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ABSTRACT

Deep neural networks have recently achieved signi�cant progress

for human activity recognition. However, there are rooms for im-

provement in modeling long-term temporal importance and activity

relevance of di�erent temporal segments in a video. To address this

problem, we propose a learnable and di�erentiable Deep Adap-

tive Temporal Pooling module (DATP). It applies a self-attention

mechanism to adaptively pool video segments together without ex-

tra supervision. Speci�cally, DATP regresses temporal importance

from frame-level features and explicitly generates weights for dif-

ferent temporal segments. DATP is trained using only video-level

label information. We conduct extensive experiments to investigate

various input features, design models of weights generator of DATP

module and demonstrate its e�ectiveness. The results show that

our framework can identify key video segments from various activ-

ity types. More importantly, DATP leads to training an improved

frame-level feature extractor, as relevant temporal segments are as-

signed larger weights during back-propagation. Overall, we achieve

state-of-the-art performance on UCF101, HMDB51 and Kinetics

datasets.
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1 INTRODUCTION

Recognizing human activities from videos has emerged as a key

research area in video processing and arti�cial intelligence. Due to

the recent success of deep neural networks on image processing,

speech recognition and other areas, researchers are using deep

learning to solve video problems like activity recognition [8, 28, 41,

48], video captioning [8, 34, 44, 46], etc.
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Figure 1: Pipeline: A video is divided into N temporal seg-

ments and a pair of RGB frame and stacking optical �ows is

randomly selected from each segment as the input to frame-

level ConvNets. The frame-level Convnets extract interme-

diate features and compute softmax scores. The generated

softmax scores are then adaptively pooled by DATPmodule

to obtain video-level prediction. DATP: The auxiliary Con-

vNets consists of convolutional layers and fully-connected

layers. It takes intermediate features as inputs to regress pa-

rameters of a particular model (e.g., Gaussian distribution)

in weights generator. Then the weights generator samples

weights from the regressed model and assigns them to dif-

ferent temporal segments. The weighted softmax scores are

then summed up to obtain the �nal video-level score.

ConvNets based action recognition can be roughly categorized

into two groups, C3D [30] and two-stream ConvNets [28]. Authors

in [30] propose 3DConvNets to learn spatiotemporal features which

utilize 3D volume �lters instead of 2D �lters. However, it is inade-

quate inmodeling long-term temporal structures. The other success-

ful ConvNets is two-stream ConvNets. It matches the performance

of state-of-the-art hand-crafted features like dense trajectories. The

two streams are spatial and temporal nets. The spatial stream ex-

tracts high-level appearance features for understanding background

information, while temporal stream takes optical �ow as input to

learn motion patterns. However, stacking optical �ows only cap-

tures short-term temporal cues of actions. Thus, researchers have
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proposed several methods to learn spatiotemporal features built

on two-stream architecture [7, 10–12, 18, 42]. There are further

attempts in modeling temporal structures by incorporating Recur-

rent Neural Network (RNN) and Long Short-Term Memory (LSTM).

[2, 8, 24, 43]

In this paper, we aim to design a novel module to capture long-

term temporal information in ConvNets. There have been several

attempts to design specialized DNN layers for particular tasks. Spa-

tial Transformer Networks (STN) [17] introduces a framework to

achieve spatial invariance and identify spatial attention for object

recognition. Authors in [14] propose RoI (region of interest) pooling

layer to convert the features inside a valid region of interest into a

small feature map for localization task. These works motivate us to

design a new layer that can exploit temporal structure and achieve

adaptive pooling.

Speci�cally, we proposeDeepAdaptive Temporal Pooling (DATP)

module to model long-term temporal structure as illustrated in Fig-

ure 1. This module is a novel application of the STN idea [17]: we

identify temporal attention and relevant temporal segments in a

video for activity recognition. Our DATP module consists of auxil-

iary ConvNets, weights generator and weighting submodule. The

auxiliary ConvNets regress weights from input frame-level features

and assign them to temporal segments. In addition, the generated

weights can adapt to temporal translation and scaling of key actions.

Thus, our system can achieve temporally invariant in a parameter

e�cient manner. Moreover, DATP module is computationally e�-

cient, incurs little time overhead and can be implemented easily. It

is also �exible and universal: it can be inserted into di�erent points

of a neural network; it can be used with hand-crafted features.

The rest of the paper is organized as follows. In Section 2, we

discuss the related works. We present our proposed approach in Sec-

tion 3. Section 4 describes extensive experiments and we conclude

our work in Section 5.

