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Abstract

Even though convolutional neural networks have be-

come the method of choice in many fields of computer

vision, they still lack interpretability and are usually de-

signed manually in a cumbersome trial-and-error process.

This paper aims at overcoming those limitations by propos-

ing a deep neural network, which is designed in a sys-

tematic fashion and is interpretable, by integrating mul-

tiresolution analysis at the core of the deep neural net-

work design. By using the lifting scheme, it is possible

to generate a wavelet representation and design a net-

work capable of learning wavelet coefficients in an end-

to-end form. Compared to state-of-the-art architectures,

the proposed model requires less hyper-parameter tuning

and achieves competitive accuracy in image classification

tasks. The Code implemented for this research is available

at https://github.com/mxbastidasr/DAWN WACV2020

1. Introduction

Convolutional neural networks (CNNs) have become the

dominant machine learning approach for image recognition.

Numerous deep learning architectures have been developed

ever since AlexNet [17] greatly outperformed other models

on the ImageNet Challenge [8] in 2012. Based on back-

propagation, CNNs can leverage correlation and structure

inside datasets by directly tuning the network trainable pa-

rameters for a given task.

The trend in CNNs is to increase the number of layers

to be able to model more complicated mathematical func-

tions, to the point that recent architectures surpass 100 lay-

ers [14, 15]. There is, however, no guarantee that increasing

the number of layers is always advantageous. Zagoruyko et

al. [31] indeed showed that decreasing the number of lay-

ers and increasing the width of each layer leads to better

performance than their commonly used thin and very deep

counterpart, while reducing training time. Their results also

support our general observation that current CNNs are not

necessarily designed systematically, but usually through a

manual process based on trial-and-error [10].

A limitation of such networks is the lack of inter-

pretability, which is usually referred to as the Achilles heel

of CNNs. Convolutional neural networks are frequently

treated as black-box function approximators which map a

given input to a classification output [9]. As deep learning

becomes more ubiquitous in domains where transparency

and reliability are priorities, such as healthcare, autonomous

driving and finance, the need for interpretability becomes

imperative [4]. Interpretability enables users to understand

the strengths and weaknesses of a model and conveys an un-

derstanding of how to diagnose and correct potential prob-

lems [9]. Interpretable models are also considered less sus-

ceptible to adversarial attacks [24].

Theoretical properties of traditional signal process-

ing approaches, such as multiresolution analysis using

wavelets, are well studied, which makes such approaches

more intepretable than CNNs. There are in fact several prior

works that incorporate wavelet representations into CNNs.

Oyallon et al. [23] proposed a hybrid network which re-

places the first layers of ResNet by a wavelet scattering net-

work. This modified ResNet resulted in a comparable per-

formance to that of the original ResNet but has a smaller

number of trainable parameters. Williams et al. [28] took
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the wavelet sub-bands of the input images as a new input

and processed them with CNNs. In a different work [29],

they showed a wavelet pooling algorithm, which uses a

second-level wavelet decomposition to subsample features.

Lu et al. [20] addressed the organ tissue segmentation prob-

lem by using a dual-tree wavelet transform on top of a CNN.

Cotter and Kingsbury [6] also used a dual-tree wavelet

transform to learn filters by taking activation layers into the

wavelet space.

Recently, Fujieda et al. [11] proposed wavelet CNNs

(WCNNs), which were built upon the resemblance between

multiresolution analysis and the convolutional filtering and

pooling operations in CNNs. They proposed a CNN similar

to DenseNet, but the Haar wavelets (which are commonly

used in multiresolution analysis) were used as convolution

and pooling layers. These wavelet layers were concatenated

with the feature maps produced by the succeeding convolu-

tional blocks. This model is more interpretable than CNNs

since the wavelet layers generate the wavelet transform of

the input. The use of a fixed wavelet (Haar), however, is

likely suboptimal as it restricts the adaptability and cannot

leverage data-driven learning.

Inspired by WCNNs, we propose to perform multireso-

lution analysis within the network architecture by using the

lifting scheme [26] to perform a data-driven wavelet trans-

form. The lifting scheme offers many advantages compared

to the first-generation wavelets, such as adaptivity, data-

drivenness, non-linearity, faster and easier implementation,

fully in-place calculation, and reversible integer-to-integer

transform [32].

