
Under review as a conference paper at ICLR 2020

DEEP AMORTIZED CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a deep amortized clustering (DAC), a neural architecture which learns
to cluster datasets efficiently using a few forward passes. DAC implicitly learns
what makes a cluster, how to group data points into clusters, and how to count
the number of clusters in datasets. DAC is meta-learned using labelled datasets
for training, a process distinct from traditional clustering algorithms which usu-
ally require hand-specified prior knowledge about cluster shapes/structures. We
empirically show, on both synthetic and image data, that DAC can efficiently and
accurately cluster new datasets coming from the same distribution used to generate
training datasets.

1 INTRODUCTION

6 4 2 0 2 4

4

2

0

2

4

6 4 2 0 2 4

4

2

0

2

4

Figure 1: Our model identifies
one cluster per iteration (top),
allowing it to find any number
of clusters (bottom).

Clustering is a fundamental task in unsupervised machine learning
to group similar data points into multiple clusters. Aside from its
usefulness in many downstream tasks, clustering is an important
tool for visualising and understanding the underlying structures of
datasets, as well as a model for categorisation in cognitive science.

Most clustering algorithms have two basic components - how to
define a cluster and how to assign data points to those clusters. The
former is usually defined using metrics to measure distances between
data points, or using generative models describing the shapes of
clusters. The latter, how to assign data points to the clusters, is
then typically optimized iteratively w.r.t. objective functions derived
based on the cluster definitions. Note that cluster definitions are
user defined, and are reflections of the user’s prior knowledge about
the clustering process, with different definitions leading to different
clusterings. However, cluster definitions used in practice are often
quite simple, for example clusters in k-means are defined in terms
of `2 distance to centroids, while Gaussians are a commonly used
generative model for clusters in mixture models.

Recently, advances in deep learning has facilitated the approxima-
tion of complex functions in a black-box fashion. One particular
application of relevance to the problem of clustering in this paper is
that of amortized inference (Gershman & Goodman, 2014; Stuhlmüller et al., 2013), where neural
networks are trained to predict the states of latent variables given observations in a generative model
or probabilistic programme. In the context of learning set-input neural networks (Zaheer et al.,
2017), Lee et al. (2019) showed that it is possible to amortize the iterative clustering process for a
Mixture of Gaussians (MOG), while Pakman et al. (2019) demonstrated that it is possible to train a
neural network to sequentially assign data points to clusters. Both approaches can be interpreted as
using neural networks for amortized inference of cluster assignments and parameters given a dataset.
Note that once neural networks are used for amortized clustering, we can take advantage of their
flexibility in working with more complex ways to define clusters. Further, the amortization networks
can be trained using generated datasets where the ground truth clusterings are known. This can be
interpreted as implicitly learning the definition of clusters underlying the training datasets, such that
amortized inference (approximately) produces the appropriate clusterings. In a sense this shares a
similar philosophy as Neural Processes (Garnelo et al., 2018b;a), which meta-learns from multiple
datasets to learn a prior over functions.

1

Under review as a conference paper at ICLR 2020

In this paper, we build on these prior works and propose Deep Amortized Clustering (DAC). As
in prior works, the amortization networks in DAC are trained using generated datasets where the
ground truth clusterings are known. Like Lee et al. (2019), DAC uses a Set Transformer, but differs
from Lee et al. (2019) in that it generates clusters sequentially, which enables to produce a varying
number of clusters depending on the complexity of the dataset (Fig. 1). Our approach also extends
Lee et al. (2019) from MOG to problems with more complex cluster definitions, which are arguably
harder to hand specify and easier to meta-learn from data. Our work also differs from Pakman et al.
(2019) in that our network processes data points in parallel while Pakman et al. (2019) processes
them sequentially, which is arguably less scalable and limits applicability to smaller datasets.

This paper is organized as follows. We begin by describing in Section 2 the permutation-invariant set
transformer modules that we use throughout the paper. In Section 3, we describe how we implement
our core idea of identifying one cluster at a time, and describe our framework for clustering, the
DAC There are several challenges in solving DAC on complex datasets, and we structured our paper
roughly in order of difficulty. We apply DAC to clustering synthetic data (Section 5) and image data
(Section 6); some settings required additional components, which we describe when needed.