2 RELATED WORKS

Traditional machine learning methods Before deep learning

approach emerges, many earlier methods relied on combining hand-

crafted features, embedding techniques and Support Vector Ma-

chine (SVM) classi�er to analyze video data. One of the earliest

attempts [22] represented videos using Bag-of-Visual-Words which

embed HOG features (Histogram of Gradients) and HOF (Histogram

of Flow) features with a dictionary. There are likewise other spa-

tiotemporal features like SIFT3D [27], MBH [5] that are proposed

to build better representation for capturing motion and appearance

information. Recently trajectory-based approach becomes popu-

lar for activity recognition. Improved Dense Trajectory [36] is the

state-of-the-art among all hand-crafted features. It has shown sig-

ni�cant improvement over other existing hand-crafted approaches

combining with Fisher kernel framework [26].

Deep learning approaches Recently, many deep architectures

are proposed to solve video classi�cation problem. The very earliest

attempt, in 2011, [2] combines ConvNets and RNN for human action

recognition. [19] trains a deep network with video frames from a

large dataset for recognizing sports activities. However, analyzing

still images only lacks temporal structure and motion information

for activity recognition. [28] deals with this problem and utilize opti-

cal �ow to capture short-term motion cues. Speci�cally, the authors

propose to combine spatial and temporal streams which operate

on RGB frames and stacking optical �ows separately to overcome

the lack of temporal information. In another direction of tackling

this problem, [30] extends a 2D ConvNets to a 3D ConvNets which

utilizes 3D volume �lters to enable the networks to learn temporal

structures. [32] further extends 3D �lters with longer temporal di-

mensions to capture more temporal information. I3D [3] is recently

proposed to e�ciently capture spatio-temporal features by in�ating

the 2D convolutional kernels into 3D kernels. [8] overcomes the

problem that previous works cannot encode long-term temporal

information by combining RNN. The authors directly connect Con-

vNets to RNN model and jointly train them simultaneously to learn

temporal dynamics and perceptual representations. [41] also high-

lights the sequential information of activity, and designs a Siamese

network that models action as a transformation on a high-level fea-

ture space. Similarly, [18] continuously predicted the discriminative

importance of each frame and subsequently pooled them to achieve

online classi�cation. [7] presents Temporal Linear Encoding (TLE)

to temporally aggregate features sparsely sampled over the whole

video with a bilinear model. In [42], authors model correlations

between two streams hierarchically by compact bilinear layer at

multiple levels. Recently, [31] improves the performance by fac-

torizing 3D convolutional kernels into spatial and temporal �lters.

[47] integrates 2D �lters with the 3D convolutional �lters to learn

better spatio-temporal features. [4] captures the action dynamics

by utilizing kernelized subspace representations.

Temporal attention Our work shares a similar merit of [7, 39,

42] in �guring out how to model long-term temporal dependency

by applying temporal attention mechanism. While it di�ers in sev-

eral points. [7] exploits feature interactions between the segments

of the entire video. It also linearly encodes and aggregates infor-

mation. [42] introduces a compact bilinear operator for temporally

fusing multi-path optical �ow features. [39] learns the weights

directly with linear transformation, while we modularize the tem-

poral pooling layer with ConvNet to generate the parameters of

weights generator model. Recently, [33] introduces a Transformer

module for machine translation which applies self-attention mech-

anism and calculate the dependency of each word by taking whole

sequence into consideration. Our work is related to this work since

we compute the temporal weights for video segments without any

additional information. While, we implement our DATP module

with ConvNets and in a local �avor. We will discuss in the next.

Knowledge distillation An intuitive way to pool the video

segments together is to simply average the probabilities produced

by the frame-level classi�er[3, 25, 32, 40]. Knowledge distillation

[1, 16] is initially proposed to train a network using probability

vectors instead of hard labels transferred from another since they

usually provide much more information per training case and much

less variance. Inspired by [16], we for the �rst propose to distill

the knowledge temporally by digging into the temporal sequence

of probabilities or other high-level intermediate features to model

long-term temporal structure for human activity recognition.
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Figure 2: Up:Misclassi�ed video sample fromTSN of theHMDB51 test set of dive activity.We display sampled RGB frames and

onl,y horizontal optical �ows for simplicity. Bottom: Softmax scores of ground-truth category of activity dive (blue dashed

line) and predicted class fall floor (green dashed line) with weights of average pooling and the unimodal Gaussian. Best viewed

in color.

3 PROPOSED APPROACH

In this section, our motivation of proposing the DATP module is

�rst presented. Then we describe its three components, auxiliary

ConvNets, weights generator and weighting strategy with their

implementations of forward and backward pass for training.

