
Vol.:(0123456789)1 3

International Journal of Computer Vision (2019) 127:907–929 

https://doi.org/10.1007/s11263-019-01158-4

Deep A�ect Prediction in-the-Wild: A�-Wild Database and Challenge, 
Deep Architectures, and Beyond

Dimitrios Kollias1  · Panagiotis Tzirakis1 · Mihalis A. Nicolaou1,2 · Athanasios Papaioannou1 · Guoying Zhao1,3 · 

Björn Schuller1 · Irene Kotsia1,4 · Stefanos Zafeiriou1,3

Received: 22 February 2018 / Accepted: 29 January 2019 / Published online: 13 February 2019 

© The Author(s) 2019

Abstract

Automatic understanding of human affect using visual signals is of great importance in everyday human–machine interac-

tions. Appraising human emotional states, behaviors and reactions displayed in real-world settings, can be accomplished 

using latent continuous dimensions (e.g., the circumplex model of affect). Valence (i.e., how positive or negative is an emo-

tion) and arousal (i.e., power of the activation of the emotion) constitute popular and effective representations for affect. 

Nevertheless, the majority of collected datasets this far, although containing naturalistic emotional states, have been captured 

in highly controlled recording conditions. In this paper, we introduce the Aff-Wild benchmark for training and evaluating 

affect recognition algorithms. We also report on the results of the First Affect-in-the-wild Challenge (Aff-Wild Challenge) 

that was recently organized in conjunction with CVPR 2017 on the Aff-Wild database, and was the first ever challenge on 

the estimation of valence and arousal in-the-wild. Furthermore, we design and extensively train an end-to-end deep neural 

architecture which performs prediction of continuous emotion dimensions based on visual cues. The proposed deep learning 

architecture, AffWildNet, includes convolutional and recurrent neural network layers, exploiting the invariant properties of 

convolutional features, while also modeling temporal dynamics that arise in human behavior via the recurrent layers. The 

AffWildNet produced state-of-the-art results on the Aff-Wild Challenge. We then exploit the AffWild database for learning 

features, which can be used as priors for achieving best performances both for dimensional, as well as categorical emo-

tion recognition, using the RECOLA, AFEW-VA and EmotiW 2017 datasets, compared to all other methods designed for 

the same goal. The database and emotion recognition models are available at http://ibug.doc.ic.ac.uk/resou rces/first -affec 

t-wild-chall enge.
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1 Introduction

Current research in automatic analysis of facial affect aims 

at developing systems, such as robots and virtual humans, 

that will interact with humans in a naturalistic way under 

real-world settings. To this end, such systems should auto-

matically sense and interpret facial signals relevant to emo-

tions, appraisals and intentions. Moreover, since real-world 

settings entail uncontrolled conditions, where subjects oper-

ate in a diversity of contexts and environments, systems that 

perform automatic analysis of human behavior should be 

robust to video recording conditions, the diversity of con-

texts and the timing of display.1

For the past twenty years research in automatic analysis of 

facial behavior was mainly limited to posed behavior which 

was captured in highly controlled recording conditions (Pan-

tic et al. 2005; Valstar and Pantic 2010; Tian et al. 2001; 

Lucey et al. 2010). Some representative datasets, which are 

still used in many recent works (Jung et al. 2015), are the 

Cohn–Kanade database (Tian et al. 2001; Lucey et al. 2010), 

MMI database (Pantic et al. 2005; Valstar and Pantic 2010), 

Multi-PIE database (Gross et al. 2010) and the BU-3D and 

BU-4D databases (Yin et al. 2006, 2008).

Nevertheless, it is now accepted by the community that 

the facial expressions of naturalistic behaviors can be radi-

cally different from the posed ones (Corneanu et al. 2016; 

Sariyanidi et al. 2015; Zeng et al. 2009). Hence, efforts have 

been made in order to collect subjects displaying naturalistic 

behavior. Examples include the recently collected EmoPain 

(Aung et al. 2016) and UNBC-McMaster (Lucey et al. 2011) 

databases for analysis of pain, the RU-FACS database of 

subjects participating in a false opinion scenario (Bartlett 

et al. 2006) and the SEMAINE corpus (McKeown et al. 

2012) which contains recordings of subjects interacting with 

a Sensitive Artificial Listener (SAL) in controlled condi-

tions. All the above databases have been captured in well-

controlled recording conditions and mainly under a strictly 

defined scenario eliciting pain.

Representing human emotions has been a basic topic of 

research in psychology. The most frequently used emotion 

representation is the categorical one, including the seven 

basic categories, i.e., Anger, Disgust, Fear, Happiness, 

Sadness, Surprise and Neutral (Dalgleish and Power 2000; 

Cowie and Cornelius 2003). It is, however, the dimensional 

emotion representation (Whissel 1989; Russell 1978) 

which is more appropriate to represent subtle, i.e., not only 

extreme, emotions appearing in everyday human computer 

interactions. To this end, the 2-D valence and arousal space 

is the most usual dimensional emotion representation. Fig-

ure 1 shows the 2-D Emotion Wheel (Plutchik 1980), with 

valence ranging from very positive to very negative and 

arousal ranging from very active to very passive.

Some emotion recognition databases exist in the litera-

ture that utilize dimensional emotion representation. Exam-

ples are the SAL (Douglas-Cowie et al. 2008), SEMAINE 

(McKeown et al. 2012), MAHNOB-HCI (Soleymani et al. 

2012), Belfast naturalistic,2 Belfast induced (Sneddon et al. 

2012), DEAP (Koelstra et al. 2012), RECOLA (Ringeval 

et al. 2013), SEWA3 and AFEW-VA (Kossaifi et al. 2017) 

databases.

Currently, there are many challenges (competitions) in the 

behavior analysis domain. One such example is the Audio/

Visual Emotion Challenges (AVEC) series (Valstar et al. 

2013, 2014, 2016; Ringeval et al. 2015, 2017) which started 

in 2011. The first challenge (Schuller et al. 2011) used the 

SEMAINE database for classification purposes by binarizing 

its continuous values, while the second challenge (Schuller 

et al. 2012) used the same database but with its original 

values. The last challenge (Ringeval et al. 2017) utilized 

the SEWA database. Before this and for two consecutive 

years (Ringeval et al. 2015; Valstar et al. 2016) the RECOLA 

dataset was used.

However these databases have some of the below limita-

tions, as shown in Table 1:

(1) They contain data recorded in laboratory or controlled 

environments.

(2) Their diversity is limited due to the small total number 

of subjects they contain, the limited amount of head 

pose variations and present occlusion, the static back-

ground or uniform illumination

(3) The total duration of their included videos is rather 

short

To tackle the aforementioned limitations, we collected 

the first, to the best of our knowledge, large scale captured 

in-the-wild database and annotated it in terms of valence 

and arousal. To do so, we capitalized on the abundance of 

data available in video-sharing websites, such as YouTube 

(2011)4 and selected videos that display the affective behav-

ior of people, for example videos that display the behavior 

1 It is well known that the interpretation of a facial expression may 

depend on its dynamics, e.g. posed versus spontaneous expressions 

(Zeng et al. 2009).

2 https ://belfa st-natur alist ic-db.sspne t.eu/.
3 http://sewap rojec t.eu.
4 The collection has been conducted under the scrutiny and approval 

of the Imperial College Ethical Committee (ICREC). The majority 

of the chosen videos were under Creative Commons License (CCL). 

For those videos that were not under CCL, we have contacted the per-

son who created them and asked for their approval to be used in this 

research.

https://belfast-naturalistic-db.sspnet.eu/
http://sewaproject.eu
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Fig. 1  The 2-D Emotion Wheel

Table 1  Databases annotated for both valence and arousal and their attributes

Database No. of subjects No. of videos Duration of each video Condition

MAHNOB-HCI (Soleymani et al. 2012) 27 20 34.9–117 s Controlled

DEAP (Koelstra et al. 2012) 32 40 1 min Controlled

AFEW-VA (Kossaifi et al. 2017) < 600 600 0.5–4 s In-the-wild

SAL (Douglas-Cowie et al. 2008) 4 24 25 min Controlled

SEMAINE (McKeown et al. 2012) 150 959 5 min Controlled

Belfast naturalistic (see Footnote 2) 125 298 10–60 s Controlled

Belfast induced (Sneddon et al. 2012) 37 37 5–30 s Controlled

RECOLA (Ringeval et al. 2013) 46 46 5 min Controlled

SEWA (see Footnote 3) < 398 538 10–30 s In-the-wild
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of people when watching a trailer, a movie, a disturbing clip, 

or reactions to pranks.