2 A PRIMER ON SET TRANSFORMER AND AMORTIZED CLUSTERING

In this section, we briefly review the set-input neural network architectures to be used in the paper,
and describe how Lee et al. (2019) used them to solve amortized clustering for MOG.

2.1 SET TRANSFORMER

The Set Transformer (ST) is a permutation-invariant set-input neural network that uses self-attetntion
operations as building blocks. It utilizes multi-head attention (Vaswani et al., 2017) for both encoding
elements of a set and decoding encoded features into outputs.

The fundamental building block of a ST is the Multihead Attention Block (MAB), which takes two
sets X = [x1, . . . , xn]

> and Y = [y1, . . . , ym]> and outputs a set of the same size as X . Throughout
this article, we represent sets as matrices where each row corresponds to an element. An MAB is
defined as

MAB(X,Y) = H + rFF(H) where H = X + rFF(MultiheadAtt(X,Y)), (1)

where rFF(·) is a feed-forward layer applied row-wise (i.e., for each element). MAB(X,Y) computes
the pairwise interactions between the elements in X and Y with sparse weights obtained from
attention. A Self-Attention Block (SAB) is simply MAB applied to the set itself: SAB(X) ,
MAB(X,X). We can model high-order interactions among the items in a set by stacking multiple
SABs; we denote such a stack of L SABs applied to set X as SABL(X).

To summarize a set into a fixed-length representation, ST uses an operation called Pooling by Multi-
head Attention (PMA). A PMA is defined as PMAk(X) = MAB(S,X) where S = [s1, . . . , sk]

>

are trainable parameters.

Note that the time-complexity of SAB is O(n2) because of pairwise computation. To reduce this,
Lee et al. (2019) proposed to use Induced Self-Attention Block (ISAB) defined as

ISAB(X) = MAB(X,MAB(I,X)), (2)

where I = [i1, . . . , im]> are trainable inducing points. ISAB indirectly compares the elements of
X through the inducing points, reducing the time-complexity to O(nm). Similarly to the SAB, we
write ISABL(X) to denote a stack of L ISABs.

2.2 AMORTIZED CLUSTERING WITH SET TRANSFORMER

Lee et al. (2019) presented an example using ST for amortized inference for a MOG. A dataset X
is clustered by maximizing the likelihood of a k component MOG, and a ST is used to output the
parameters as:

HX = ISABL(X), Hθ = PMAk(HX), (logitπj , θj)
k
j=1 = rFF(SABL′(Hθ)), (3)

2

Under review as a conference paper at ICLR 2020

where πj is the mixing coefficient and θj = (µj , σ
2
j) are the mean and variance for the jth Gaussian

component. The network is trained to maximize the expected log likelihood over datasets:

Ep(X)

[nX∑
i=1

log

k∑
j=1

πj logN (xi;µj , σ
2
j)

]
, (4)

where nX is the number of elements inX . Clustering is then achieved by picking the highest posterior
probability component for each data point under the MOG with parameters output by the ST.

3 DEEP AMORTIZED CLUSTERING

An apparent limitation of the model described in Section 2.2 is that it assumes a fixed number of
clusters generated from Gaussian distributions. In this section, we describe our method to solve DAC
in the more realistic scenario of having a variable number of clusters and arbitrarily complex cluster
shapes.

3.1 FILTERING: INFERRING ONE CLUSTER AT A TIME

The objective (4) is not applicable when the number of clusters is not fixed nor bounded. A remedy
to this is to build a set-input neural network f that identifies the clusters iteratively and make it to
learn “when to stop”, similar to Adaptive Computation Time (ACT) for RNNs (Graves, 2016).

One may think of several ways to implement this idea (we present an illustrative example that simply
augments ACT to ST in Section 5.1). Here we propose to train f to solve a simpler task - instead of
clustering the entire dataset, focus on finding one cluster at a time. The task, what we call as filtering,
is defined as a forward pass through f that takes a set X and outputs a parameter θ to describe a
cluster along with a membership probability vector m ∈ [0, 1]nX where nX is the number of elements
in X . The meaning of the parameter θ depends on the specific problem. For example, θ for MOG is
(µ, σ2), the parameters of a Gaussian distribution. mi represents the probability of xi belonging to
the cluster described by θ. To filter out the datapoints that belong to the current cluster, we use 0.5 as
the threshold to discretize m to a boolean mask vector. The resulting smaller dataset is then fed back
into the neural network to produce the next cluster and so on.

