called the earth-mover distance, is a distance metric for
comparing probability measures and distributions. +e
gradient of the DANN is always unstable when training the
feature extractor. In order to reduce the gradient vanishing
problem, Wasserstein distance is employed in discriminator
D as the distributionmeasurement function, which is used as
the minimum cost to converge pg to pr as follows:

W pr, pg( ) � inf
c∈∏ pr ,pg( )E(x,y)∼c[‖x−y‖], (1)

where ∏(pr, pg) represents the set of all joint distributions
c(x, y) whose marginals are pr and pg, respectively. Intui-
tively, c(x, y) can be considered the cost of moving an
amount from x to y in order to transform pr into pg. +e
Wasserstein distance has been used to solve the optimal
transportation problem, so W(pr, pg) is the minimum
transport cost under optimal path planning.
+erefore, the improved objective function can be ob-

tained as follows:

min
G
max
D∈R

Ex∼pr[D(x)] − Ey∼pg[D(y)], (2)

where R is the set of 1-Lipschitz functions.

2.2. Spectral Normalization (SN). SN can control D via
constraining the spectral norm of each network layer. Giving
a linear layer f(h) �Wh, the norm is defined by Lipschitz
constant:

‖f‖Lip � suphσ(∇f(h)) � suphσ(W) � σ(W), (3)
where suphσ(∇f(h)) is equal to the Lipschitz norm ‖f‖Lip,
and σ is the SN operation of W:
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σW � max
h: h≠0

‖Wh‖2
‖h‖2

� max
‖h‖2≤1

‖Wh‖2, (4)

which is equal to the largest singular value of W. If the
Lipschitz norm is equal to 1, then the inequality
‖f1∘f2‖Lip≤ ‖f1‖Lip · ‖f2‖Lip can be used to observe the
following bound on ‖g‖Lip:

‖g‖Lip ≤ hL↦WL+1hL
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+e SN normalizes the spectral norm ofW to make sure
it can satisfy the Lipschitz constraint σ(W) � 1:

WSN(W) �
W

σ(W)
. (6)

3. Proposed Framework

3.1. Deep Adaptive Adversarial Network (DAAN). As shown
in Figure 1, the proposed DAAN includes the condition
recognition module and domain adversarial learning
module. +e condition recognition module contains a fea-
ture extraction network and a fault classify network. +e
feature extraction network can automatically learn the fault
features, and the fault classify network identifies health
conditions according to the extracted features. +e domain
adversarial learning module is completed by using the
discriminator network which is connected to the feature
extraction network to help learn the domain-invariant
features.

(1) Condition Recognition: a three-layer feedforward
neural network (FFNN) is used to construct this
module, and then a classifier is followed so as to
recognize the health condition.+e optimal objective
of the classifier C is to train the feature extractor with
parameter θF and Cwith parameter θC.+e following
loss LC is defined as cross-entropy between the
predicted softmax probabilistic distribution and the
corresponding labels:

LC xs, ys( ) � − 1
ns
∑n
s

i�1

∑K
k�1

l ysi � k( )

· logC F xsi( )( )k,
(7)

where l(ysi � k) is the indicator function; C(F(x
s
i ))k

is the kth value of the predicted distribution, and K is
the number of health conditions.

(2) Domain adversarial learning: +e adversarial train-
ing strategy of the GAN is used to extract domain-
invariant features. +e discriminator D is optimized
via maximizing the domain adversarial loss LD

considering parameter θF to minimize the distri-
bution discrepancy between two domains.+erefore,
LD is defined as follows:

LD �
1

ns
∑n
s

i�1

Exs ∼prD F xsi( )( )

+
1

nt
∑n
t

i�1

Ext ∼pgD F xtj( )( ).
(8)

By combining the two optimization objectives, the final
loss function can be written as follows:

L � LC + λLD, (9)

where the hyperparameter λ determines the strength of the
domain adversarial strategy.