To this end we have collected 298 videos displaying 

reactions of 200 subjects, with a total video duration of 

more than 30 h. This database has been annotated by 8 lay 

experts with regards to two continuous emotion dimensions, 

i.e. valence and arousal. We then organized the Aff-Wild 

Challenge based on the Aff-Wild database (Zafeiriou et al. 

2017; Kollias et al. 2017), in conjunction with International 

Conference on Computer Vision and Pattern Recognition 

(CVPR) 2017. The participating teams submitted their 

results to the challenge, outperforming the provided base-

line. However, as described later in this paper, the achieved 

performances were rather low.

For this reason, we capitalized on the Aff-Wild database 

to build CNN and CNN plus RNN architectures shown to 

achieve excellent performance on this database, outperform-

ing all previous participants’ performances. We have made 

extensive experimentations, testing structures for combining 

convolutional and recurrent neural networks and training 

them altogether as an end-to-end architecture. We have used 

a loss function that is based on the Concordance Correla-

tion Coefficient (CCC), which we also compare it with the 

usual Mean Squared Error (MSE) criterion. Additionally, we 

appropriately fused, within the network structures, two types 

of inputs, the 2-D facial images—presented at the input of 

the end-to-end architecture—and the 2-D facial landmark 

positions—presented at the 1st fully connected layer of the 

architecture.

We have also investigated the use of the created CNN-

RNN architecture for valence and arousal estimation in other 

datasets, focusing on the RECOLA and the AFEW-VA ones. 

Last but not least, taking into consideration the large in-the-

wild nature of this database, we show that our network can 

be also used for other emotion recognition tasks, such as 

classification of the universal expressions.

The only challenge, apart from last AVEC (2017) (Rin-

geval et al. 2017), using ‘in-the-wild’ data is the series of 

EmotiW (Dhall et al. 2013, 2014, 2015, 2016, 2017). It uses 

the AFEW dataset, whose samples come from movies, TV 

shows and series. To the best of our knowledge, this is the 

first time that a dimensional database and features extracted 

from it, are used as priors for categorical emotion recogni-

tion in-the-wild, exploiting the EmotiW Challenge dataset.

To summarize, there exist several databases for dimen-

sional emotion recognition. However, they have limitations, 

mostly due to the fact that they are not captured in-the-wild 

(i.e., not in uncontrolled conditions). This urged us to create 

the benchmark Aff-Wild database and organize the Aff-Wild 

Challenge. The results acquired are presented later in full 

detail. We proceeded in conducting experiments and build-

ing CNN and CNN plus RNN architectures, including the 

AffWildNet, producing state-of-the-art results.

The main contributions of the paper are the following:

• It is the first time that a large in-the-wild database—with 

a big variety of: (1) emotional states, (2) rapid emotional 

changes, (3) ethnicities, (4) head poses, (5) illumination 

conditions and (6) occlusions—has been generated and 

used for emotion recognition.

• An appropriate state-of-the-art deep neural network 

(DNN) (AffWildNet) has been developed, which is capa-

ble of learning to model all these phenomena. This has 

not been technically straightforward, as can be verified 

by comparing the AffWildNet’s performance to the per-

formances of other DNNs developed by other research 

groups which participated in the Aff-Wild Challenge.

• It is shown that the AffWildNet has been capable of 

generalizing its knowledge in other emotion recognition 

datasets and contexts. By learning complex and emotion-

ally rich features of the AffWild, the AffWildNet consti-

tutes a robust prior for both dimensional and categorical 

emotion recognition. To the best of our knowledge, it 

is the first time that state-of-the-art performances are 

achieved in this way.

The rest of the paper is organized as follows. Section 2 

presents the databases generated and used in the presented 

experiments. Section 3 describes the pre-processing and 

annotation methodologies that we used. Section 4 begins 

by describing the Aff-Wild Challenge that was organized, 

the baseline method, the methodologies of the participating 

teams and their results. It then presents the end-to-end DNNs 

which we developed and the best performing AffWildNet 

architecture. Finally experimental studies and results are 

presented and discussed, illustrating the above develop-

ments. Section 5 describes how the AffWildNet can be used 

as a prior for other, both dimensional and categorical, emo-

tion recognition problems yielding state-of-the-art results. 

Finally, Sect. 6 presents the conclusions and future work 

following the reported developments.

2  Existing Databases

We briefly present the RECOLA, AFEW, AFEW-VA data-

bases used for emotion recognition and mention their limi-

tations which lead to the creation of the Aff-Wild database. 

Table 2 summarizes these limitations, also showing the 

superior properties of Aff-Wild.

2.1  RECOLA Dataset

The REmote COLlaborative and Affective (RECOLA) data-

base was introduced by Ringeval et al. (2013) and it contains 

natural and spontaneous emotions in the continuous domain 
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(arousal and valence). The corpus includes four modali-

ties: audio, visual, electro-dermal activity and electro-car-

diogram. It consists of 46 French speaking subjects being 

recorded for 9.5 h recordings in total. The recordings were 

annotated for 5 min each by 6 French-speaking annotators 

(three male, three female). The dataset is divided into three 

parts, namely, training (16 subjects), validation (15 subjects) 

and test (15 subjects), in such a way that the gender, age and 

mother tongue are stratified (i.e., balanced).

The main limitations of this dataset include the tightly 

controlled laboratory environment, as well as the small num-

ber of subjects. It should be also noted that it contains a 

moderate total number of frames.

2.2  The AFEW Dataset

The series of EmotiW challenges (Dhall et al. 2013, 2014, 

2015, 2016, 2017) make use of the data from the Acted 

Facial Expression In The Wild (AFEW) dataset (Dhall et al. 

2017). This dataset is a dynamic temporal facial expressions 

data corpus consisting of close to real world scenes extracted 

from movies and reality TV shows. In total it contains 1809 

videos. The whole dataset is split into three sets: training set 

(773 video clips), validation set (383 video clips) and test set 

(653 video clips). It should be emphasized that both train-

ing and validation sets are mainly composed of real movie 

records, however 114 out of 653 video clips in the test set are 

real TV clips, thus increasing the difficulty of the challenge. 

The number of subjects is more than 330, aged 1–77 years. 

The annotation is according to 7 facial expressions (Anger, 

Disgust, Fear, Happiness, Neutral, Sadness and Surprise) 

and is performed by three annotators. The EmotiW chal-

lenges focus on audiovisual classification of each clip into 

the seven basic emotion categories.

The limitations of the AFEW dataset include its small 

size (in terms of total number of frames) and its restriction to 

only seven emotion categories, some of which (fear, disgust, 

surprise) include a small number of samples.

2.3  The AFEW-VA Database

Very recently, a part of the AFEW dataset of the series of 

EmotiW challenges has been annotated in terms of valence 

and arousal, thus creating the so called AFEW-VA (Kossaifi 

et al. 2017) database. In total, it contains 600 video clips that 

were extracted from feature films and simulate real-world 

conditions, i.e., occlusions, different illumination conditions 

and free movements from subjects. The videos range from 

short (around 10 frames) to longer clips (more than 120 

frames). This database includes per-frame annotations of 

valence and arousal. In total, more than 30,000 frames were 

annotated for dimensional affect prediction of arousal and 

valence, using discrete values in the range of [ − 10 , + 10].

The database’s limitations include its small size (in terms 

of total number of frames), the small number of annota-

tors (only 2) and the use of discrete values for valence and 

arousal. It should be noted that the 2-D Emotion Wheel 

(Fig. 1) is a continuous space. Therefore, using discrete 

only values for valence and arousal provides a rather coarse 

approximation of the behavior of persons in their everyday 

interactions. On the other hand, using continuous values can 

provide improved modeling of the expressiveness and rich-

ness of emotional states met in everyday human behaviors.

2.4  The A�-Wild Database

We created a database consisting of 298 videos, with a total 

length of more than 30 h. The aim was to collect sponta-

neous facial behaviors in arbitrary recording conditions. 