Minimum Loss Filtering Now we describe how to train the filtering network f . AssumeX has kX

true clusters, and let y ∈ [1, . . . , kX]
nX be a cluster label vector corresponding to the true clustering

of X . Then we define the loss function for one filtering iteration producing one θ and one m as

L(X, y,m, θ) = min
j∈{1,...,kX}

(
1

nX

nX∑
i=1

BCE(mi,1{yi=j})−
1

nX|j

∑
i|yi=j

log p(xi; θ)

)
, (5)

where nX|j :=
∑nX

i=1 1{yi=j}, BCE(·, ·) is the binary cross-entropy loss, and p(x; θ) is the density
of x under cluster parameterised by θ. This loss encourages θ to describe the data distribution of
a cluster, and m to specify which datapoints belong to this particular cluster. The rationale to take
minimum across the clusters is follows. One way to train f to pick a cluster at each iteration is to
impose an ordering on the clusters (e.g. in order of appearance in some arbitrary indexing of X ,
or in order of distance to origin), and to train f to follow this order. However, this may introduce
unnecessary inductive biases that deteriorates learning. Instead, we let f find the easiest one to
identify, thus promoting f to learn its own search strategy. Note that there are kX ! equally valid ways
to label the clusters in X . This combinatorial explosion makes learning with standard supervised
learning objectives for y tricky, but our loss (5) is inherently free from this problem while being
invariant to the labelling of clusters.

We use the following architecture for the filtering network f : Section 2:
encode data: HX = ISABL(X),

decode cluster: Hθ = PMA1(HX), θ = rFF(Hθ),

decode mask: Hm = ISABL′(MAB(HX , Hθ)), m = sigmoid(rFF(Hm)). (6)
The network first encodesX intoHX and extracts cluster parameters θ. Then θ together with encoded
data HX are further processed to produce the membership probabilities m. We call the filtering
network with architecture (6) and trained with objective (5) Minimum Loss Filtering (MLF).

3

Under review as a conference paper at ICLR 2020

Anchored Filtering An alternative strategy that we found beneficial for harder datasets is to use
anchor points. Given a dataset X and labels y constructed from the true clustering, we sample an
anchor point with index a ∈ {1, . . . , nX} uniformly from X . We parameterize a set-input network
f to take both X and a is input, and to output the cluster that contains the anchor point xa. The
corresponding loss function is,

L(x, y, a,m, θ) = 1

nX

nX∑
i=1

BCE(mi,1{yi=ja})−
1

nX|ja

∑
i|yi=ja

log p(xi; θ), (7)

where ja denotes the the true cluster index containing a. The architecture to be trained with this loss
can be implemented as

encode data: HX = ISABL(X), HX|a = MAB(HX , ha),

decode cluster: Hθ = PMA1(HX|a), θ = rFF(Hθ),

decode mask: Hm = ISABL′(MAB(HX|a, Hθ)), m = sigmoid(rFF(Hm)), (8)

where ha is the row vector of HX corresponding to the index a. We train (8) by randomly sampling
a for each step, and thus promoting f to find clusters by comparing each data point to the random
anchor point. Note that the loss is also free from the label order ambiguity given anchor points. We
call this filtering strategy Anchored Filtering (AF).

3.2 BEYOND SIMPLE PARAMETRIC FAMILIES

When each cluster cannot be well described by a Gaussian or other simple parametric distributions,
we have several choices to learn them. The first is to estimate the densities along with the filtering
using neural density estimators such as Masked Autoregressive Flow (MAF) (Papamakarios et al.,
2017). Another option is to lower-bound log p(x; θ) by introducing variational distributions, for
example using Variational Autoencoder (VAE) (Kingma & Welling, 2014). See Section 5.2 and
Section 6.1 for examples. If the density estimation is not necessary, we can choose not to learn
log p(x; θ). In other words, instead of (5) and (7), we train

L(X, y,m, θ) = min
j

nX∑
i=1

BCE(mi,1{yi=j}), L(X, y, a,m, θ) =
nX∑
i=1

BCE(mi,1{yi=ja}), (9)

for MLF and AF, respectively. The corresponding architectures are (6) and (8) with parameter
estimation branches removed. The DAC trained in this way implicitly learns how to define a cluster
from the given training datasets and cluster labels. See Section 6.2 and Section 6.3 where we applied
this to cluster image datasets.