Unlike previous works which combine CNNs and

wavelets, our model learns all the filters from data in an

end-to-end framework. Due to the connection with mul-

tiresolution analysis, the number of layers in our network is

determined mathematically. The combination of end-to-end

training and multiresolution analysis via the lifting scheme

allows us to efficiently capture the essential information

from the input for image classification such as texture and

object recognition. The use of multiresolution analysis gen-

erates a relevant visual representation at each decomposi-

tion level, which contributes to the interpretability of the

network.

The evaluation of the proposed network was performed

on three competitive benchmarks for texture and object

classification tasks, namely, KTH-TIPS-b, CIFAR-10 and

CIFAR-100. The proposed model attains comparable re-

sults to those presented by the state-of-the-art on texture

classification, trained end-to-end from scratch, with a frac-

tion of the number of trainable parameters. Moreover, the

proposed model shows better generalization compared to

networks especially tailored for texture recognition as it

presents good performance for object classification task.

This work is the first to propose trainable wavelet filters

in the context of CNNs. In summary, we propose a deep

neural network for image classification which exhibits the

following properties:

The network is interpretable since approximation and detail

coefficients, which have a relevant visual representation, are

generated by the multiresolution analysis using the lifting

scheme at each decomposition level.

The network extracts features using a multiresolution anal-

ysis approach and capture essential information for classi-

fication task reducing the number of trainable parameters

in texture classification. The loss function used to train the

network ensures that the captured information is relevant to

the classification task.

The architecture offers competitive accuracy in texture and

object classification tasks.

2. Background

This section briefly describes multiresolution analysis

and the lifting scheme which are the building blocks of our

model.

2.1. CNNs as Multiresolution Analysis

Convolutional neural networks proposed by LeCun in

1989 [18] contain filtering and downsampling steps. In or-

der to have a better understanding of CNNs, we propose

to interpret convolution and pooling operations in CNNs as

operations in multiresolution analysis [21]. In the follow-

ing, only one-dimensional input signals are considered for

simplicity, but the analysis can be easily extended to higher

dimensional signals.

Given an input vector x = (x[0], x[1], ..., x[N − 1]) ∈
R

N , and a weighting function ω, referred to as ker-

nel, the convolution layer output (or feature map) y =
(y[0], y[1], ..., y[N − 1]) ∈ R

N can be defined as

y[n] = (x ∗ ω)[n] =
∑

j∈K

x[n+ j]ω[j] (1)

where K is the set of kernel indices.

The role of the pooling layers is to output a summary

statistic of the input [13]. It is normally used to reduce

the complexity and to simplify information. Most common

pooling layers consist of convolution and downsampling in

signal processing. Using the standard downsampling sym-

bol ↓, the output vector o from a pooling layer can be written

as

o = (b ∗ p) ↓ p, (2)

where p = (1/p, ...1/p) ∈ R
p is the pooling filter.

We can now interpret convolution and pooling layers as

operations in multiresolution analysis. In this analysis, the

resolution of a signal (measure of the amount of detail in a

signal) is changed by a filtering operation, and the scale of
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a signal is changed by a downsampling operation [22]. The

wavelet transform, for example, repeatedly decomposes a

signal into spectrum sub-bands by using low-pass kl and

high-pass kh filters and applies downsampling by a factor

of 2.

Then, to perform a multiresolution analysis, a new sig-

nal decomposition is obtained by taking as input the low-

pass filtered sub-band cl. Each of these decompositions are

referred to as levels, and generate a hierarchical decompo-

sition of the signal into cl,t and dh,t each time. Let kl,t
and kh,t denote the low-pass and high-pass filters at step t,
respectively. Such transformation is thus represented as a

sequence of convolution and pooling operations,

cl,t+1 = (cl,t ∗ kl,t) ↓ 2

dh,t+1 = (dh,t ∗ kh,t) ↓ 2,
(3)

where cl,t+1 and dh,t+1 denote the approximation and de-

tail coefficients generated at step t, respectively, cl,0 = x
and dh,0 = x. Based on this level decomposition-based

construction, it is possible to compare CNNs structures with

multiresolution analysis, as Eqns. 2 and 3 are quite similar,

with the difference that in CNNs the filters are randomly

selected and their output does not have a meaningful inter-

pretation.