3.1 Motivation

For many existing approaches [27, 32, 40], they simply label all

frames as same as video-level labels, in other words, viewing these

frames with equal contributions to activity recognition. However,

this will raise a mislabeling issue for irrelevant volumes of the

videos if we cannot detect them�rst, especially formid-scale datasets

like UCF101 and HMDB51 which have limited training data to en-

able the networks to acquire excellent generalization capability. Key

frames detection and classi�cation is a chicken-and-egg problem.

To solve this problem, we propose a new learnable and di�eren-

tiable module which distills activity contributions from semantic

features and allows detection by classi�cation in an end-to-end

training. Our proposed approach can simultaneously identify some

key frames and assign adaptive weights during pooling.

From frames in Figure 2, we can see that the man is falling into a

lake. Then we present softmax scores from TSN’s temporal stream

of the top 2 predicted activities, dive (blue dashed line) and fall �oor

(green dashed line). When this man reaches the lake, the optical

�ow input data produce high softmax scores in fall �oor activity

which makes sense since it causes very similar optical �ow changes.

Therefore, this sample is misclassi�ed as fall �oor when using aver-

age pooling.While, if we impose proper unimodal Gaussian weights

on both softmax scores, the network can successfully classify the

sample as dive activity (shown in Figure 2) on the temporal stream.

Our goal is to automatically regress such weights with the DATP

module.

3.2 Deep Adaptive Temporal Pooling Module

Given a sequence of intermediate features extracted from frame-

level ConvNets as input, our goal is to compute an importance

score as a weight for every softmax score of the sampled video

segments. To achieve this, we propose the DATP module which

consists of three parts (see Figure 1): auxiliary ConvNets, weights

generator and weighting strategy. First, an auxiliary ConvNets

takes the intermediate features as input, and through a few stacked

layers outputs the parameters of a weights generator. The outputs

are then used to parameterize a weights generator model where the

temporal weights are sampled from to weight the softmax scores.

In the end, temporal weights and softmax scores are combined

following the weighting strategy which will be discussed later.

Note that, although we choose deep neural networks as the base

framework, DATP is a universal pooling module that can exploit

temporal structures over any sequential data, e.g., hand-crafted

features.

Auxiliary ConvNets The goal of the auxiliary ConvNets is to

learn from sequences of high-level features to generate parameters

that de�ne the weights generator model. It consists of convolutional

layers and fully connected layers with a �nal regression layer at

the end to produce the model parameters of weights generator.

We �rst sample N temporal segments from each video sample.

Let us consider F (x1, ...,N ) as an underlying mapping that trans-

forms the intermediate features to the parameters of weights gen-

erator. It can be approximated by a number of hidden layers with

x1, ...,N denoting the input {x1, . . . ,xN } of length N . The input

features can take any layer’s output which means we can vary
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where the DATP module is inserted into the overall model. The

generated parameters are de�ned as θ = F (x1, ...,N ), and their sizes

vary depending on di�erent types of the parameterized models.

Weights generator The weights generator model combining

with auxiliary ConvNets can be seen as a self-attention module. By

taking advantage of high-level features sequences, e.g., probability

sequences, it enables the network to distill the contribution score

and attend to key actions without additional knowledge. Two im-

plementations of the weights generator model will be discussed,

discrete weights model and mixture of Gaussians.

• Discrete weights model: To perform a weighting of soft-

max scores, we need to generate N temporal weights for

N video segments. Therefore, one straightforward idea is

to simply generate N discrete weights from auxiliary Con-

vNets and directly assign them to the softmax scores. In this

case, the weights generator is an identity function and the

weights are the same as regressed parameters, denoted by

w = {w1, . . . ,wN } = θ ∈ RN .

• Mixture of Gaussians (MoG): Video segments of activities

are usually related to each other and have a certain temporal

structure. Therefore, it might be di�cult to learn to directly

regress discrete weights for the segments. For this purpose,

we de�ne a mixture of Gaussians as weights generator model.

We take probability density function of the MoG as the form

of weights generator. Then we sample weights from it and

assign them to di�erent segments.

There are several reasons for choosing the MoG model: First,

the transitions between non-action and action volumes (i.e., ac-

tion starting and action ending) are usually smooth, which each

Gaussian can model very well. Second, the parameters that de�ne

Gaussian distribution, mean and variance values, can be perfectly

adapted to the temporal translation and scaling (i.e. duration) of key

actions. This superb property enables the networks to be temporally

invariant to time-series data like videos in a parameter-e�cient

manner. Third, the p.d.f of the MoG is di�erentiable with respect to

its parameters and input, which is critical since it allows gradients

to be backpropagated to update the whole model by end-to-end

training.