3.2. Training Strategy of DAAN. As displayed in Figure 2,
training the proposed method by Adam algorithm is con-
venient since the optimization objective of the DAAN is
built. In the discriminator D, a gradient reversal layer [26] is
used to connect the feature extractor during the training
process. +is layer can ensure the feature distribution in the
two domains remain indistinguishable enough for the dis-
criminator D to obtain the domain-invariant features.
+erefore, the loss can be rewritten as follows:

L θF, θC, θD( ) � min
θF ,θC ,θD

+ LC θF, θC,( )αLD θF, θD( )( ). (10)

Based on the above equations and Adam algorithm, the
parameters θF, θC, and θD are updated as follows:

θF←θF − α
δLC
δθF

+ λ
δLD
δθF

( ), (11)

θC←θC − α
δLC
δθC

, (12)

θD←θD − α
δLD
δθD

, (13)

where α is the learning rate.
As the network training is finished, the classifier can

accurately identify the unlabeled dataset in the target do-
main if there are fuzzy domain categories existing in the
learned features. In the testing process, the rest target do-
main dataset is used as the input of the DAAN, and then the
classifier outputs the classification result.

4. Experiment Studies

4.1. Case 1: Fault Diagnosis under Different Rotating Speeds

4.1.1. Data Description. +e bearing data are collected from
the test rig as displayed in Figure 3(a). +e rig includes a
motor, a driving belt, a shaft coupling, and a bearing seat.
+ere are five bearing health conditions: normal condition
(NC), inner ring fault (IF), outer ring fault (OF), roller fault
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Figure 3: (a) Test rig of bearing fault. (b) Four fault bearings.
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(RF), and concurrent fault in the outer ring and roller
(ORF). +e four fault bearings are depicted in Figure 3(b).
Vibration signal is commonly utilized in condition mon-
itoring and diagnosis due to its rich and useful information
with high sampling frequency [29, 30]. All vibration ac-
celeration data were measured under three different speeds
of 1100r/min (dataset A), 1300r/min (dataset B), and
1500r/min (dataset C). +e sampling frequency of the
accelerometer is 25.6 kHz, 200 samples are selected from
each bearing health condition, and each sample contains
2400 data points. Hence, a total of 1000 samples are ac-
quired. +e spectra of the raw signals are then transformed
via FFT, and 1200 data points of each sample in frequency-
domain are obtained as the input of the DAAN model. In
each experiment, all the source domain samples and half of
the target domain samples are used for training. +e rest
target domain data samples are used for testing.+e spectra
of those three datasets and the transfer learning cases are
displayed in Figure 2.

4.1.2. Diagnostic Results. Figure 4 shows that the proposed
DAAN is evaluated on six transfer learning cases: A⟶B,
B⟶A, B⟶C, C⟶B, A⟶C, and C⟶A. In each
case, the part before and after the arrow refers to the source
domain and target domain, respectively. For example, in
the case A⟶B, datasets A and B are the source domain
and target domain, respectively. +e structure of the
condition recognition module is [1200, 600, 200, 100, 5],
and the domain adversarial module is [1200, 600, 200, 100,
1], in which the unit number of the input layer is deter-
mined by the dimension of the samples, the unit number of
the output layer for the condition recognition module is
determined by the number of the health conditions, and the
unit number of the output layer for the domain adversarial
module is determined by the result of true or false. +e unit
numbers of the hidden layer are determined by the di-
mension to reduce the principle. +e learning rate is 0.002,
and the penalty parameter λ is 0.005. Each training batch
includes 500 samples from the source domain and target
domain, respectively. +e other 500 target domain samples
are adopted for testing. In each experiment, a total of 15
trials were conducted to reduce the effects of randomness,
and the training step is 50. In case A⟶B, the curves of
training and testing accuracies are plotted in Figure 5.
Accordingly, the training accuracy is approached 100%
after approximately 15 training epochs, and the testing
accuracy needs approximately 47 training epochs to
achieve this goal. +e classifier loss curve of DAAN is
plotted in Figure 4, and the training loss in DAAN con-
verges to zero after approximately 15 training epochs. For
comparison, the loss curves of DANN and DANN without
SN are also plotted in Figure 4, it is easy to find that DANN
is much more difficult to converge, and DANN without SN
needs 25 training epochs to convergence. +ese perfor-
mances indicate that the proposed DAAN owns a strong
domain-invariant feature extraction ability and can help
the model to achieve fast convergence. +e results of six
transfer cases are displayed in Table 1. All the testing

accuracies in each case are over 90%, while some are even
over 98%. +is high accuracy indicates that the DAAN can
effectively identify the health condition of bearing in the
absence of labeled data.
To further demonstrate the effectiveness of the DAAN,