2.2. Lifting Scheme

The first-generation wavelets are mathematical functions

that allow for efficient representations of data using only a

small set of coefficients by exploiting space and frequency

correlation [22]. The main idea behind the wavelet trans-

form is to build a sparse approximation of natural signals

through the correlation structure present on them. This cor-

relation is normally local in space and frequency, meaning

that there is a stronger correlation among the neighboring

samples on the signal. The construction of mother wavelets

is traditionally performed by using the Fourier transform,

however, this can also be constructed in the spatial do-

main [7].

The lifting scheme, which is also known as second-

generation wavelets [26], is a simple and powerful approach

to define wavelets that has the same properties as the first-

generation wavelets [7]. The lifting scheme takes as input

a signal x and generates as outputs the approximation c and

the details d sub-bands of the wavelet transform. Designing

such lifting scheme consists of three stages [5] as follows.

Splitting the signal. This step consists of splitting the in-

put signal into two non-overlapping partitions. The simplest

possible partition is chosen; i.e. the input signal x is divided

into even and odd components denoted as xe and xo, respec-

tively, and defined as xe[n] = x[2n] and xo[n] = x[2n+1].

Updater. This stage will take care of the separation in the

frequency domain, looking that the approximation has the

same running average as the input signal [7]. To achieve

this, the approximation c should be a function of the even

part xe of the signal plus an update operator U .

Let xLU
o [n] = xo[n− LU ], xo[n− LU + 1], . . . , xo[n+

LU −1], xo[n+LU ] denote the sequence of 2LU +1 neigh-

boring odd polyphase samples of xe[n]. The even polyphase

samples are updated using xLu
o [n], and the result forms the

approximation c, as described in Eqn. 4, where U(·) is the

update operator.

c[n] = xe[n] + U(xLU

o [n]). (4)

Predictor. The splitting partitions of the signals are, typ-

ically, closely correlated. Thus, given one of them, it is

possible to build a good predictor P for the other set, by

tracking the difference (or details) d among them [7]. As

the even part of the signal x[n] corresponds to the approx-

imation c[n] (Eqn. 4), then it is possible to define P as a

function of c[n].
Let cLP [n] = c[n−LP ], c[n−LP +1], . . . , c[n+LP −

1], c[n + LP ] denote a sequence of 2LP + 1 approxima-

tion coefficients. In the prediction step, the odd polyphase

samples are predicted from cLP [n]. The resulting prediction

residuals, or high sub-band coefficients d, are computed by

Eqn. 5, where P (·) is the prediction operator.

d[n] = xo[n]− P (cLP [n]). (5)

2.2.1 Lifting Scheme Via Neural Networks

Yi et al. [30] proposed to replace the updater and the pre-

dictor with non-linear functions represented by neural net-

works to adapt to the input signals. To train them, the au-

thors proposed to use the following loss functions:

Loss(P) =
∑

n

(P (cLp [n])− xo[n])
2

Loss(U) =
∑

n

(U(xLU

o [n])− (xo[n]− xe[n]))
2,

(6)

where Loss(P) and Loss(U) are the loss functions for the

predictor and updater, respectively. The loss for the pre-

dictor network promotes the minimization of the detail co-

efficients magnitude (Eqn. 5). Yi et al. [30] argued that c
is close to xe by definition, which only makes it necessary

for the loss function of the updater network to minimize the

distance between c and xo. Note that in Yi et al. [30], the

predictor and the updater were trained sequentially.

3. Deep Adaptive Wavelet Network (DAWN)

We propose a new network architecture, Deep Adaptive

Wavelet Network (DAWN), which uses the lifting scheme
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Figure 1. (a) The 2D Adaptive Lifting Scheme consists of successively applying horizontal and vertical lifting steps where each of them

have their own predictor and updater. (b) The predictors and updaters are based on operations, such as paddings, convolutions, and

non-linear activation functions, which can be either trainable (red boxes) or fixed (green boxes).

to capture essential information from the input data for im-

age classification. The adaptive lifting scheme presented

by Yi et al. [30] showed that neural networks trained

through backpropagation can be used to implement the lift-

ing scheme for one-dimensional (1D) signals. The DAWN

architecture extends this idea to address a classification

task, and integrates multiresolution analysis into neural net-

works. The proposed model performs multiresolution anal-

ysis at the core of the classification network by training the

parameters of two-dimensional (2D) lifting schemes in an

end-to-end fashion. None of the previous wavelet-based

CNN approaches have performed this end-to-end training

while learning the wavelet parameters.