Note that, since we focus on activity classi�cation instead of

detection, it is su�cient to recognize and assign larger weights for

just several informative temporal segments. For example, max pool-

ing practically works well for image classi�cation which simply

forwards the highest value of the local patches and only route the

gradients to it. The same logic applies for activity classi�cation with

our DATP module as we only need to forwards the most discrimina-

tive information. Selecting all informative segments might further

improve the accuracy, but selecting some can already achieve signif-

icant improvements. Furthermore, only highly weighted segments

will be updated signi�cantly during training and it allows better

training of frame-level ConvNets.

Formally, given the softmax score I i ∈ RC extracted from N

video segment at time ti , i = 1, 2, . . . ,N . Note that, we normalize

the ti values into [0, 1]. The number of Gaussians is denoted as K .

The corresponding temporal weights are

wi =

K
∑

k

ρk
√

2πσ 2

k

e

−
(ti −µk )

2σ 2

k , i = 1, 2, . . . , N (1)

which is generated from a mixture of K Gaussian distribution

of mixture weight {ρ1, . . . , ρK }, mean {µ1, . . . , µK } and variance

{σ1, . . . ,σK }.

To allow backpropagation of gradients on weights generator,

we can de�ne the gradients with respect to θ ∈ R3×K , i.e., the

parameters of mixture of Gaussians,

∂wi

∂ρ j
= ρ jNti (µ j , σ

2

j )
1

ρ j
,

∂wi

∂µ j
= ρ jNti (µ j , σ

2

j )
(ti − µ j )

σj 2
,

∂wi

∂σj
= ρ jNti (µ j , σ

2

j )
1

σj

[

(ti − µ j )
2

σj 2
− 1

]

,

(2)

In the forward pass, given mixture weights, mean value, variance

and ti , the weights generator calculates weights from a mixture of

Gaussians. For backpropagation, the generator will update these

parameters according to the cross-entropy loss between pooled

scores and ground-truth labels.

Weighting strategy As aforementioned, to explicitly encour-

age peaky distributions of softmax scores over time, we apply a

linear combination between Gaussian weights and temporal soft-

max scores to produce �nal pooled representation. By training on

thousands of activity videos, the learnable module will emphasize

the most informative frames by assigning larger temporal weights

from the parameterized mixture of Gaussians to prominent tem-

poral segments. During training, the mixture weights, mean and

variance will be updated to �t the softmax scores of true labels.

Therefore, the DATP module can magnify the softmax scores of

key segments in the �nal pooled representation.

Therefore, we de�ne the pooling function as

S =

∑N
i=1 I i ×wi

∥w ∥2
(3)

where S ∈ RC denotes pooled vector. To allow backpropagation

of the gradients, we can de�ne the gradients with respect to the

input softmax score I i and the Gaussian weightswi ,

∂S

∂I i
=

wi

∥w ∥2
1

∂S

∂wi
=

C
∑

k=1

∥w ∥2
2
I i [k ] −wi (

∑N
j=1w j I j [k ])

∥w ∥3
2

(4)

where ∥w ∥ denotes the l2-norm of the weights vectorw .

Bene�ts for training and inference The advantages of inte-

grating the DATP module are twofold. First, the generated temporal

weights are able to highlight key actions and suppress irrelevant

frames and therefore boost activity recognition performance. Sec-

ond, it assists the training of frame-level ConvNets and results in

an improved classi�er.

The �rst bene�t is intuitive. During inference, the frame-level

feature extractor produces a softmax score for each segment. As

is often the case, key actions occur momentarily during the entire

video. Then the softmax scores of true label might have high values

only when key actions happen. Therefore, the video is very likely to
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be misclassi�ed if we simply average all softmax scores. However, if

informative frames can be identi�ed and their weights are distilled

from high-level feature sequences, we will stand a good chance

of classifying activities correctly since the frames are weighted

adaptively according to their temporal importance.

More importantly, the DATP module can assist training a better

frame-level feature extractor. If average pooling is applied during

training, each segment will contribute equally to update the frame-

level ConvNets no matter whether the segment is related to the true

activity class or not. Di�erent from average pooling, our proposed

module can assign weights from adaptive Gaussians and linearly

combine them with softmax scores temporally. Therefore, during

the backward pass, the frame-level ConvNets are supposed to be

updated with di�erent coe�cients according to the weights from

forward pass (refer to Eq. (4)). Consequently, the frame-level Con-

vNets has a better discriminating ability and we further con�rm

that by conducting experiments in Section 4.4.