Table 2  Current databases used for emotion recognition in this paper, their attributes and limitations compared to Aff-Wild

Database Model of affect Condition Total no. of frames No. of videos No. of 

annota-

tors

Limitations/comments

RECOLA Valence–arousal (continuous) Controlled 345,000 46 6 Laboratory environment

Moderate total amount of frames

Small number of subjects (46)

AFEW Seven basic facial expressions In-the-wild 113,355 1809 3 Only 7 basic expressions

Small total amount of frames

Small number of annotators

Imbalanced expression categories

AFEW-VA Valence–arousal (discrete) In-the-wild 30,050 600 2 Very small total amount of frames

Discrete valence and arousal values

Small number of annotators

Aff-Wild Valence–arousal (continuous) In-the-wild 1,224,100 298 8 –
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To this end, the videos were collected using the Youtube 

video sharing web-site. The main keyword that was used 

to retrieve the videos was “reaction”. The database dis-

plays subjects reacting to a variety of stimuli, e.g. view-

ing an unexpected plot twist of a movie or series, a trailer 

of a highly anticipated movie, or tasting something hot or 

disgusting. The subjects display both positive or negative 

emotions (or combinations of them). In other cases, subjects 

display emotions while performing an activity (e.g., riding a 

rolling coaster). In some videos, subjects react on a practi-

cal joke, or on positive surprises (e.g., a gift). The videos 

contain subjects from different genders and ethnicities with 

high variations in head pose and lightning.

Most of the videos are in YUV 4:2:0 format, with some of 

them being in AVI format. Eight subjects have annotated the 

videos following a methodology similar to the one proposed 

in Cowie et al. (2000), in terms of valence and arousal. An 

online annotation procedure was used, according to which 

annotators were watching each video and provided their 

annotations through a joystick. Valence and arousal range 

continuously in [ − 1 , + 1 ]. All subjects present in each video 

have been annotated. The total number of subjects is 200, 

with 130 of them being male and 70 of them female. Table 3 

shows the general attributes of the Aff-Wild database. Fig-

ure 2 shows some frames from the Aff-Wild database, with 

people from different ethnicities displaying various emo-

tions, with different head poses and illumination conditions, 

as well as occlusions in the facial area.

Figure 3 shows an example of annotated valence and 

arousal values over a part of a video in the Aff-Wild, together 

with corresponding frames. This illustrates the in-the-wild 

nature of our database, namely, including many different 

emotional states, rapid emotional changes and occlusions in 

the facial areas. Figure 3 also shows the use of continuous 

values for valence and arousal annotation, which gives the 

ability to effectively model all these different phenomena. 

Figure 4 provides a histogram for the annotated values for 

valence and arousal in the generated database.

3  Data Pre-processing and Annotation

In this section we describe the pre-processing process of 

the Aff-Wild videos so as to perform face and facial land-

mark detection. Then we present the annotation procedure 

including:

(1) Creation of the annotation tool.

(2) Generation of guidelines for six experts to follow in 

order to perform the annotation.

Fig. 2  Frames from the Aff-

Wild database which show 

subjects in different emotional 

states, of different ethnicities, 

in a variety of head poses, 

illumination conditions and 

occlusions

Table 3  Attributes of the Aff-Wild database

Attribute Description

Length of videos 0.10–14.47 min

Video format AVI , MP4

Average Image Resolution (AIR) 607 × 359

Standard deviation of AIR 85 × 11

Median Image Resolution 640 × 360

Fig. 3  Valence and arousal 

annotations over a part of a 

video, along with correspond-

ing frames; illustrating (i) the 

in-the-wild nature of Aff-Wild 

(different emotional states, rapid 

emotional changes, occlusions) 

and (ii) the use of continuous 

values for valence and arousal
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(3) Post-processing annotation: the six annotators watched 

all videos again, checked their annotations and per-

formed any corrections; two new annotators watched 

all videos and selected 2–4 annotations that best 

described each video; final annotations are the mean 

of the selected annotations by these two new annota-

tors.

The detected faces and facial landmarks, as well as the gen-

erated annotations are publicly available with the Aff-Wild 

database.

Finally, we present a statistical analysis of the annotations 

created for each video, illustrating the consistency of annota-

tions achieved by using the above procedure.

3.1  A�-Wild Video Pre-processing

VirtualDub (Lee 2002) was used first so as to trim the raw 

YouTube videos, mainly at their beginning and end-points, 

in order to remove useless content (e.g., advertisements). 

Then, we extracted a total of 1,224,100 video frames using 

the Menpo software (Alabort-i-Medina et al. 2014). In each 

frame, we detected the faces and generated corresponding 

bounding boxes, using the method described in Mathias 

et al. (2014). Next, we extracted facial landmarks in all 

frames using the best performing method as indicated in 

Chrysos et al. (2018).

During this process, we removed frames in which 

the bounding box or landmark detection failed. Failures 

occurred when either the bounding boxes, or landmarks, 

were wrongly detected, or were not detected at all. The for-

mer case was semi-automatically discovered by: (i) detecting 

significant shifts in the bounding box and landmark positions 

between consecutive frames and (ii) having the annotators 

verify the wrong detection in the frames.

3.2  Annotation Tool

For data annotation, we developed our own application that 

builds on other existing ones, like Feeltrace (Cowie et al. 

2000) and Gtrace (Cowie et al. 2012). A time-continuous 

annotation is performed for each affective dimension, with 

the annotation process being as follows:

(a) The user logs in to the application using an identifier 

(e.g. his/her name) and selects an appropriate joystick;

(b) A scrolling list of all videos appears and the user selects 

a video to annotate;

(c) A screen appears that shows the selected video and a 

slider of valence or arousal values ranging in [− 1, 1];

(d) The user annotates the video by moving the joystick 

either up or down;

(e) Finally, a file is created including the annotation values 

and the corresponding time instances that the annota-

tions are generated.

It should be mentioned that the time instances generated 

in the above step (e), did not generally match the video 

frame rate. To tackle this problem, we modified/re-sam-

pled the annotation time instances using nearest neighbor 

interpolation.

Figure 5 shows the graphical interface of our tool when 

annotating valence (the interface for arousal is similar); this 

corresponds to step (c) of the above described annotation 

process.

Fig. 4  Histogram of valence and arousal annotations of the Aff-Wild database

Fig. 5  The GUI of the annotation tool when annotating valence (the 

GUI for arousal is exactly the same)
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It should also be added that the annotation tool has also 

the ability to show the inserted valence and arousal annota-

tion while displaying a respective video. This is used for 

annotation verification in a post-processing step.

3.3  Annotation Guidelines

Six experts were chosen to perform the annotation task. Each 

annotator was instructed orally and through a multi-page 

document on the procedure to follow for the task. This docu-

ment included a list of some well identified emotional cues 

for both arousal and valence, providing a common basis for 

the annotation task. On top of that the experts used their own 

appraisal of the subject’s emotional state for creating the 

annotations.5 Before starting the annotation of each video, 

the experts watched the whole video so as to know what to 

expect regarding the emotions being displayed in the video.

3.4  Annotation Post-processing

A post-processing annotation verification step was also 

performed. Every expert-annotator watched all videos for a 

second time in order to verify that the recorded annotations 

were in accordance with the shown emotions in the videos 

or change the annotations accordingly. In this way, a further 

validation of annotations was achieved.

After the annotations have been validated by the annota-

tors, a final annotation selection step followed. Two new 

experts watched all videos and, for every video, selected the 

annotations (between two and four) which best described the 

displayed emotions. The mean of these selected annotations 

constitute the final Aff-Wild labels.

This step is significant for obtaining highly correlated 

annotations, as shown by the statistical analysis presented 

next.

3.5  Statistical Analysis of Annotations

In the following we provide a quantitative and rich statisti-

cal analysis of the achieved Aff-Wild labeling. At first, for 

each video, and independently for valence and arousal, we 

computed:

 (i) The inter-annotator correlations, i.e., the correlations 

of each one of the six annotators with all other anno-

tators, which resulted in five correlation values per 

annotator;

 (ii) For each annotator, his/her average inter-annotator 

correlations, resulting in one value per annotator; the 

mean of those six average inter-annotator correla-

tions value is denoted next as MAC-A;

 (iii) The average inter-annotator correlations, across only 

the selected annotators, as described in the previous 

subsection, resulting in one value per selected anno-

tator; the mean of those 2–4 average inter-selected-

annotator correlations values is denoted next as 

MAC-S.