3.1. 2D Adaptive Lifting Scheme

We first explain the proposed 2D Adaptive Lifting

Scheme, and then present the integration of the 2D lifting

scheme into the proposed classification architecture.

The 2D Adaptive Lifting Scheme consists of a horizon-

tal lifting step followed by two independent vertical lifting

steps that generate the four sub-bands of the wavelet trans-

form. These sub-bands are denoted as LL, LH, HL, and HH,

where L and H represent low and high frequency informa-

tion, respectively, and the first and second positions refer to

the horizontal and the vertical directions, respectively. Note

that the 2D lifting scheme, illustrated in Figure 1 (a), per-

forms spatial pooling, as the spatial size of the outputs are

reduced by half with respect to the input.

The Adaptive Horizontal Lifting Scheme performs hor-

izontal analysis by splitting the 2D signal into two non-

overlapping partitions. We chose to partition the 2D signal

into the even (xe[n] = x[2n]) and odd (xo[n] = x[2n+ 1])
horizontal components. Then a horizontal updater (Uh) and

a horizontal predictor (Ph) operators are applied in the same

way as described in Section 2.2. The vertical lifting step has

a similar structure as the horizontal lifting step, but in this

case, the splitting is performed in the vertical component of

the 2D signal, followed by the processing, performed by the

vertical updater Uv and the vertical predictor Pv operators.

Predictor and Updater. The internal structure of the up-

dater and the predictor is the same for both the vertical and

horizontal directions. Figure 1 (b) shows the structure of the

horizontal predictor (or horizontal updater). At the begin-

ning, reflection padding is applied instead of zero padding

to prevent harmful border effects caused by the convolution

operation. Then, a 2D convolutional layer, where the kernel

size, depending on the direction of analysis ((1, 3) if hori-

zontal while (3, 1) if vertical), is applied. The output depth

of the first convolutional layer is set to be twice the num-

ber of channels of the input. Then, a second convolutional

layer with kernels of size (1,1) is applied. The output depth

of this layer is set the same as the initial input depth of the

predictor/updater. The stride for all the convolutions is set

to (1, 1). The first convolutional layer is followed by a relu
activation function, and we can benefit from its properties

of sparsity and a reduced likelihood of vanishing gradient.

The last convolutional layer is followed by a tanh activa-

tion function as we do not want to discard negative values

in this stage.

Design Choices. We arbitrarily chose to perform the hor-

izontal analysis before the vertical analysis. However, there

are no performance variations by computing the vertical

analysis first. The number of convolutional layers and the

kernel size used in the predictor/updater will be discussed

during the hyperparameter study (Section 4.3). The main

concern while choosing the depth was to maintain a rele-

vant visual representation of the approximation and details

sub-bands, while not considerably increasing the number of

network parameters.

3.2. DAWN Architecture

The DAWN architecture is based on stacking multiple

2D Adaptive Lifting Schemes to perform multiresolution

analysis (see Figure 2). The architecture starts with two
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convolutional layers followed by a multiresolution analysis

of M levels. Each level consists of a 2D Adaptive Lifting

Scheme, which generates as output the four wavelet trans-

form sub-bands LL, LH, HL and HH, and the input cor-

respond to the low level sub-band (LL) from the previous

level. The details sub-bands from each level (LH, HL, HH)

are concatenated and followed by a global average pool-

ing layer [19], used to reduce overfitting and to perform di-

mensionality reduction. In the last level, the global average

pooling of the outputs at each level are concatenated before

the final fully-connected layer and a log-softmax to perform

the classification task.

Number of levels. The minimum size of feature maps

at the end of the network for this architecture is set to

4 × 4 as it is the minimum possible size that still main-

tains the 2D signal structure. Assuming that the input

images are square, the number of levels M , is given by

M = ⌊log2(is)− log2(4)⌋, where is is the input image di-

mension. For example, for input images of size 224× 224,

is = 224 and M = 5. Note that this number of layers is au-

tomatically given since our network is based on multireso-

lution analysis. The effect of choosing different levels, than

the ones given by M is analyzed during the hyperparameter

study (Section 4.3).