4 EXPERIMENTS

In this section, we �rst describe three challenging datasets, HMDB51,

UCF101 and Kinetics. Second, we present implementation details

of our evaluation framework. Third, we provide ablation studies

to show the bene�ts of incorporating DATP module and conduct

extensive experiments to choose input features from various inter-

mediate layers and investigate possible models as weights generator.

Finally, we visualize the temporal weights that network adaptively

learns and compare our proposed DATP module with other deep

learning methods.

4.1 Datasets

UCF101 [29] dataset consists of 13,320 video clips from 101 activity

categories. All clips have �xed frame rate and resolution of 25 FPS

and 320×240 respectively. The length of clips ranges from 1s to 70s.

We report classi�cation accuracy according to the experimental

setup of 3 train/test splits recommended by [29] to keep consistent

with other reported results on this dataset.

HMDB51 [21] contains 6,766 video clips extracted from various

sources such as YouTube and movies. It has a total of 51 distinct

activity categories, each containing 101 clips at least. Many videos

selected from videos in this dataset contain scene transitions and

severe camera motion which are very challenging for the optical-

�ow-based approaches. We follow the 3 selected splits provided by

the authors for evaluation.

Kinetics [20] is a large-scale video dataset of diverse human

activities. It consists of approximately 250k training video clips and

20k validation clips from 400 human action classes which has an

order of magnitude more videos than previous datasets. Our model

is trained on the whole training set and test on the validation set.

4.2 Implementation details

To compare withmost of the existing approaches, we choose Tempo-

ral Segment Network (TSN) [40] as the baseline approach and exper-

imental framework for two-stream networks. All models are trained

on 2 Titan X Pascals GPUs. We employ a pre-trained ResNet34

model [15] trained on the ImageNet dataset [6] as backbone model.

The two-stream network consists of a spatial and a temporal stream.

The spatial ConvNet takes a single RGB frame as the input, and the

temporal ConvNet takes 10 stacking optical �ow. The dimension

of input data is 224 × 224 for training. Random cropping and hori-

zontal �ipping are employed to augment training data. We choose

N = 10 segments in both training and testing to obtain more tem-

poral information. These segments are sampled from videos with

a �xed length and random o�set. Note that TSN chooses 3 as the

number of segments during training, while 25 for testing in order to

improve performance. Instead, we choose a consistent scheme for

both training and testing. We adopt a late fusion strategy for fusing

two streams. Speci�cally, two pooled vectors are generated from

each stream, and we take a weighted average of them by setting

the spatial weight as 1 and temporal weight as 1.5.

We use dense optical �ow approach for extracting motions from

videos as the input of temporal stream. TVL1 algorithm [45] is

chosen as the implementation of optical �ow algorithm. For MoG

parameter initialization, we initialize the mean value to [1/(K+1), ...

, K/(K + 1)] and the variance to 0.2 for mixture of K Gaussians. For

example, the mean value is set to 0.5 for single Gaussian model. We

implement the proposed DATPmodule in PyTorch. For experiments

on Kinetics dataset, we use per-trained models downloaded from

[23] and then �ne-tuned the model with DATP module inserted.

It can be dropped into a ConvNets architecture at any point. This

module is computationally economical and causes very little time

overhead when used with high-level features as input. For more

details, please refer to Section 4.3 since the architecture varies due

to di�erent input and weights generator model.

4.3 Ablation studies

In this section, we seek to answer three important questions in

utilizing the DATP module. First, we study the e�ect of di�erent

locations to insert the module. Second, we investigate various pos-

sible models for generating temporal weights. Finally, we compare

di�erent testing schemes with various models.

Input features for temporalweight regressionWe�rst study

the e�ect of di�erent input features of DATP module on the activity

recognition performance. In other words, we vary where the DATP

module is inserted into the overall model to distill temporal infor-

mation. Here, we explore two choices of intermediate features for

feeding DATP module, (1) softmax scores: output from softmax

function after last fully connected layer and (2) conv features:

output from last convolutional layers just before global average

pooling layer. Therefore, conv features keep the spatial dimension

of 7× 7 while softmax scores do not. Note that, we only investigate

the high-level features of the network since low-level features gen-

erally need much deeper auxiliary ConvNets to generate reasonable

weights which is expensive comparing high-level features such as

softmax scores. The auxiliary ConvNets comprises two temporal

convolutional layers for both softmax scores and conv features as

the input features. For conv features, we add one extra convolu-

tional layer of size 7 × 7 before temporal convolution to reduce the

dimensionality. Moreover, we vary the number of fully connected

layers to investigate the e�ect of the networks’ depth.