3.3 DEEP AMORTIZED CLUSTERING

Recall that each step of filtering yields one cluster. To solve DAC, we iterate this procedure until all
clusters are found. After each filtering step, we remove from the dataset the points that were assigned
to the cluster, and perform filtering again. This recursive procedure is repeated until all datapoints
have been assigned to a cluster1. We call the resulting amortized clustering algorithm as DAC2. DAC
learns both data generating distributions and cluster assignment distributions from meta-training
datasets without explicit hand-engineering.

4 RELATED WORKS

Deep clustering methods There is a growing interest in developing clustering methods using
deep networks for complex data (Yang et al., 2016a;b; Xie et al., 2015; Li et al., 2017; Ji et al.,
2018). See Aljalbout et al. (2018) for a comprehensive survey on this line of work. The main

1 In practice, we input the entire dataset along with m and assign zero attention weight to datapoints with
mi = 1. This is equivalent to the described scheme, but has the added benefit of being easy to parallelize across
multiple datasets.

2Note that DAC with MLF is not stochastic once we discretize the membership probability.

4

Under review as a conference paper at ICLR 2020

focus of these methods is to learn a representation of input data amenable to clustering via deep
neural networks. Learning representations and assigning data points to the clusters are usually
trained alternatively. However, like the traditional clustering algorithms, these methods aim to cluster
particular datasets. Since such methods typically learn a data representation using deep neural
networks, the representation is prone to overfitting when applied to small datasets.

Learning to Cluster Learning to cluster refers to the task of learning a clustering algorithm from
data. Such methods are trained in a set of source datasets and tested on unseen target datasets.
Constrained Clustering Networks (Hsu et al., 2017; 2019) follow a two-step process for learning to
cluster: they first learn a similarity metric that predicts whether a given pair of datapoints belong
to the same class, and then optimize a neural network to predict assignments that agree with the
similarity metric. Centroid Networks (Huang et al., 2019) learn an embedding which is clustered
with the Sinkhorn K-means algorithm. While these methods combine deep networks with an iterative
clustering algorithm, our framework is much more efficient as it directly identifies each cluster after
one forward pass. Our experiments in Section 6 that our model is orders of magnitude faster than
previous works in learning to cluster.

Amortized clustering methods To the best of our knowledge, the only works that consider a
similar task to ours is Lee et al. (2019) and Pakman et al. (2019). We refer the reader back to Section 2
for an outline of the amortized clustering framework presented in Lee et al. (2019). Pakman et al.
(2019) presented an amortized clustering method called Neural Clustering Process (NCP). Given a
dataset, NCP sequentially computes the conditional probability of assigning the current data point
to one of already constructed clusters or a new one, similar in spirit to the popular Gibbs sampling
algorithm for Dirichlet process mixture models (Neal, 2000), but without positing particular priors on
partitions, but rather letting the network learn from data. However, the sequential sampling procedure
makes the algorithm not parallizable using modern GPUs, limiting its scalability. Furthermore, since
the clustering results vary a lot w.r.t. the sequential processing order, the algorithm needs a sufficient
number of random samples to get stable clustering results. We compared our method to NCP on
small-scale MOG experiments in Appendix C, and our results support our claim.

5 EXPERIMENTS ON SYNTHETIC DATASETS

5.1 2D MIXTURE OF GAUSSIANS

We first demonstrate DAC with MLF on 2D MOG datasets with arbitrary number of clusters. We
considered two baselines that can handle variable number of clusters: truncated Variational Bayesian
Dirichlet Process Mixture Model (VBDPM) (Blei & Jordan, 2006) and the ST architecture (Lee
et al., 2019) with ACT-style decoder so that it can produce arbitrary number of clusters. We describe
the latter method, ACT-ST, in detail in Appendix A. See Appendix B for detailed experimental
setup including data generation process and training scheme. We trained DAC and ACT-ST using
random datasets with a random number of data points n ≤ nmax and clusters k ≤ kmax, where we set
(nmax, kmax) = (1000, 4) during training. We tested the resulting model on two scenarios. The first
one is to test one same configurations; testing on 1,000 random datasets with (nmax, kmax) = (1000, 4).
The second one is test on 1,000 random datasets with (nmax, kmax) = (3000, 12) to see whether the
amortized clustering methods can generalize to an unseen number of clusters. For both scenarios, we
ran VBDPM on each test dataset until convergence from scratch. We used the mean of the variational
distributions as the point-estimates of the parameters to compute log-likelihoods. Table 1 summarizes
the results. DAC works well for both cases, even beating the oracle log-likelihood computed from
the true parameters, while ACT-ST fails to work in the more challenging (nmax, kmax) = (3000, 12)
case (Fig. 2). VBDPM works well for both, but it takes considerable time to converge whereas DAC
requires no such optimization to cluster test datasets.