Initial convolutional layers. As in every classification

task, the proposed approach needs a discriminative repre-

sentation of the data before the classification takes place.

To obtain a discriminative feature set before the first down-

sampling of the signal, the architecture starts by extracting

descriptors with two sequences of Conv-BN-ReLU, where

Conv and BN stand for Convolution and Batch Normaliza-

tion respectively, with kernel size 3 × 3 and with the same

depth. The depth in these initial convolutional layers is one

of the few hyper-parameters of DAWN. By fixing the depth

and determining the number of decomposition levels, one

can automatically obtain the depth of features maps of the

last 2D lifting scheme for a given input image size.

Loss function and constraints. End-to-end training is

performed using the cross-entropy loss function, in combi-

nation with some regularization terms to enforce a wavelet

decomposition structure during training. The loss function

takes the form of Eqn. 7, where P denotes the number of

classes, yi and pi are the binary ground-truth and the pre-

dicted probability for belonging to class i, respectively. The

regularization parameters λ1 and λ2 tune the strength of the

regularization terms. Also, mI
l and mC

l denote the mean of

the input signal to the lifting scheme at level l and the mean

of the approximation sub-band at level l, respectively. And,

Dl is the concatenation of the vectorized detail sub-bands at
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Figure 2. The proposed architecture is composed by three mod-

ules: i) Initial convolutional layers to increase the input depth, ii)

M levels of multiresolution analysis, where 2D lifting scheme is

applied on the approximation output of the previous level, and iii)

a large concat of details from the different levels and the approx-

imation, followed by a global average pooling and a dense layer.

The operations in the architecture can be classified as either train-

able (red boxes) or fixed (green boxes).

level l.

Loss = −

P∑

i=1

yilog(pi)

+ λ1

M∑

l=1

H(Dl) + λ2

M∑

l=1

‖mI
l −mC

l ‖
2
2.

(7)

To promote low-magnitude detail coefficients [12], the first

regularization term in Eqn. 7 minimizes the sum of the Hu-

ber norm of Dl across all the decomposition levels. The

choice of a Huber norm compared to ℓ1 is motivated by

training stability. The second regularization term minimizes

the sum of the ℓ2 norm of the difference between mI
l and

mC
l across all the decomposition levels in order to preserve

the mean of the input signal to form a proper wavelet de-

composition [12].

4. Experiments and Results

The evaluation of the DAWN model was analyzed

on one texture dataset, KTH-TIPS2-b and two bench-

marks datasets for object recognition task, namely, CIFAR-

10 and CIFAR-100. The obtained results are compared

against different models commonly used for classification:

ResNet [14]; DenseNet [15] with growing factor of 12;

a variant of VGG [25], which adds batch normalization,

global average pooling, and dropout. The proposed ar-

chitecture is also compared with previous networks using

some multi-resolution analysis component: wavelet CNN

(WCNN) [11], and Scattering network [23]. For this later

one, we show the results of the handcrafted representation

and the hybrid network that combines scattering transform

on top of a Wide-Resnet. For KTH-TIPS2-b, T-CNN [27]

results is shown as this architecture specifically tailored
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to texture analysis. The training was done on multiple

NVIDIA V100 Pascal GPUs with 12Gb of memory.

4.1. Implementation

An SGD optimizer with a momentum of 0.9 is used for

training. The initial learning rate is set to 0.03 for all the

databases. The batch size is set to 64 and 16 for the CI-

FAR databases and KTH-TIPS2-b, respectively. A learning

rate decay of 0.1 is applied on epochs 30 and 60 for KTH-

TIPS2-b; and on epochs 150 and 255 for CIFAR. The num-

ber of epochs is set to 90 and 300 for KTH-TIPS2-b, and the

CIFAR databases, respectively. The regularization parame-

ters λ1 and λ2 are set to 0.1 for all the experiments. For

the Scattering networks [23] on the CIFAR databases, the

original training setup has been used, as it achieves higher

accuracy than the one obtained with the configuration pro-

posed in this paper for the other architectures.