We then computed over all videos and independently for 

valence and arousal, the mean of MAC-A and the mean of 

MAC-S computed in (ii) and (iii) above. The mean MAC-A 

is 0.47 for valence and 0.46 for arousal, whilst the mean 

MAC-S for valence is 0.71 and for arousal 0.70. An example 

set of annotations is shown in Fig. 6, in an effort to fur-

ther clarify the obtained MAC-S values. It shows the four 

selected annotations in a video segment for valence and 
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Fig. 6  The four selected annotations in a video segment for a valence and b arousal. In both cases, the value of MAC-S (mean of average corre-

lations between these four annotations) is 0.70. This value is similar to the mean MAC-S obtained over all Aff-Wild

5 All annotators were computer scientists who were working on 

face analysis problems and all had a working understanding of facial 

expressions.
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arousal, respectively, with MAC-S value of 0.70 (similar to 

the mean MAC-S value obtained over all Aff-Wild).

In addition, Fig. 7 shows the cumulative distribution of 

MAC-S and MAC-A values over all Aff-Wild videos for 

valence (Fig. 7a) and arousal (Fig. 7b). In each case, two 

curves are shown. Every point (x, y) on these curves has a 

y value showing the percentage of videos with a (i) MAC-S 

(red curve) or (ii) MAC-A (blue curve) value greater or equal 

to x; the latter denotes an average correlation in [0, 1]. It can 

be observed that the mean MAC-S value, corresponding to a 

value of 0.5 in the vertical axis, is 0.71 for valence and 0.70 

for arousal. These plots also illustrate that the MAC-S values 

are much higher than the corresponding MAC-A values in 

both valence and arousal annotation, verifying the effective-

ness of the annotation post-processing procedure.

Next, we conducted similar experiments for the valence/ 

arousal average annotations and the facial landmarks in each 

video, in order to evaluate the correlation of annotations to 

landmarks. To this end, we utilized Canonical Correlation 

Analysis (CCA) (Hardoon et al. 2003). In particular, for each 

video and independently for valence and arousal, we computed 

the correlation between landmarks and the average of (i) all or 

(ii) selected annotations.

Figure 8 shows the cumulative distribution of these cor-

relations over all Aff-Wild videos for valence (Fig. 8a) and 

arousal (Fig. 8b), similarly to Fig. 7. Results of this analy-

sis verify that the annotator-landmark correlation is much 

higher in the case of selected annotations than in the case of 

all annotations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Average Correlation

P
er

ce
nt

ag
e

of
V

id
eo

s

All Annotators (MAC-A)

Selected Annotators (MAC-S)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Average Correlation

P
er

ce
nt

ag
e

of
V

id
eo

s

All Annotators (MAC-A)

Selected Annotators (MAC-S)

(b)

Fig. 7  The cumulative distribution of MAC-S (mean of average inter-

selected-annotator correlations) and MAC-A (mean of average inter-

annotator correlations) values over all Aff-Wild videos for valence 

(a) and arousal (b). The Figure shows the percentage of videos with 

a MAC-S/MAC-A value greater or equal to the values shown in the 

horizontal axis. The mean MAC-S value, corresponding to a value of 

0.5 in the vertical axis, is 0.71 for valence and 0.70 for arousal
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Fig. 8  The cumulative distribution of the correlation between land-

marks and the average of (i) all or (ii) selected annotations over all 

Aff-Wild videos for valence (a) and arousal (b). The figure shows the 

percentage of videos with a correlation value greater or equal to the 

values shown in the horizontal axis
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4  Developing the A�WildNet

This section begins by presenting the first Aff-Wild Chal-

lenge that was organized based on the Aff-Wild database 

and held in conjunction with CVPR 2017. It includes short 

descriptions and results of the algorithms of the six research 

groups that participated in the challenge. Although the 

results are promising, there is much room for improvement.

For this reason we developed our own CNN and CNN 

plus RNN architectures based on the Aff-Wild database. We 

propose the AffWildNet as the best performing among the 

developed architectures. Our developments, ablation studies 

and discussions are presented next.

4.1  The A�-Wild Challenge

The training data (i.e., videos and annotations) of the Aff-

Wild challenge were made publicly available on the 30th 

of January 2017, followed by the release of the test videos 

(without annotations). The participants were given the free-

dom to split the data into train and validation sets, as well as 

to use any other dataset. The maximum number of submitted 

entries for each participant was three. Table 4 summarizes 

the specific attributes (numbers of males, females, videos, 

frames) of the training and test sets of the challenge.

In total, ten different research groups downloaded the Aff-

Wild database. Six of them made experiments and submitted 

their results to the workshop portal. Based on the perfor-

mance they obtained on the test data, three of them were 

selected to present their results to the workshop.

Two criteria were considered for evaluating the perfor-

mance of the networks. The first one is Concordance Cor-

relation Coefficient (CCC) (Lawrence and Lin 1989), which 

is widely used in measuring the performance of dimensional 

emotion recognition methods, e.g., the series of AVEC chal-

lenges. CCC evaluates the agreement between two time 

series (e.g., all video annotations and predictions) by scaling 

their correlation coefficient with their mean square differ-

ence. In this way, predictions that are well correlated with 

the annotations but shifted in value are penalized in propor-

tion to the deviation. CCC takes values in the range [− 1, 1] , 

where + 1 indicates perfect concordance and − 1 denotes per-

fect discordance. The highest the value of the CCC the better 

the fit between annotations and predictions, and therefore 

high values are desired. The mean value of CCC for valence 

and arousal estimation was adopted as the main evaluation 

criterion. CCC is defined as follows:

where �
xy

 is the Pearson Correlation Coefficient (Pearson 

CC), s
x
 and s

y
 are the variances of all video valence/arousal 

annotations and predicted values, respectively and s
xy

 is the 

corresponding covariance value.

The second criterion is the Mean Squared Error (MSE), 

which is defined as follows:

where x and y are the (valence/arousal) annotations and pre-

dictions, respectively, and N is the total number of samples. 

The MSE gives us a rough indication of how the derived 

emotion model is behaving, providing a simple comparative 

metric. A small value of MSE is desired.

4.1.1  Baseline Architecture

The baseline architecture for the challenge was based on the 

CNN-M (Chatfield et al. 2014) network, as a simple model 

that could be used to initiate the procedure. In particular, our 

network used the convolutional and pooling parts of CNN-M 

having been trained on the FaceValue dataset (Albanie and 

Vedaldi 2016). On top of that we added one 4096-fully con-

nected layer and a 2-fully connected layer that provides the 

valence and arousal predictions. The interested reader can 

refer to “Appendix A” for a short description and the struc-

ture of this architecture.

The input to the network were the facial images resized to 

resolution of 224 × 224 × 3 , or 96 × 96 × 3 , with the inten-

sity values being normalized to the range [− 1, 1].

In order to train the network, we utilized the Adam opti-

mizer algorithm; the batch size was set to 80, and the initial 

learning rate was set to 0.001. Training was performed on a 

single GeForce GTX TITAN X GPU and the training time 

was about 4–5 days. The platform used for this implementa-

tion was Tensorflow (Abadi et al. 2016).

4.1.2  Participating Teams’ Algorithms

The three papers accepted to this challenge are briefly 

reported below, while Table 5 compares the acquired results 

(in terms of CCC and MSE) by all three methods and the 

baseline network. As one can see, FATAUVA-Net (Chang 

et al. 2017) has provided the best results in terms of the 

mean CCC and mean MSE for valence and arousal.

(1)�
c
=

2s
xy

s2
x
+ s2

y
+ (x̄ − ȳ)2

=
2s

x
s

y
�

xy

s2
x
+ s2

y
+ (x̄ − ȳ)2

,

(2)MSE =
1

N

N
∑

i=1

(xi − yi)
2
,

Table 4  Attributes of training and test sets of Aff-Wild

Set No. of males No. of 

females

No. of videos Total No. of 

frames

Training 106 48 252 1,008,650

Test 24 22 46 215,450
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We should note that after the end of the challenge, more 

groups enquired about the Aff-Wild database and sent results 

for evaluation, but here we report only on the teams that 

participated in the challenge.

In the MM-Net method (Li et al. 2017), a variation of a 

deep convolutional residual neural network (ResNet) (He 

et al. 2016) is first presented for affective level estimation 

of facial expressions. Then, multiple memory networks are 

used to model temporal relations between the video frames. 

Finally, ensemble models are used to combine the predic-

tions of the multiple memory networks, showing that the 

latter steps improve the initially obtained performance, as 

far as MSE is concerned, by more than 10%.