three methods are adopted for the comparison of the six
transfer learning cases. +e five comparison methods are
SAE [6], transfer component analysis (TCA) [31], MK-
MMD [17], SFDA [18], and DANN. +e subsequent clas-
sifier of SAE and TCA is softmax regression. SAE is trained
only by the source domain data. TCA, MK-MMD, and
SFDA are three representative examples of using the MMD-
regularized subspace learning method in the domain ad-
aptation field. +e testing accuracies on the six transfer
learning cases are listed in Table 1. It is easy to find that the
DAAN achieves the highest accuracies and the lowest
standard deviations among the given approaches. +e av-
erage testing accuracy of SAE without transfer learning is
only 60.20% because the target domain data have not
participated in the model training. +erefore, compared
with SAE, it is obvious that the transfer learning-based
method is more effective in handling unlabeled data than
traditional intelligent fault diagnosis. +e traditional DANN
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without Wasserstein distance and SN strategy achieved
86.88% accuracy. +e average accuracies of TCA, MK-
MMD, and SFDA are 81.53%, 94.90%, and 92.98%, re-
spectively.+ese results are considerably better than those of
SAE but are still worse than those of the proposed method.
+us, it can be concluded from the comparison that the
DAAN can learn more robust domain-invariant features
than the other transfer learning methods.
Furthermore, the t-SNE [32] algorithm is adopted to

map the learned features into a 2D scatter diagram to offer
visual insights on the two domains. Taking the case A⟶B
as an example, the domain-invariant features learned by
the DAAN are displayed in Figure 6(f ), and the mapping
results obtained using the other comparison methods are
shown in Figures 6(a)-6(e). +e source and target domains
are represented in terms of S and T, respectively. +e
result in Figure 6(a) demonstrates that although the SAE
model obtains good cluster results, the distribution dis-
crepancies of the two domains are substantially large,
except for the NC condition. +us, it can not effectively
classify the unlabeled target samples when the model is
only trained using the source samples. Figures 6(b) and
6(c) plot the mapped results of the transferred features
learned by TCA and DANN, and the cross-domain dis-
crepancies are clearly reduced. However, some over-
lapping samples still exist between the IF and RF
conditions. Meanwhile, the source and target domain
samples of ORF are poorly clustered. Figures 6(b) and 6(c)
plot the mapped results of the transferred features learned
by MK-MMD and SFDA; it can be seen that the cluster
performances have been further improved, but there is
still some distance among the two domains. Figure 6(f )
illustrates that the proposed DAAN method not only
reduces the distribution discrepancy of the two domains,
but also amplifies the feature distance of different health
conditions. +erefore, it validates that the DAAN can
extract considerably more robust transferable features
than other traditional methods.

4.2. Case 2: Fault Diagnosis under Different Loads.
Another experiment bench for the transfer learning task
under different loads is displayed in Figure 7. +is ex-
periment also has five bearing health conditions of NC, IF,
OF, RF, and ORF. +e rotating speed was fixed at 1800 r/
min, and the sampling frequency was 12.8 kHz. +e vi-
bration signals were measured under three different loads

of 20N (dataset D), 40N (dataset E), and 60N (dataset F).
200 samples were also collected from each health condition
under one load, and each sample contained 2400 data
points. +e frequency-domain samples were also utilized as
the inputs of DAAN, and the other parameter sets were the
same as in Case 1.
+e results were compared with the three other methods,

as displayed in Table 2. It shows that the DAAN also
achieved the highest diagnosis accuracies for all cases among
these four methods at an average testing accuracy of 92.65%.
+e SAE method without the transfer learning strategy still
performed the worst, yielding a success rate of 50.65%.
Besides, the average testing accuracies of TCA and DANN
are 72.78% and 81.46%, respectively. +e average testing
accuracies of MK-MMD and SFDA are 91.10% and 89.70%,
respectively. +ese results demonstrate that the proposed
DAAN method presents better transfer performance than
other methods.
Similarly, in case of D⟶E, the reduced dimension

results of these methods are displayed in Figure 8.
Figure 8(a) shows that the learned features via SAE still
poorly clustered the same health condition samples under
different loads and corresponded to a low classification
accuracy of 55.28%. Figures 8(b) and 8(c) demonstrate
that the learned transferable features through TCA and
DANN are subject to a smaller distribution discrepancy
than that via SAE. However, the RF and ORF samples
under different loads are still separated. Figures 8(d) and
8(e) show the results of MK-MMD and SFDA. We can
find that the distributions of transferred features from the
two domains are closer than the ones of the features
learned by TCA and DANN. Figure 8(d) displays the
excellent cluster result obtained by the proposed DAAN.
+e source and target features under the same health
condition are gathered remarkably close, and different
health condition samples are also effectively separated.
Consequently, the proposed DAAN method can learn
domain-invariant features to reduce the discrepancy
between different domains.