4.2. Databases and Results

KTH-TIPS2-b The KTH-TIPS Texture Database was de-

veloped by the Computational Vision and Active Perception

Laboratory (CVAP) at the KTH Royal Institute of Tech-

nology in Stockholm [3]. There are three versions of this

dataset: KTH-TIPS, KTH-TIPS2-A and KTH-TIPS2-B. In

this study, we work with the third version since it is the

most widely used as benchmark in texture analysis. It con-

tains 11 classes with four folders per class called samples,

each sample has 108 images. As in other works [11, 1], one

of the samples of each class was used for training and the

rest sample folders were used for testing. The data augmen-

tation consists in applying random cropping and mirroring

operations. Table 1 contains the average and standard devi-

ation across different training sessions.

In this database, WCNN [11] with 4 levels achieves bet-

ter accuracy compared to T-CNN with a smaller number

of trainable parameters. The proposed architecture with a

depth of 16 for the initial convolutional layers, achieves the

same accuracy as WCNN but with a much smaller number

of parameters. Note that the initial convolutional layers are

essential for extracting meaningful feature representations,

and without them the performance of the model drops sig-

nificantly.

Scattering network with the handcrafted representation

(Scatter+FC) consist of using a scattering transform of spa-

tial scale 5 followed by a global average pooling and ending

with a fully connected layer. This network configuration is

very similar to the proposed network structure used for this

database (Figure 2). This network configuration achieves

similar performance to the proposed approach with sightly

less trainable parameters as the wavelets are not trainable.

This result indicates that our architecture is able to learn

representations that are similar to the scattering transform.

The proposed architecture performs better than

Table 1. Comparison of accuracy results on the KTH-TIPS2-b

database where all the network are trained from scratch without

pre-trained information.

Architecture # param. Avg. Std.

T-CNN 19’938’059 63.80 % 1.68

WCNN L4 10’211’811 68.83% 0.73

Scatter+WRN 10’934’283 60.33 % 2.19

Scatter+FC 22’484 68.57 % 2.86

DenseNet 22 BC 74’684 65.71 % 1.35

DenseNet 13 89’711 66.16 % 1.52

DAWN (no init.) 2’894 58.60 % 4.10

DAWN (16 init.) 71’227 68.88 % 2.14

DenseNet 13 and 22 BC with similar number of parame-

ters. Note that for DenseNet, the number indicates the total

number of layers used inside the network and BC meaning

the use of the bottleneck compression approach [15]. Scat-

tering network with hybrid configuration (Scatter+WRN)

increases significantly the number of trainable parameter

compared to the handcrafted representation network. This

hybrid configuration perform poorly as it overfit the dataset,

and it has a highly dependence on the CNN architecture

and the setup of hyperparameters.

CIFAR CIFAR-10 [16] contains 60000 colour images of

size 32 × 32 belonging to 10 classes. The same partition

used to train and test DenseNet [15] is used in this paper,

i.e. 50000 images for training and 10000 images for test-

ing. CIFAR-100 [16] has 100 classes with 500 images per

class. The data augmentation consists in applying random

cropping with a padding of 4 pixels and horizontal mirror-

ing operations.

Table 2 shows the best results of each architecture on

these two databases. There are different DenseNet configu-

rations available with a default growth value of 12. The con-

figuration chosen for the comparison was the one with the

closest number of parameters to that of the proposed model.

The 18-layer ResNet architecture, after replacing the initial

convolutional layers with a convolutional layer with stride

1 and kernel size 3× 3, is used for comparison. Those lay-

ers were removed because they are normally used to reduce

the size of the image at the beginning of the network, which

is not required for the small images of the CIFAR datasets.

For WCNN, an experiment on varying the number of levels

was conducted and the result of the best variant is reported

in Table 2. Scattering transform network configurations are

the same used the original paper [23] for these datasets.

For the CIFAR databases, the proposed network uses

three levels of lifting scheme, as the input image size is

32 × 32. Table 2 shows that increasing the number of

initial convolutional filters tends to improve the accuracy

performance. Therefore, it is up to the user to balance be-
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Table 2. Comparison of accuracy results on the CIFAR-10 and

CIFAR-100 databases. The number of trainable parameter are

shown for CIFAR-100 database.