Table 1 and Table 2 provide details about the input dimensionality

and architectures of DATP module and reports the performance on

the temporal stream of the 1st split of HMDB51 as we vary the input
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input features input dim. DATP arch. Accuracy (%)

softmax scores [10, C] 2 conv + 2 fc 65.4

conv features [10, 7, 7, 512] 3 conv + 2 fc 66.0

conv features [10, 7, 7, 512] 3 conv + 3 fc 65.9

Table 1: Results on the temporal stream of 1st split of

HMDB51 using di�erent input features.

Input softmax scores: [10, C] conv features: [10, 7, 7, 512]

conv1 [3, 1, 1] conv, 32 ReLU [1, 7, 7, 512] conv, 64 ReLU

conv2 [3, C, 32] conv, 32 ReLU [3, 1, 1, 64] conv, 32 ReLU

conv3 - [3, 1, 1, 32] conv, 32 ReLU

fc1 fc layer (after �attening) fc layer (after �attening)

fc2 fc layer fc layer

Table 2: Architectures of the proposed DATP module.

model Accuracy (%)

discrete weights 63.1

Mixture of Gaussians (K=1) 66.0

Mixture of Gaussians (K=2) 66.4

Mixture of Gaussians (K=3) 65.6

Table 3: Comparing di�erent models of the weights genera-

tor on the temporal stream of 1st split of HMDB51.

features. Note that, we use a unimodal Gaussian, i.e., MoG of K = 1

for all results in this table. It clearly shows the bene�t of replacing

softmax scores by conv features as the input to DATP module.

Furthermore, increasing number of fully connected layers does

not exhibit any superior performance. Therefore, we choose conv

features for the following experiments as our evaluation baseline.

Model forweights generatorWeevaluate two aforementioned

models for generating temporal weights, (1) Discrete weights

model: We modify the number of output of auxiliary ConvNets to

N . Then, we directly take these N discrete weights as the temporal

weights ofN softmax scores in the overall model. Finally, the pooled

score of each stream is a linear combination ofN weights andN soft-

max scores. (2)Mixture of Gaussians (MoG): Unimodal Gaussian

is an e�ective and reasonable model which can be viewed as a soft

version of max pooling since it temporal-invariantly addresses key

actions during training and inference. Therefore, we expect MoG

will further improve the accuracy since MoG could model more

complex temporal structures and unimodal Gaussian is a special

case of the MoG. Speci�cally, we explore the impact of di�erent

number of Gaussians on the classi�cation performance.

In Table 3, we report the accuracy on the temporal stream of the

1st split of HMDB51 for di�erent models of the weights generator.

For MoG, we choose K = 1, 2, 3 as the number of Gaussians. By

comparing the performance, we observe that using a mixture of 2

Gaussians achieves the highest accuracy which produces a slightly

better result than unimodal Gaussian. However, the model degrades

testing scheme Spatial Temporal Fusion

P1 48.9 54.1 58.3

P2 56.8 66.0 72.3

P3 54.4 62.4 69.5

DATP 57.1 66.4 72.9

Table 4: Results on 1st split of HMDB51 of di�erent testing

schemes.

classi�cation performance when K = 3 which implies that simply

increasing the number of Gaussians might impair the performance.

Moreover, all MoG models constantly outperform the model that

generates discrete weights. We conjecture that the decrease in

accuracy is due to more parameters in discrete weights model and

the mixture of 3 Gaussians. Although both models should be able

to asymptotically regress the desired weights, the ease of learning

might be di�erent.

Temporally trained frame-level ConvNets In [40], authors

choose 3 segments during training, while 25 for testing in order to

improve test performance. In our framework, we keep the DATP

module when testing and a consistent number of segments for

both training and test unlike [40]. While, since the frame-level

ConvNets shares parameters in our framework, the trained model

can be viewed as a frame-level feature extractor and performs frame-

wise evaluation without appending DATP module during testing

([28, 40]). Therefore, we compare di�erent pooling strategies to

show the e�ectiveness of DATP module and its advantages over

average pooling. In Table 4, we summarized the performance on

1st train/test split of HMDB51 with the following testing schemes:

• P1 (temporally trainedConvNets + randomGaussians):

We train the model with DATP module which takes conv

features as input and mixture of 2 Gaussians as weights gen-

erator model. Then we employ the improved frame-level

ConvNets as the feature generator. While during testing, we

generate a mixture of 2 random Gaussians instead of taking

adaptive Gaussian weights directly from DATP.