4.3. Case 3: Fault Diagnosis Using CWRU Bearing Dataset.
In order to test the proposed method for the case under
different loads and speeds, a bearing dataset offered by Case
Western Reserve University (CWRU) [33] is applied in this
section. Four fault types of bearing are considered: (1)
normal condition (NC); (2) inner ring fault (IF); (3) outer

Table 1: Classification results in Experiment 1.

Method A⟶B B⟶A B⟶C C⟶B A⟶C C⟶A Average

SAE 73.25± 1.48% 71.19± 2.01% 74.12± 3.17% 62.64± 3.51% 46.45± 4.97% 43.53± 4.35% 60.20
TCA 92.05± 2.94% 88.24± 3.13% 85.19± 2.47% 83.57± 1.94% 72.51± 5.35% 67.63± 6.20% 81.53
DANN 95.24± 1.54% 93.45± 1.71% 89.34± 2.84% 87.84± 2.64% 79.78± 4.40% 75.64± 4.21% 86.88
MK-MMD 98.04± 0.12% 96.87± 0.88% 95.84± 1.54% 96.14± 1.75% 91.97± 1.58% 90.54± 1.96% 94.90
SFDA 97.85± 0.25% 95.87± 1.04% 92.82± 0.85% 94.35%± 1.09% 89.45± 0.83% 86.55± 2.04% 92.82
DAAN 98.63± 0.63% 97.25± 0.90% 97.02± 1.68% 96.41± 1.86% 92.34± 2.65% 90.98± 3.21% 95.44
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Figure 6: Scatter diagram in case A⟶B: (a) SAE, (b) TCA, (c) DANN, (d) MK-MMD, (e) SFDA and (f) DAAN.

Table 2: Diagnosis results in Experiment 2.

Method D⟶E E⟶D E⟶F F⟶E D⟶F F⟶D Average (%)

SAE 55.28± 6.85% 51.32± 4.36% 59.47± 4.20% 61.11± 3.54% 40.25± 5.36% 36.47± 4.69% 50.65
TCA 81.66± 4.51% 78.52± 5.23% 75.21± 4.20% 70.34± 6.85% 66.47± 7.87% 64.50± 5.24% 72.78
DANN 88.45± 4.81% 85.14± 4.15% 83.41± 5.14% 82.97± 5.97% 76.45± 4.78% 72.34± 5.97% 81.46
MK-MMD 94.75± 1.12% 93.84± 0.88% 91.63± 1.83% 92.47± 2.04% 88.62± 2.13% 85.31± 0.56% 91.10
SFDA 94.40± 0.07% 92.21± 1.02% 90.02± 0.81% 91.32± 1.24% 87.20± 0.34% 83.07± 0.61% 89.70
DAAN 95.41± 0.96% 94.96± 0.89% 93.81± 1.21% 94.07± 1.78% 89.74± 3.14% 87.96± 3.67% 92.65
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ring fault (OF); (4) roller fault (RF). +ere are three dif-
ferent severity levels (0.18, 0.36, and 0.53mm) for IF, OF,
and RF cases. +erefore, there are 10 different bearing
health conditions. +e raw vibration data was drawn under
four different loads, i.e., 0, 1, 2, and 3 hp which corre-
sponded to the three different rotating speeds:1790, 1772,
1750, and 1730 rpm, respectively. +e four datasets are
named as Datasets G, H, I, and J. In this experiment, each
fault type under one load includes 200 samples, and each
sample contains 2400 data points, so there is a total of 2000
samples for each load.
+e accuracies and the corresponding standard de-

viations of all different transfer scenarios are shown in
Table 3. As we can see in Table 3, there are totally 12
different transfer scenarios applied to obtain the diagnosis
accuracies. It presents that the average testing accuracies
of all the scenarios using the proposed method can obtain