Architecture # param. CIFAR-10 CIFAR-100

VGG (variation) 15.0 M 94.00 % 72.61 %

ResNet 18 11.2 M 94.25 % 73.30 %

DenseNet 40 1.10 M 94.73 % 75.25 %

DenseNet 100 7.19 M 95.90 % 79.8 %

WCNN L3 2.28 M 89.85 % 65.17 %

Scatter+WRN 45.5 M 92.31 % 72.26 %

Scatter+MLP 17.0 M 81.90 % 49.84 %

DAWN (16 init.) 59.3 K 86.04 % 56.7 %

DAWN (32 init.) 0.21 M 90.41 % 65.06 %

DAWN (64 init.) 0.73 M 92.69 % 70.57 %

DAWN (128 init.) 2.79 M 93.34 % 72.47 %

DAWN (256 init.) 10.9 M 92.02 % 74.04 %

tween a more compact network, in terms of number of pa-

rameters, and a network with better classification perfor-

mance. DAWN architecture outperforms WCNN for both

datasets even when the proposed architecture has signifi-

cantly less number of parameters. The scatter network with

handcrafted representation (Scatter+MLP) achieves less ac-

curacy than DAWN architecture as the wavelets are not

learned.

It also has a competitive accuracy for CIFAR-10 com-

pared to VGG and ResNet architectures; furthermore,

DAWN with a depth of 256 for the initial convolution lay-

ers, outperforms the results in both architectures for CIFAR-

100 dataset. The scattering hybrid representation (Scat-

ter+WRN) has a considerable higher number of parameters

than the other architectures, and its performance is similar

to VGG and ResNet for both datasets. In this application,

the DenseNet architecture exhibits good performance due

to its ability to retain relevant features through the entire

network.

Hybrid network As an additional experiment, the pro-

posed multiresolution analysis can be combined with

other network architecture. This hybrid network

(DAWNN+WRN) consists in replacing the scattering trans-

form by the 2D lifting schemes (Figure 2) inside the

Scatter+WRN architecture. This proposed hybrid archi-

tecture has similar number of trainable parameters than

Scatter+WRN. On CIFAR databases, this architecture gets

93.76% and 74.88% of accuracy for CIFAR-10 and CIFAR-

100, respectively, which is slightly higher compared to the

one obtained by Scatter+WRN.

4.3. Hyperparameter Tuning

DAWN network uses a few number of hyperparameters

inside the architecture. Besides the initial convolution depth

Table 3. Results of tunning the DAWN architecture with 64 initial

convolutions. The first table entry is the network configuration

used to generate the results in Table 2. The hyperparameters tested

are kernel size (k), the number of hidden convolutional layers (h),

and the number of levels (l). The number of trainable parameter

are shown for CIFAR-100 database.

Configuration CIFAR-10 CIFAR-100 # param.

(k=3, h=1, l=3) 92.69 % 70.57 % 734’628

(k=1, h=1, l=3) 88.09 % 64.30 % 439’716

(k=2, h=1, l=3) 92.27 % 68.01 % 587’172

(k=4, h=1, l=3) 92.69 % 70.96 % 882’084

(k=3, h=2, l=3) 92.58 % 70.51 % 918’564

(k=3, h=3, l=3) 92.46 % 68.85 % 1’140’900

(k=3, h=4, l=3) 92.35 % 68.19 % 1’363’236

(k=3, h=1, l=0) 75.49 % 44.12 % 45’348

(k=3, h=1, l=1) 90.53 % 66.71 % 275’108

(k=3, h=1, l=2) 92.17 % 70.42 % 504’868

analyzed in Section 4.2, the other hyperparameters are the

kernel size and the number of convolutional layers inside

the updater and predictor of the lifting scheme. This section

presents an analysis of the effect of these hyperparameters

on the final architecture results. For simplicity, the experi-

ments are performed on CIFAR datasets using the DAWN

architecture with 64 initial filters.