In the FATAUVA-Net method (Chang et  al. 2017), 

a deep learning framework is presented, in which a core 

layer, an attribute layer, an action unit (AU) layer and a 

valence–arousal layer are trained sequentially. The core 

layer is a series of convolutional layers, followed by the 

attribute layer which extracts facial features. These layers 

are applied to supervise the learning of AUs. Finally, AUs 

are employed as mid-level representations to estimate the 

intensity of valence and arousal.

In the DRC-Net method (Mahoor and Hasani 2017), three 

neural network-based methods which are based on Inception-

ResNet (Szegedy et al. 2017) modules redesigned specifically 

for the task of facial affect estimation are presented and com-

pared. These methods are: Shallow Inception-ResNet, Deep 

Inception-ResNet, and Inception-ResNet with Long Short 

Term Memory (Hochreiter and Schmidhuber 1997). Facial 

features are extracted in different scales and both, the valence 

and arousal, are simultaneously estimated in each frame. Best 

results are obtained by the Deep Inception-ResNet method.

All participants applied deep learning methods to the 

problem of emotion analysis of the video inputs. The 

following conclusions can be drawn from the reported 

results. First, CCC of arousal predictions was really low for 

all three methods. Second, MSE of valence predictions was 

high for all three methods and CCC was low, except for the 

winning method. This illustrates the difficulty in recogniz-

ing emotion in-the-wild, where, for instance, illumination 

conditions differ, occlusions are present and different head 

poses are met.

4.2  Deep Neural Architectures and Ablation Studies

Here, we present our developments and ablation studies 

towards designing deep CNN and CNN plus RNN architec-

tures for the Aff-Wild. We present the proposed architecture, 

AffWildNet, which is a CNN plus RNN network that pro-

duced the best results in the database.

4.2.1  The Roadmap

A. We considered two network settings:

(1) A CNN network trained in an end-to-end man-

ner, i.e., using raw intensity pixels, to produce 2-D 

predictions of valence and arousal,

(2) A RNN stacked on top of the CNN to capture tem-

poral information in the data, before predicting 

the affect dimensions; this was also trained in an 

end-to-end manner.

   To extract features from the frames we experimented 

with three CNN architectures, namely, ResNet-50, 

VGG-Face (Parkhi et al. 2015) and VGG-16 (Simon-

yan and Zisserman 2014). To consider the contextual 

information in the data (RNN case) we experimented 

with both the Long Short-Term Memory (LSTM) and 

the Gated Recurrent Unit (GRU) (Chung et al. 2014) 

architectures.

B. To further boost the performance of the networks, we 

also experimented with the use of facial landmarks. Here 

we should note that the facial landmarks are provided 

on-the-fly for training and testing the networks. The fol-

lowing two scenarios were tested:

(1) The networks were applied directly on cropped 

facial video frames of the generated database.

(2) The networks were trained on both the facial video 

frames as well as the facial landmarks correspond-

ing to the same frame.

C. Since the main evaluation criterion of the Aff-Wild 

Challenge was the mean value of CCC for valence and 

arousal, our loss function was based on that criterion and 

was defined as: 

Table 5  Concordance Correlation Coefficient (CCC) and Mean 

Squared Error (MSE) of valence and arousal predictions provided by 

the methods of the three participating teams and the baseline archi-

tecture. A higher CCC and a lower MSE value indicate a better per-

formance

Best results are shown in bold

Methods Valence Arousal Mean value

(A) CCC 

MM-Net 0.196 0.214 0.205

FATAUVA-Net 0.396 0.282 0.339

DRC-Net 0.042 0.291 0.167

Baseline 0.150 0.100 0.125

(B) MSE

MM-Net 0.134 0.088 0.111

FATAUVA-Net 0.123 0.095 0.109

DRC-Net 0.161 0.094 0.128

Baseline 0.130 0.140 0.135
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 where �
a
 and �

v
 are the CCC for the arousal and valence, 

respectively.

D. In order to have a more balanced dataset for training, 

we performed data augmentation, mainly through over-

sampling by duplicating (More 2016) some data from 

the Aff-Wild database. We copied small video parts 

showing less-populated valence and arousal values. 

In particular, we duplicated consecutive video frames 

that had negative valence and arousal values, as well 

as positive valence and negative arousal values. As a 

consequence, the training set consisted of about 43% 

of positive valence and arousal values, 24% of nega-

tive valence and positive arousal values, 19% of positive 

valence and negative arousal values and 14% of negative 

valence and arousal values. Our main target has been a 

trade-off between generating balanced emotion sets and 

avoiding to severely change the content of videos.

4.2.2  Developing CNN Architectures for the A�-Wild

For the CNN architectures, we considered the ResNet-50 

and VGG-16 networks, pre-trained on the ImageNet (Deng 

et al. 2009) dataset that has been broadly used for state-of-

the-art object detection. We also considered the VGG-Face 

network, pre-trained for face recognition on the VGG-Face 

dataset (Parkhi et al. 2015). The VGG-Face has proven to 

provide the best results, as reported next in the experimental 

section. It is worth mentioning that in our experiments we 

have trained those architectures for predicting both valence 

and arousal at their output, as well as for predicting valence 

and arousal separately. The obtained results were similar in 

the two cases. In all experiments presented next, we focus on 

the simultaneous prediction of valence and arousal.

The first architecture we utilized was the deep residual 

network (ResNet) of 50 layers (He et al. 2016), on top of 

which we stacked a 2-layer fully connected (FC) network. 

For the first FC layer, best results have been obtained when 

using 1500 units. For the second FC layer, 256 units pro-

vided the best results. An output layer with two linear units 

followed providing the valence and arousal predictions. 

The interested reader can refer to “Appendix A” for a short 

description and the structure of this architecture.

The other architecture that we utilized was based on the 

convolutional and pooling layers of VGG-Face or VGG-16 

networks, on top of which we stacked a 2-layer FC network. 

For the first and second FC layers, best results have been 

obtained when using 4096 units. An output layer followed, 

including two linear units, providing the valence and arousal 

predictions. The interested reader can refer to “Appendix A” 

(3)
total

= 1 −

�
a
+ �

v

2
,

for a short description and the structure of this architecture 

as well.

In the case when landmarks were used (scenario B.2 in 

Sect. 4.2.1), these were input to the first FC layer along with: 

(i) the outputs of the ResNet-50, or (ii) the outputs of the last 

pooling layer of the VGG-Face/VGG-16. In this way, both 

outputs and landmarks were mapped to the same feature 

space before performing the prediction.

With respect to parameter selection in those CNN archi-

tectures, we have used a batch size in the range 10–100 and 

a constant learning rate value in the range 0.00001–0.001. 

The best results have been obtained with batch size equal to 

50 and learning rate equal to 0.0001. The dropout probability 

value has been set to 0.5.

4.2.3  Developing CNN Plus RNN Architectures 

for the A�-Wild

In order to consider the contextual information in the data, 

we developed a CNN-RNN architecture, in which the RNN 

part was fed with the outputs of either the first, or the second 

fully connected layer of the respective CNN networks.

The structure of the RNN, which we examined, consisted 

of one or two hidden layers, with 100–150 units, following 

either the LSTM neuron model with peephole connections, 

or the GRU neuron model. Using one fully connected layer 

in the CNN part and two hidden layers in the RNN part, 

including GRUs, has been found to provide the best results. 

An output layer followed, including two linear units, provid-

ing the valence and arousal predictions.

Table 6 shows the configuration of the CNN-RNN archi-

tecture. The CNN part of this architecture was based on the 

convolutional and pooling layers of the CNN architectures 

described above (VGG-Face, or ResNet-50) that was fol-

lowed by a fully connected layer. Note that in the case of 

scenario B.2 of Sect. 4.2.1, both the outputs of the last pool-

ing layer of the CNN, as well as the 68 landmark 2-D posi-

tions ( 68 × 2 values) were provided as inputs to this fully 

connected layer. Table 6 shows the respective number of 

units for the GRU and the fully connected layers. We call 

this CNN plus RNN architecture AffWildNet and illustrate 

it in Fig. 9.

Table 6  The AffWildNet architecture: the fully connected 1 layer 

has 4096, or 1500 hidden units, depending on whether VGG-Face or 

ResNet-50 is used

Block 1 VGG-Face or ResNet-50 conv and 

pooling parts

Block 2 Fully connected 1 dropout 4096 or 1500

Block 3 GRU layer 1 dropout 128

Block 4 GRU layer 2 128

Block 5 Fully connected 2 2
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Network evaluation has been performed by testing dif-

ferent parameter values. The parameters included: the batch 

size and sequence length used for network parameter updat-

ing, the value of the learning rate and the dropout probabil-

ity value. Final selection of these parameters was similar 

to the CNN cases, apart from the sequence length which 

was selected in the range 50–200 and batch size that was 

selected in the range 2–10. Best results have been obtained 

with sequence length 80 and batch size 4. We note that all 

deep learning architectures have been implemented in the 

Tensorflow platform.