• P2 (temporally trained ConvNets + average pooling):

We train the whole model with DATP module as same as P1.

Then 25 RGB frames and optical �ow stacks are sampled from

the video following the test setup of [40] and [28]. Finally,

we average the 25 softmax scores as the �nal prediction.

• P3 (naively trained ConvNets + average pooling): We

train the model without DATP module and take the trained

feature extractor with average pooling for testing. This is

similar to the TSN framework but with more segments for

training.

• DATP (temporally trained ConvNets + adaptive Gaus-

sians): The proposed DATP framework is used for both

training and testing.

By comparing P2 with P3, it is clear that the frame-level ConvNet

has been improved for classi�cation using DATP module since P2

and P3 both apply average pooling during the testing stage. How-

ever, P2 utilizes a frame-level ConvNet trained with DATP while P3

does not. Moreover, we observe an improvement from P2 to DATP
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Figure 3: Up: Visualization of video samples of activity eat and sit-up. RGB frames and horizontal optical �ows (only along

x-axis for simplicity reason.) of 10 sampled temporal segments are presented. Bottom: Softmax scores and sampled weights

generated from DATP module on temporal stream of activity: (a) eat (baseline), (b) eat (DATP with 1 Gaussian), (c) eat (DATP

with 2Gaussians), (d) sit-up (baseline), (e) sit-up (DATPwith 1Gaussian), (f) sit-up (DATPwith 2Gaussians). Note the improved

softmax scores in (b), (c), (e), (f) produced by the temporally trained ConvNets with DATP.

where the improved ConvNets are used for both, while P2 applies

average pooling and DATP applies adaptive temporal pooling for

testing. It is worth noting that P2 samples 25 segments for testing

whereas DATP takes 10. Additionally, we evaluate another setting

P1 that uses a mixture of 2 random Gaussians (random value of

mean and variance) as weights generator during testing. This re-

sult con�rms that our proposed auxiliary ConvNets can regress

meaningful model parameters from the input intermediate features.

4.4 Results and Analysis

In this section, we �rst present visualizations of the temporal

weights from di�erent pooling techniques. Second, we report im-

provements in each category by using DATP. Finally, we compare

our proposed approach against state of the art. All experiments are

done with the conv features as input and the mixture of 2 Gaussians

model as weights generator.

Visualization of generated temporalweightsGenerating ex-

plicit temporal weights is one of our key contributions which en-

ables our proposedmodule to work as a weak action detector. There-

fore, we visualize the intermediate results - generated temporal

weights in two typical cases presented in Figure 3 of activity eat

and sit-up. We show the softmax scores and generated weights from

the baseline model (average pooling), DATP with MoG (K=1) and

DATP with MoG (K=2). They are only extracted from the temporal

stream for easy comparison.

From the eat activity sample, we can see that two men are talk-

ing to each other, while one of them is eating during the last �ve

sampled frames. Figure 3 (b) and (c) clearly shows that the trained

frame-level ConvNets produces high responses for the last four

to �ve frames. Then the DATP module generates unimodal and

mixture of Gaussians weights respectively which place the peak

values around the 8th frame and therefore increases the probability

of eat activity by pooling all temporal softmax scores.

From a gradient perspective, we can see that the gradients can

be much higher with the action-relevant segments during the back-

ward pass since the weights simply represent the coe�cients as-

sociated with the gradients. Therefore, it allows our approach to

exhibit a higher ability to discriminate key actions than average

pooling. This has been proved in Figure 3 (a) to (c), since we observe

signi�cant improvements of the feature extractors. In addition, we

can clearly see the bene�t of training with a mixture of 2 Gaussians.

Not only it generates an improved feature extractor, but also it can

better weights the �at region of last �ve frames’ softmax scores.

Similarly, in the second video of activity sit-up, the sit-up action

arises periodically and both unimodal Gaussian and mixture of 2

Gaussians successfully recognize the key actions. Furthermore, a

mixture of 2 Gaussians model can capture more information from

complex temporal structures. We notice that even with more than

2 peaks in the softmax scores, we can still classify the activity

correctly, as some peak has been assigned a larger temporal weight.

Improvement can be achieved without selecting all informative

video segments as we discussed in Section 3.2.

Impact on di�erent classes We present the top 5 and bottom

5 changes of the classi�cation accuracy by applying DATP module

over the baseline method on the 1st train/test split of HMDB51

using the temporal stream in Figure 4.