5.2 2D MIXTURE OF WARPED GAUSSIANS

When the parametric form of cluster distribution is not known, we cannot directly compute the
log p(xi; θ) term in (5). In this case, we propose to estimate the density p(x; θ) via neural density
estimators along with the DAC learning framework. We construct each cluster by first sampling
points from a 2D unit Gaussian distribution, and then applying a random nonlinear transformation on

5

Under review as a conference paper at ICLR 2020

6 4 2 0 2 4

4

2

0

2

4

6 4 2 0 2 4

4

2

0

2

4

6 4 2 0 2 4

4

2

0

2

4

Figure 2: (Left) Clustering by ACT-ST, (middle) one step of filtering, (right) clustering by DAC.

Table 1: Results on synthetic 2D MOG. We report log-likelihood (LL), clustering accuracies (adjusted
Rand index (ARI) (Hubert & Arabie, 1985) and normalized mutual information (NMI), the mean
absolute error between true k and estimated k, and processing time per dataset. The numbers below
(nmax, kmax) are oracle LL values computed by the true parameters. We report the average on 5 runs.

(nmax, kmax) Algorithm LL ARI NMI k-MAE Time [sec]

(1000,4)
-0.693

VBMOG -0.719± 0.002 0.971± 0.001 0.977± 0.001 0.079± 0.003 0.037± 0.001
ACT-ST -0.721± 0.008 0.974± 0.002 0.974± 0.001 0.044± 0.003 0.006± 0.000

DAC -0.692± 0.002 0.983± 0.001 0.978± 0.001 0.120± 0.009 0.008± 0.000

(3000,12)
-1.527

VBMOG -1.561± 0.001 0.962± 0.000 0.970± 0.000 0.435± 0.010 0.400± 0.006
ACT-ST -5.278± 0.573 0.781± 0.008 0.855± 0.004 1.993± 0.082 0.024± 0.001

DAC -1.544± 0.006 0.971± 0.000 0.974± 0.000 0.279± 0.012 0.021± 0.001

each point. We use MAF (Papamakarios et al., 2017) to model p(x; θ) where θ is a context vector
that summarizes the information about a cluster. We trained the resulting DAC with MLF using
random datasets, and compared to spectral clustering (Shi & Malik, 2000). As shown in Fig. 3, DAC
finds and estimates the densities of these nonlinear clusters. See Appendix D for more details and
results.

6 EXPERIMENTS ON REAL DATASETS

6.1 CLUSTERING EMNIST WITH MIXTURE OF NEURAL STATISTICIANS

We may approximate the likelihood p(x; θ) via a VAE (Kingma & Welling, 2014) when the data
distribution is too high-dimensional or complex. Instead of directly maximizing the log-likelihood,
we maximize a lower-bound on the likelihood, log p(x; θ) ≥ Eq(z|x;θ)[log p(x, z; θ) − q(z|x; θ)],
where θ encodes the context of a cluster and z is a latent variable that describes x based on θ. Neural
Statistician (NS) (Edwards & Storkey, 2016) proposed the idea of approximating p(x; θ) using a
context θ produced by a set network; we thus call this model a mixture of NSs. We found that the
DAC implemented in this way could cluster well, generalizes to an unseen number of clusters, and
generate images conditioned on the cluster context θ. See Appendix E for detailed results.

8 6 4 2 0 2 4
1

0

1

2

3

4

10 8 6 4 2 0 2 4 6

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Figure 3: Clustering warped Gaussian data with DAC. The model was trained with k ∈ {1, . . . , 4}
clusters (left) but generalizes to datasets with 12 clusters (right).

6

Under review as a conference paper at ICLR 2020

Table 2: Results for 1,000 test datasets sampled from Embedded ImageNet.