more than 98.71% and the standard deviations below
0.17%, which means the proposed method can effectively
and stably achieve transfer fault diagnosis under different
loads and speeds. In addition, the other transfer learning-
based methods can also achieve a good result, maybe
because the difference between different working condi-
tions is not big enough. +e dimension reduction results
of all the transfer learning-based methods are also basi-
cally the same. So we only provide the results of G⟶H,
I⟶H, and J⟶H to show the effectiveness of the pro-
posed method, which is displayed in Figure 9. It is ob-
served that almost all the transferable features of the same
health condition are assembled in the corresponding
cluster, and different health condition features are sepa-
rated. +is indicates that the proposed method can learn
transferable features without being affected by the varying
loads and speeds.
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Figure 8: Scatter diagram in case D⟶E: (a) SAE, (b) TCA, (c) DANN, (d) MK-MMD, (e) SFDA, and (f) DAAN.

8 Complexity



T
a

b
l
e
3:
D
ia
gn
o
si
s
re
su
lt
s
in
E
xp
er
im
en
t
3.

M
et
h
o
d

G
⟶
H

I
⟶
H

J
⟶
H

H
⟶
G

I
⟶
G

J
⟶
G

G
⟶
I

H
⟶
I

J
⟶
I

G
⟶
J

H
⟶
J

I
⟶
J

SA
E

90
.2
4
±
1.
35
%

91
.0
1
±
1.
04
%

85
.0
4
±
2.
84
%

92
.4
1
±
1.
54
%

89
.9
5
±
0.
85
%

81
.1
5
±
2.
08
%

92
.6
8
±
0.
78
%

88
.4
7
±
0.
92
%

91
.0
4
±
0.
21
%

92
.8
7
±
0.
63
%

91
.6
3
±
1.
03
%

90
.2
5
±
1.
65
%

T
C
A

96
.0
2
±
0.
84
%

96
.0
4
±
0.
75
%

88
.9
7
±
2.
43
%

96
.2
4
±
0.
69
%

95
.1
0
±
1.
02
%

84
.3
6
±
3.
46
%

95
.4
2
±
0.
96
%

96
.1
6
±
0.
74
%

92
.4
7
±
2.
04
%

94
.6
3
±
1.
12
%

95
.8
4
±
0.
98
%

94
.9
5
±
1.
32
%

D
A
N
N

98
.7
5
±
0.
24
%

98
.8
6
±
0.
08
%

97
.5
8
±
0.
77
%

99
.1
2
±
0.
02
%

99
.0
8
±
0.
04
%

97
.2
4
±
0.
11
%

99
.6
7
±
0.
02
%

99
.5
5
±
0.
01
%

99
.8
8
±
0.
01
%

99
.2
5
±
0.
12
%

98
.1
4
±
0.
35
%

99
.2
4
±
0.
02
%

M
K
-M
M
D

10
0%

10
0%

96
.9
5
±
1.
02
%

10
0%

10
0%

95
.8
6
±
1.
63
%

10
0%

10
0%

10
0%

99
.7
5
±
0.
25
%

99
.8
7
±
0.
06
%

10
0%

SF
D
A

10
0%

99
.9
5
±
0.
02
%

98
.6
2
±
0.
16
%

10
0%

99
.9
6
±
0.
01
%

98
.7
0
±
0.
12
%

10
0%

10
0%

10
0%

99
.9
8
±
0.
01
%

10
0%

10
0%

D
A
A
N

10
0%

10
0%

98
.7
1
±
0.
08
%

10
0%

10
0%

98
.8
2
±
0.
17
%

10
0%

10
0%

10
0%

99
.9
2
±
0.
03
%

10
0%

10
0%

Complexity 9



5. Conclusions

In this paper, a novel transfer learning method called
DAAN is proposed for mechanical fault diagnosis under
different working conditions. +e training process of do-
main adversarial can be guaranteed due to the employment
of Wasserstein distance, and the SN strategy can accelerate
convergence with much less iteration steps. +ree bearing
experiments show that the DAAN can obtain over 92%
average classification accuracy and achieve fast converge
under about 15 training epochs. Moreover, the proposed
method presents superior transfer performance to the other
transfer learning methods. +erefore, the DAAN can
promote the successful application of mechanical fault
diagnosis under different working conditions. Although
the proposed method can promote the practical application
of intelligent fault diagnosis under different domains, it still
needs a considerable number of target domain samples for
the model training. +erefore, the next challenge is to
improve our method under less target domain training
samples.
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