Kernel size and number of convolutions Both of these

hyperparameters affect the lifting scheme module, whose

role is to generate a mathematical function for the wavelet

representation. The update operator U needs to represent

the frequency structure of the input signal, while the pre-

dictor P needs to represent the spatial structure of the input

signal. These hyperparameters also affect the final num-

ber of trainable parameters for the whole architecture. Ta-

ble 3 shows the effect when changing these hyperparame-

ters: i) the kernel size experiments were obtained with the

U/P structure described in Figure 1 ii) the number of hidden

layers inside the module is generated by the repetition of

the first convolutional layer of the U/P module. It is noticed

that the performance results do not have a high variance for

combinations of hyperparameters with similar number of

trainable parameters.

Number of multiresolution analysis levels Table 3

shows how the number of trainable parameters depends on

the number of levels of the 2D adaptive lifting scheme. This

table illustrates how the performance varies from not using

any lifting scheme level (only initial convolutions), which

results in poor performance, to using the maximum number

of possible levels (according to Section 3). As shown in Ta-

ble 3, it is usually beneficial to use the maximum number of

levels as it leads to higher accuracy values for both datasets.
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Figure 3. Results of extracting the coefficients for 3 decomposition

levels of the 2D Adaptive Lifting Scheme in the DAWN architec-

ture. The loss function applied is the same as in Eqn. 7. For visu-

alization purposes, the LH, HL and HH sub-bands were multiplied

by a factor of 10.

Note that in the CIFAR database, the input size is 32×32,

which makes makes the maximum number of possible lev-

els equal to 3.

4.4. Visual Representation Results

The decomposition generated by the lifting scheme has

a relevant visual representation as it is composed of approx-

imation and details sub-bands of an input signal. Figure 3

shows the visualization of the multiresolution analysis for

different number of decomposition levels. To generate the

visualizations presented in Figure 3, the network was run

without the initial convolutional layers on KTH database.

Many decomposition levels are very similar to traditional

wavelet decomposition where the approximation sub-band

captures the low-frequency information of the image while

the detail sub-bands tend to capture high-frequency infor-

mation. However, some sub-bands are slightly different as

the loss function also minimize the cross-entropy loss func-

tion to ensure good classification performance (Section 3).

5. Discussion and Future work

Multiresolution analysis as a deep learning architecture

Analogous to DAWN architecture, Bruna and Mallat [2]

use a multiresolution analysis based on wavelet transform

as a backbone of their architecture. Both, this work and

our work, focus on the wavelet extraction as an operation

invariant to deformation. In Bruna’s work, the modulus is

obtained from each wavelet coefficient at different levels. In

DAWN architecture, the details coefficients per level of the

wavelet transform are carried out to the end of the network.

One biggest difference between DAWN and the Scattering

handcrafted representation is the ability of DAWN to learn

the wavelet configuration. It is this ability that allows it to

adapt to the data and perform equivalently across different

datasets, as it was shown in Tables 1 and 2.

Combining Multiresolution analysis with more tradi-

tional CNNs architectures The hybrid network with the

proposed 2D lifting scheme shows the potential of improv-

ing the accuracy or reducing the number of trainable pa-

rameters for other networks. How to combining or incor-

porating more CNN features in the proposed network and

keeping performance across the different datasets is an in-

teresting work avenue.

Initial convolutions At the moment, the architecture uses

initial convolutional layers to increase the number of chan-

nels from the input image, which is a simple approach. Re-

search using more advance architecture for this part of the

proposed network is left as future work. Moreover, mul-

tiresolution analysis is usually apply on an image instead

on a CNN output. Changing the order of the initial con-

volutions and the different lifting scheme might conduct to

some exciting new architectures.

6. Conclusions

We presented the DAWN architecture, which combines

the lifting scheme and CNNs to learn features using mul-

tiresolution analysis. In contrast to the black-box nature

of CNNs, the DAWN architecture is designed to extract

a wavelet representation of the input at each decomposi-

tion level. Unlike traditional wavelets, the proposed model

is data-driven so that it adapts to the input images. It is

also trainable end-to-end and achieve state-of-the-art per-

formance for texture classification with very limited number

of trainable parameter. Interpreting convolution and pooling

operations in CNNs as operations in multiresolution analy-

sis helped us to systematically design a novel network ar-

chitecture. The performance of DAWN is comparable to

that of state-of-the-art classification networks when tested

on the CIFAR-10 and CIFAR-100 datasets.
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