4.3  Experimental Results

In the following we present the affect recognition results 

obtained when applying the above derived CNN-only and 

CNN plus RNN architectures to the Aff-Wild database.

At first, we have trained the VGG-Face network using 

two different annotations. One, which is provided in the Aff-

Wild database, is the average of the selected (as described in 

Sect. 3.4) annotations. The second is that of a single annota-

tor (the one with the highest correlation to the landmarks). It 

should be mentioned that the latter is generally less smooth 

than the former, average, one. Hence, they are more difficult 

to be modeled. Then, we tested the two trained networks in 

two scenarios, as described in Sect. 4.2.1 case B, using/not 

using the 68 2-D landmark inputs.

The results are summarized in Table  7. As was 

expected, better results were obtained when the mean of 

annotations was used. Moreover, Table 7 shows that there 

is a notable improvement in the performance, when we 

also used the 68 2-D landmark positions as input data.

Next, we examined the use of various numbers of hid-

den layers and hidden units per layer when training and 

testing the VGG-Face-GRU network. Some characteris-

tic selections and their corresponding performances are 

shown in Table 8. It can be seen that the best results have 

been obtained when the RNN part of the network con-

sisted of 2 layers, each of 128 hidden units.

Table 9 summarizes the CCC and MSE values obtained 

when applying all developed architectures described in 

Sects. 4.2.2 and 4.2.3, to the Aff-Wild test set. It shows 

the improvement in the CCC and MSE values obtained 

when using the AffWildNet compared to all other devel-

oped architectures. This improvement clearly indicates 

Fig. 9  The AffWildNet: it 

consists of convolutional and 

pooling layers of either VGG-

Face or ResNet-50 structures 

(denoted as CNN), followed 

by a fully connected layer 

(denoted as FC1) and two RNN 

layers with GRU units (V and 

A stand for valence and arousal 

respectively)

Table 7  CCC and MSE based evaluation of valence and arousal pre-

dictions provided by the VGG-Face (using the mean of annotators 

values, or using only one annotator values; when landmarks were or 

were not given as input to the network)

Best results are shown in bold

With landmarks Without landmarks

Valence Arousal Valence Arousal

(A) CCC 

One annotator 0.39 0.27 0.35 0.25

Mean of annotators 0.51 0.33 0.44 0.32

(B) MSE

One annotator 0.15 0.13 0.16 0.14

Mean of annotators 0.10 0.08 0.12 0.11
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the ability of the AffWildNet to better capture the dynam-

ics in Aff-Wild.

In Fig. 10a, b, we qualitatively illustrate some of the 

obtained results by comparing a segment of the obtained 

valence/arousal predictions to the ground truth values, in 

10000 consecutive frames of test data.

Moreover, in Fig.  11a, b, we illustrate, in the 2-D 

valence and arousal space, the histograms of the ground 

truth labels of the test set and the corresponding predic-

tions of our AffWildNet.

The results shown in Table 9 and the above figures 

verify the excellent performance of the AffWildNet. They 

also show that it greatly outperformed all methods sub-

mitted in the Aff-Wild Challenge.

4.4  Discussing A�WildNet’s Performance

The reasons why the AffWildNet outperformed the other 

methods are related to both the network design and the net-

work training.

At first, the AffWildNet is a CNN-RNN network. The 

CNN part is based on the VGG-Face (or ResNet-50) net-

work’s convolutional and pooling layers. The VGG-Face 

network has been pre-trained with a large dataset for face 

recognition (many human faces have been, therefore, used 

in its construction).

In our implementation, this CNN part is followed by a 

single FC layer. The inputs of this layer are: (a) the outputs 

of the last pooling layer of the CNN part; (b) the facial land-

marks, which are directly passed as inputs to this FC layer. 

As a consequence, this layer has the role to map its two types 

of inputs to the same feature space, before forwarding them 

to the RNN part. The facial landmarks, which are provided 

as additional input to the network, in this way, contribute to 

boosting the performance of our model. The output of the 

fully connected layer is then passed to the RNN part.

The RNN is used in order to model the contextual infor-

mation in the data, taking into account temporal variations. 

The RNN is composed of 2-layers, with GRU units in each 

layer; the first layer processes the FC layer outputs, the sec-

ond layer is followed by the output layer that gives the final 

estimates for valence and arousal.

Table 8  Obtained CCC values for valence and arousal estimation, 

when changing the number of hidden units and hidden layers in the 

VGG-Face-GRU architecture. A higher CCC value indicates a better 

performance

Best results are shown in bold

CCC 1 Hidden layer 2 Hidden layers

Hidden units Valence Arousal Valence Arousal

100 0.44 0.36 0.50 0.41

128 0.53 0.40 0.57 0.43

150 0.46 0.39 0.51 0.41

Table 9  CCC and MSE based evaluation of valence and arousal pre-

dictions provided by: (1) the CNN architecture when using three dif-

ferent pre-trained networks for initialization (VGG-16, ResNet-50, 

VGG-Face) and (2) the VGG-Face-LSTM and AffWildNet architec-

tures (2 RNN layers with 128 units each). A higher CCC and a lower 

MSE value indicate a better performance

Best results are shown in bold

Valence Arousal Mean value

(A) CCC 

VGG-16 0.40 0.30 0.35

ResNet-50 0.43 0.30 0.37

VGG-Face 0.51 0.33 0.42

VGG-Face-LSTM 0.52 0.38 0.45

AffWildNet 0.57 0.43 0.50

(B) MSE

VGG-16 0.13 0.11 0.12

ResNet-50 0.11 0.11 0.11

VGG-Face 0.10 0.08 0.09

VGG-Face-LSTM 0.10 0.09 0.10

AffWildNet 0.08 0.06 0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frames

V
a
le

n
c
e

A
n
n
o
ta

ti
o
n

Predictions

Labels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frames

A
ro

u
s
a
l
A

n
n
o
ta

ti
o
n
s

Predictions

Labels

(a) Valence

(b) Arousal

Fig. 10  Predictions versus Labels for a valence and b arousal over a 

video segment of the Aff-Wild
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Part of AffWildNet’s design was the fixing of its optimal 

hyper-parameters (number of FC and RNN layers, number 

of hidden units in these layers, batch size, sequence length, 

dropout, learning rate). Finally, the specification of the loss 

function used for network training was another important 

issue. Our loss function was based on the CCC, as this was 

the main evaluation criterion of the Aff-Wild Challenge; this 

was not the case in the competing methods that used the 

usual MSE criterion in their training phases.

As far as network training is concerned, the AffWildNet 

has been trained as an end-to-end architecture, by jointly 

training its CNN and RNN parts, rather than separately train-

ing the two parts.

We would also like to mention that the data augmentation 

that was conducted so as to achieve a more balanced dataset, 

also contributed in achieving the AffWildNet a state-of-the-

art performance.

5  Feature Learning from A�-Wild

When it comes to dimensional emotion recognition, there 

exists great variability between different databases, espe-

cially those containing emotions in-the-wild. In particular, 

the annotators and the range of the annotations are dif-

ferent and the labels can be either discrete or continuous. 

To tackle the problems caused by this variability, we take 

advantage of the fact that the Aff-Wild is a powerful data-

base that can be exploited for learning features, which may 

then be used as priors for dimensional emotion recognition. 

In the following, we show that it can be used as prior for the 

RECOLA and AFEW-VA databases that are annotated for 

valence and arousal, just like Aff-Wild. In addition to this, 

we use it as a prior for categorical emotion recognition, on 

the EmotiW dataset, which is annotated in terms of the seven 

basic emotions. Experiments have been conducted on these 

databases yielding state-of-the-art results and thus verifying 

the strength of Aff-Wild for affect recognition.