From this �gure, we can see that the largest increase occur in

kick, push and shoot_gun categories which is 26.7%. Also smile and

fall_�oor have around 20% improvement. For better performance on

atomic actions such as kick, push and smile, we believe the reason

is that these actions usually last a short period of time and DATP is

able to capture and emphasize the occurrence. Similarly, for action

shoot gun, changes in optical �ow occur within a short time and in
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Figure 4: Top 5 and bottom 5 changes of the classi�cation

accuracies by comparing DATP with the baseline method of

all classes. Note that the improvements here refer to the ab-

solute changes of correctly predicted ratio for each category.

a small part of the scene as well which is challenging for activity

recognition with average pooling technique. However, our method

can highlight key frames to predict the label even when they are

far less compared to uninformative frames. On the other hand, for

actions such as talk and jump, DATP does not show advantages

over the baseline approach. We conjecture this is due to the fact that

these activities are continuously evolving and many video samples

have a complicated background for recognition, e.g., jumping on

staircases might be misclassi�ed as climb stairs.

Computational overhead We show in our approach descrip-

tion that DATP does not require any modi�cation of the base-

line network and incurs very little computational cost when at-

tached to existing architectures. In a basic setting with single Gauss-

ian as weights generator and softmax scores as input, the run-

ning time is ∼ 0.75s/batch without DATP and ∼ 0.83s/batch with

DATP(Implemented with PyTorch on 2 Titan Xp GPU). This proves

that the DATP module can improve the training, increase classi�-

cation accuracy at a small additional computational cost less than

10%. It is much preferred when compared with spatio-temporal

convolutions since 3D convolutions are generally ine�cient.

Comparison against state of the art We compare our ap-

proach with existing deep learning methods in Table 5 and Table

6 for UCF101, HMDB51 and Kinetics datasets. We can see that

DATP achieves state-of-the-art results on all these three datasets

with conv features and mixture model of 2 Gaussians. It is note-

worthy that, by inserting the lightweight DATP module into TSN

model, our proposed architecture outperforms the original model

by a good margin on all three datasets. The improved performance

demonstrates superiority of DATP and its e�ectiveness on temporal

knowledge distillation.

Note that, AdaScan [18] and TLE [7] also address long-term tem-

poral information for activity recognition. Notably, TLE exploits

long-term dynamics by capturing interactions between the seg-

ments and encodes them linearly into a compact representation for

video-level prediction, while our approach makes use of the non-

linear mixture of Gaussian model which is temporally invariant to

Accuracy (%) UCF101 HMDB51

Two-stream [28] 88.8 59.4

C3D [30] 82.3 56.8

Long-term Temporal Convolution [32] 91.7 64.8

KVMF [48] 93.1 63.3

Transformations [41] 92.4 63.4

ConvFusion [12] 92.5 65.4

ST-ResNet [10] 93.4 66.4

I3D [3] 93.4 66.4

ActionVLAD [13] 92.7 66.9

AdaScan [18] 93.2 66.9

TSN [40] 94.0 68.5

ST-Multiplier [11] 94.2 68.9

ST-Pyramid [42] 94.6 68.9

ST-VLMPF(DF) [9] 93.6 69.5

TLE:Bilinear [7] 95.6 71.1

DATP (1 Gaussian + softmax scores) 95.1 71.6

DATP (2 Gaussians + conv features) 95.9 72.3

Table 5: Comparison with existing deep learning methods

on UCF101 and HMDB51 dataset. For fair comparison, we

report results frommethods that do not pre-train on the Ki-

netics dataset.

actions. They model action transitions for di�erent activities, while

we model the temporal importance which can directly boost the

performance. AdaScan adaptively pools and represents frames in

an online fashion. It predicts an importance score of each frame to

determine their contributions to the �nal pooled descriptor. How-

ever, the di�erence is that AdaScan predicts the importance score

at each time only with previously pooled features. While our DATP

extracts information across the whole video to decide the tempo-

ral weights. In addition, our DATP is a universal pooling module

that can exploit temporal structures over any sequential data, not

limited to deep features. Therefore, we can also incorporate it with

hand-craft features, such as dense trajectories [35] or TDD [38]

features.

5 CONCLUSIONS

In this paper, we propose a DeepAdaptive Temporal Poolingmodule

(DATP) to capture long-term temporal information. Our DATPmod-

ule allows for self-attention and temporal knowledge distillation.

It utilizes a MoG model to compute adaptive weights to pool tem-

poral segments together without extra supervision. DATP incurs

little computational overhead and can be easily implemented. We

investigated various input features for temporal weight regression

and several weights generator models. We showed that the DATP

module contributes to training of an improved feature extractor.

Our work achieves state-of-the-art performance.
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