5.1  Prior for Valence and Arousal Prediction

5.1.1  Experimental Results for the A�-Wild and RECOLA 

Database

In this subsection, we demonstrate the superiority of our 

database when it is used for pre-training a DNN. In particu-

lar, we fine-tune the AffWildNet on the RECOLA and for 

comparison purposes we also train on RECOLA an architec-

ture comprised of a ResNet-50 and a 2-layer GRU stacked 

on top (let us call it ResNet-GRU network). Table 10 shows 

the results only for the CCC score as our minimization loss 

was depending on this metric. It is clear that the performance 

on both arousal and valence of the fine-tuned model on the 

Aff-Wild database is much higher than the performance of 

the ResNet-GRU model.

To further demonstrate the benefits of our model when 

predicting valence and arousal, we demonstrate a histogram 

Fig. 11  Histogram in the 2-D valence and arousal space of: a annota-

tions and b predictions of AffWildNet, on the test set of the Aff-Wild 

Challenge

Table 10  CCC based evaluation of valence and arousal predictions 

provided by the fine-tuned AffWildNet and the ResNet-GRU on the 

RECOLA test set. A higher CCC value indicates a better performance

Best results are shown in bold

CCC 

Valence Arousal

Fine-tuned AffWildNet 0.526 0.273

ResNet-GRU 0.462 0.209
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in the 2-D valence and arousal space of the annotations 

(Fig. 12a) and predictions of the fine-tuned AffWildNet 

(Fig. 12b) for the whole test set of RECOLA.

Finally, we also illustrate in Fig. 13a, b the network pre-

diction and ground truth for one test video of RECOLA, for 

the valence and arousal dimensions, respectively.

5.1.2  Experimental Results for the AFEW-VA Database

In this subsection, we focus on recognition of emotions in 

the AFEW-VA database, which annotation’s is somewhat 

different from the annotation of the Aff-Wild database. 

In particular, the labels of the AFEW-VA database are in 

the range [ − 10 , + 10 ], while the labels of the Aff-Wild 

database are in the range [ − 1 , + 1 ]. To tackle this prob-

lem, we scaled the range of the AFEW-VA labels to [ − 1 , 

+ 1 ]. Moreover, differences were observed, due to the fact 

that the labels of the AFEW-VA are discrete, while the 

labels of the Aff-Wild are continuous. Figure 14 shows 

the discrete valence and arousal values of the annotations 

in AFEW-VA database, whereas Fig. 15 shows the corre-

sponding histogram in the 2-D valence and arousal space.

We then performed fine-tuning of the AffWildNet to 

the AFEW-VA database and tested the performance of the 

Fig. 12  Histogram in the 2-D valence and arousal space of a annota-

tions and b predictions for the test set of the RECOLA database
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Fig. 13  Fine-tuned AffWildNet’s Predictions versus Labels for a 

valence and b arousal for a single test video of the RECOLA database

Fig. 14  Discrete values of annotations of the AFEW-VA database
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generated network. Similarly to Kossaifi et al. (2017), we 

used a fivefold person-independent cross-validation strat-

egy. Table 11 shows a comparison of the performance of 

the fine-tuned AffWildNet with the best results reported in 

Kossaifi et al. (2017). Those results are in terms of the Pear-

son CC. It can be easily seen that the fine-tuned AffWildNet 

greatly outperformed the best method reported in Kossaifi 

et al. (2017).

For comparison purposes, we also trained a CNN network 

on the AFEW-VA database. This network’s architecture was 

based on the convolution and pooling layers of VGG-Face 

followed by 2 fully connected layers with 4096 and 2048 

hidden units, respectively. As shown in Table 12, the per-

formance of the fine-tuned AffWildNet, in terms of CCC, 

greatly outperformed this network as well.

All these verify that our network can be used as a pre-

trained one to yield excellent results across different dimen-

sional databases.

5.2  Prior for Categorical Emotion Recognition

5.2.1  Experimental Results for the EmotiW Dataset

To further show the strength of the AffWildNet, we used 

the AffWildNet—which is trained for dimensional emotion 

recognition task—in a very different problem, that of cat-

egorical in-the-wild emotion recognition, focusing on the 

EmotiW 2017 Grand Challenge. To tackle categorical emo-

tion recognition, we modified the AffWildNet’s output layer 

to include 7 neurons (one for each basic emotion category) 

and performed fine-tuning on the AFEW 5.0 dataset.

In the presented experiments, we compare the fine-tuned 

AffWildNet’s performance with that of other state-of-the-art 

CNN and CNN-RNN networks; the CNN part of which is 

based on the ResNet 50, VGG-16 and VGG-Face architec-

tures, trained on the same AFEW 5.0 dataset. The accuracies 

of all networks on the validation set of the EmotiW 2017 

Grand Challenge are shown in Table 13. A higher accuracy 

value indicates better performance for the model. We can 

Fig. 15  Histogram in the 2-D valence and arousal space of annota-

tions of the AFEW-VA database

Table 11  Pearson Correlation Coefficient (Pearson CC) based evalu-

ation of valence and arousal predictions provided by the best archi-

tecture in Kossaifi et al. (2017) versus our AffWildNet fine-tuned on 

the AFEW-VA. A higher Pearson CC value indicates a better perfor-

mance

Best results are shown in bold

Group Pearson CC

Valence Arousal

Best of Kossaifi et al. (2017) 0.407 0.45

Fine-tuned AffWildNet 0.514 0.575

Table 12  CCC based evaluation 

of valence and arousal 

predictions provided by the 

CNN architecture based on 

VGG-Face and the fine-tuned 

AffWildNet on the AFEW-VA 

training set. A higher CCC 

value indicate a better 

performance

Best results are shown in bold

CCC AFEW-VA

Valence Arousal

Only CNN 0.44 0.474

Fine-tuned 

AffWild-

Net

0.515 0.556

Table 13  Accuracies on the 

EmotiW validation set obtained 

by different CNN and CNN-

RNN architectures versus the 

fine-tuned AffWildNet. A 

higher accuracy value indicates 

better performance

Best results are shown in bold

Architectures Accuracy

Neutral Anger Disgust Fear Happy Sad Surprise Total

VGG-16 0.327 0.424 0.102 0.093 0.476 0.138 0.133 0.263

VGG-16  +  RNN 0.431 0.559 0.026 0.07 0.444 0.259 0.044 0.293

ResNet 0.31 0.153 0.077 0.023 0.534 0.207 0.067 0.211

ResNet  +  RNN 0.431 0.237 0.077 0.07 0.587 0.155 0.089 0.261

VGG-Face  +  RNN 0.552 0.593 0.026 0.047 0.794 0.259 0.111 0.384

Fine-tuned AffWildNet 0.569 0.627 0.051 0.023 0.746 0.709 0.111 0.454
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easily see that the AffWildNet outperforms all those other 

networks in terms of total accuracy.

We should note that:

 (i) The AffWildNet was trained to classify only video 

frames (and not audio) and then video classification 

based on frame aggregation was performed

 (ii) The cropped faces provided by the challenge were 

only used (and not our own detection and/or normali-

zation procedure)

 (iii) No data-augmentation, post-processing of the results 

or ensemble methodology have been conducted.

It should also be mentioned that the fine-tuned AffWildNet’s 

performance, in terms of total accuracy, is:

 (i) Much higher than the baseline total accuracy of 

0.3881 reported in Dhall et al. (2017).

 (ii) Better than all vanilla architectures’ performances 

that were reported by the three winning methods in 

the audio–video emotion recognition EmotiW 2017 

Grand Challenge (Hu et al. 2017; Knyazev et al. 

2017; Vielzeuf et al. 2017).

 (iii) Comparable and better in some cases than the rest 

of the results obtained by the three winning methods 

(Hu et al. 2017; Knyazev et al. 2017; Vielzeuf et al. 

2017).

The above are shown in Table 14. Those results verify 

that the AffWildNet can be appropriately fine-tuned and suc-

cessfully used for dimensional, as well as for categorical 

emotion recognition.

6  Conclusions and Future Work

Deep learning and deep neural networks have been suc-

cessfully used in the past years for facial expression and 

emotion recognition based on still image and video frame 

analysis. Recent research focuses on in-the-wild facial anal-

ysis and refers either to categorical emotion recognition, 

targeting recognition of the seven basic emotion catego-

ries, or to dimensional emotion recognition, analyzing the 

valence–arousal (V–A) representation space.

In this paper, we introduce Aff-Wild, a new, large in-the-

wild database that consists of 298 videos of 200 subjects, 

with a total length of more than 30 h. We also present the 

Aff-Wild Challenge that was organized on Aff-Wild. We 

report the results of the challenge, and the pitfalls and chal-

lenges in terms of predicting valence and arousal in-the-

wild. Furthermore, we design a deep convolutional and 

recurrent neural architecture and perform extensive experi-

mentation with the Aff-Wild database. We show that the 

generated AffWildNet provides the best performance for 

valence and arousal estimation on the Aff-Wild dataset, 

both in terms of the Concordance Correlation Coefficient 

and the Mean Squared Error criteria, when compared with 

other deep learning networks trained on the same database.

Subsequently, we then demonstrate that the AffWildNet 

and Aff-Wild database constitute tools that can be used for 

facial expression and emotion recognition on other data-

sets. Using appropriate fine-tuning and retraining meth-

odologies, we show that best results can be obtained by 

applying the AffWildNet to other dimensional databases, 

including the RECOLA and the AFEW-VA ones and by 

Table 14  Overall accuracies 

of the best architectures of 

the three winning methods 

of the EmotiW 2017 Grand 

Challenge reported on the 

validation set versus our fine-

tuned AffWildNet. A higher 

accuracy value indicates better 

performance

Best results are shown in bold

Group Architecture Total accuracy

Original After fine-tuning 

on FER2013

Data 

augmen-

tation

Hu et al. (2017) DenseNet-121 0.414 – –

HoloNet 0.41

ResNet-50 0.418

Knyazev et al. (2017) VGG-Face 0.379 0.483 –

FR-Net-A 0.337 0.446 –

FR-Net-B 0.334 0.488 –

FR-Net-C 0.376 0.452 –

LSTM  +  FR-NET-B – 0.465 0.504

Vielzeuf et al. (2017) Weighted C3D (no overlap) – – 0.421

LSTM C3D (no overlap) 0.432

VGG-Face 0.414

VGG-LSTM 1 layer 0.486

Our Fine-tuned AffWildNet 0.454 – –
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comparing the obtained performances with other state-of-

the-art pre-trained and fine-tuned networks.

Furthermore, we observe that fine-tuning on the 

AffWildNet can produce state-of-the-art performance, 

not only for dimensional, but also for categorical emo-

tion recognition. We use this approach to tackle the facial 

expression and emotion recognition parts of the EmotiW 

2017 Grand Challenge, referring to recognition of the 

seven basic emotion categories, finding that we produce 

comparable or better results to the winners of this contest.

It should be stressed that it is the first time, to the best of 

our knowledge, that the same deep architecture can be used 

for both types of dimensional and categorical emotion anal-

ysis. To achieve this, the AffWildNet has been effectively 

trained with the largest existing, in-the-wild, database for 

continuous valence–arousal recognition (regression analy-

sis problem) and then used for tackling the discrete seven 

basic emotion recognition (classification) problem.

The proposed procedure for fine-tuning the AffWildNet 

can be applied to further extend its use in the analysis 

of other new visual emotion recognition datasets. This 

includes our current work on extending the Aff-Wild with 

new in-the-wild audiovisual information, as well as using 

it as a means for unifying different approaches to facial 

expression and emotion recognition. These approaches 

contain dimensional emotion representations, basic and 

compound emotion categories, facial action unit repre-

sentations, as well as specific emotion categories met in 

different contexts, such as negative emotions, emotions 

in games, in social groups and other human machine (or 

robot) interactions.
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A Appendix

A.1 Baseline: CNN-M

The exact structure of the network is shown in Table 15. 

In total, it consists of 5 convolutional, batch normalization 

and pooling layers and 2 fully connected (FC) ones. For 

each convolutional layer the parameters are the filter and the 

stride, in the form of (filter height, filter width, input chan-

nels , output channels/feature maps) and (1, stride height, 

stride width , 1), respectively, and for the max pooling layer 

the parameters are the ksize and stride, in the form of (pool-

ing height, pooling width, input channels, output channels) 

and (1, stride height, stride width , 1), respectively. We fol-

low the TensorFlow’s platform notation for the values of all 

those parameters. Note that the activation function in the 

Table 15  Baseline architecture 

based on CNN-M, showing the 

values of the parameters of the 

convolutional and pooling layers 

and the number of hidden units 

in the fully connected layers. 

We follow the TensorFlow’s 

platform notation for the values 

of all those parameters

Layer Filter Ksize Stride Padding No. of units

conv 1 [7, 7, 3, 96] [1, 2, 2, 1] ‘VALID’

batch norm

max pooling [1, 3, 3, 1] [1, 2, 2, 1] ‘VALID’

conv 2 [5, 5, 96, 256] [1, 2, 2, 1] ‘SAME’

batch norm

max pooling [1, 3, 3, 1] [1, 2, 2, 1] ‘SAME’

conv 3 [3, 3, 256, 512] [1, 1, 1, 1] ‘SAME’

batch norm

conv 4 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’

batch norm

conv 5 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’

batch norm

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’

Fully connected 1 4096

Fully connected 2 2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


926 International Journal of Computer Vision (2019) 127:907–929

1 3

convolutional and batch normalization layers is the ReLU 

one; this is also the case in the first FC layer. The activation 

function of the second FC layer, which is the output layer, 

is a linear one.

A.2 ResNet-50

Residual learning is adopted in these models by stacking 

multiple blocks of the form:

where �
k
 , �

k
 and �

k
 indicate the input, the weights, and 

the output of layer k, respectively,  indicates the residual 

function that is learnt and h is the identity mapping between 

the residual function and the input. The h identity mapping 

(4)�
k
= (�

k
, {�

k
}) + h(�

k
),

is a projection of �
k
 to match the dimensions of (�

k
, {�

k
}) 

(done by 1 × 1 convolutions), as in He et al. (2016).

The first layer of the ResNet-50 model is comprised 

of a 7 × 7 convolutional layer with 64 feature maps, fol-

lowed by a max pooling layer of size 3 × 3 . Next, there are 

4-bottleneck blocks, where a shortcut connection is added 

after each block. Each of these blocks is comprised of 3 

convolutional layers of sizes 1 × 1 , 3 × 3 , and 1 × 1 with 

different number of feature maps.

The architecture of the network is depicted in Fig. 16. 

Each convolutional layer is in the format: filter height × fil-

ter width, number of input feature maps, number of output 

feature maps.

Fig. 16  The CNN-only architecture for valence and arousal estima-

tion, based on ResNet-50 structure and including two fully connected 

layers (V and A stand for valence and arousal respectively). Each con-

volutional layer is in the format: filter height × filter width, number of 

input feature maps, number of output feature maps

Table 16  CNN architecture 

based on VGG-Face/VGG-

16, showing the values of the 

parameters of the convolutional 

and pooling layers and the 

number of hidden units in 

the fully connected layers. 

We follow the TensorFlow’s 

platform notation for the values 

of all those parameters

Layer Filter Ksize Stride Padding No of 

units

conv 1 [3, 3, 3, 64] [1, 1, 1, 1] ‘SAME’

conv 2 [3, 3, 64, 64] [1, 1, 1, 1] ‘SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’

conv 3 [3, 3, 64, 128] [1, 1, 1, 1] ‘SAME’

conv 4 [3, 3, 128, 128] [1, 1, 1, 1] ‘SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’

conv 5 [3, 3, 128, 256] [1, 1, 1, 1] ‘SAME’

conv 6 [3, 3, 256, 256] [1, 1, 1, 1] ‘SAME’

conv 7 [3, 3, 256, 256] [1, 1, 1, 1] ‘SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’

conv 8 [3, 3, 256, 512] [1, 1, 1, 1] ‘SAME’

conv 9 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’

conv 10 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’

conv 11 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’

conv 12 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’

conv 13 [3, 3, 512, 512] [1, 1, 1, 1] ‘SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ‘SAME’

Fully connected 1 dropout 4096

Fully connected 2 4096

Fully connected 3 2



927International Journal of Computer Vision (2019) 127:907–929 

1 3

A.3 VGG-Face/VGG-16

Table 16 shows the configuration of the CNN architecture 

based on VGG-Face or VGG-16. In total, it is composed 

of thirteen convolutional and pooling layers and three fully 

connected ones. For all those layers the form of the param-

eters is the same as described above in the baseline architec-

ture. We follow the TensorFlow’s platform notation for the 

values of all those parameters. The output number of units 

is also shown in the Table.

A linear activation function was used in the last FC 

layer, providing the final estimates. All units in the remain-

ing FC layers were equipped with the ReLU. Dropout 

has been added after the first FC layer in order to avoid 

over-fitting. The architecture of the network is depicted 

in Fig. 17.
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