ARI NMI k-MAE Time (sec)

k-means 0.370± 0.001 0.514± 0.001 - 0.188± 0.003
Spectral (Shi & Malik, 2000) 0.432± 0.000 0.568± 0.000 - 0.087± 0.002

DEC (Xie et al., 2015) 0.195 0.326 - 46.098
KCL (Hsu et al., 2017) 0.201 0.361 - 13.401
MCL (Hsu et al., 2019) 0.157 0.350 - 14.646

DACMLF 0.400± 0.012 0.527± 0.013 2.103± 0.160 0.012± 0.001
DACAF 0.451± 0.014 0.579± 0.013 1.805± 0.031 0.017± 0.001

Table 3: Unsupervised cross-task transfer learning on Omniglot. Normalized mutual information
(higher is better) is averaged across 20 alphabets (datasets), each of which have between 20 and 47
letters (classes). All values beside DAC were reported in Hsu et al. (2019). "k given" means that the
true number of clusters was given to the model.

Method NMI(k given) NMI

K-means (MacQueen et al., 1967) 0.353 0.464
LPNMF (Cai et al., 2009) 0.372 0.498
LSC (Chen & Cai, 2011) 0.376 0.500
CSP (Wang et al., 2014) 0.812 0.812
MPCK-means (Bilenko et al., 2004) 0.871 0.816
KCL (Hsu et al., 2017) 0.889 0.874
MCL (Hsu et al., 2019) 0.897 0.893
DACAF (ours) n/a 0.829

6.2 CLUSTERING EMBEDDED IMAGENET

We applied DAC to cluster the collection of miniImageNet (Vinyals et al., 2016) and tieredIma-
geNet (Ren et al., 2018). We gathered pretrained 640 dimensional features of the images released
by Rusu et al. (2018)3. We used the training and validation features as training set and test features
as test set. The resulting training set contains 620,000 samples from 495 classes, and the test set
contains 218,000 samples from 176 classes, with no overlap between training and test classes.

We trained DAC without density estimations (9), using both MLF and AF. We sampled randomly
clustered datasets from the training set having (nmax, kmax) = (100, 4). We then generated 1,000
randomly clustered datasets from the test set with (nmax, kmax) = (300, 12). We compared DAC to
basic clustering algorithms (k-means, spectral clustering), Deep Embedding Clustering (DEC) (Xie
et al., 2015), and transfer learning methods (KCL (Hsu et al., 2017) and MCL (Hsu et al., 2019)).
k-means, spectral, and DEC were trained for each test dataset from scratch. For KCL and MCL,
we first trained a similarity prediction network using the training set, and used it to cluster each
test dataset. For DEC, KCL and MCL, we used fully-connected layers with 256 hidden units and 3
layers for both similarity prediction and clustering network. Note that the size of the test datasets
are small (nmax = 300 < 640), so one can easily predict that DEC, KCL, and MCL would overfit.
The algorithms other than ours was given the true number of clusters. The results are summarized in
Table 2. It turns out that the pretrained features are good enough for the basic clustering algorithms
to show decent performance. The deep learning based methods failed to learn useful representations
due to the small dataset sizes. Ours showed the best clustering accuracies while also consuming the
shortest computation time.

6.3 CLUSTERING OMNIGLOT IMAGES

We apply our filtering architecture to the unsupervised cross-task transfer learning benchmark of
Hsu et al. (2017; 2019). This benchmark uses the Omniglot dataset (Lake et al., 2015) to measure
how well a clustering method can generalize to unseen classes. The Omniglot dataset consists of

3https:github.com/deepmind/leo

7

https:github.com/deepmind/leo

Under review as a conference paper at ICLR 2020

Table 4: Mean absolute error of cluster number (k) estimate and processing time per dataset on the
Omniglot benchmark.

k-MAE Time [sec]

KCL MCL DACAF KCL MCL DACAF

6.4± 6.4 5.1± 4.6 4.6± 2.7 129.3± 18.9 124.5± 14.4 4.3± 0.6

handwritten characters from 50 different alphabets. Each alphabet consists of several characters, and
each character has 20 images drawn by different people. Our problem setup consists of training a
clustering model using images from the 30 background alphabets, and using each of the 20 alphabets
as a seperate dataset to test on. We use the same VGG network backbone as in Hsu et al. (2019) and
follow their experimental setup.

We show the normalized mutual information (NMI) of DAC along with other methods in Table 3.
While previous methods were also evaluated on the easier setting where the true number of clusters is
given to the network, this setting is not applicable to DAC. We see that DAC is competitive with the
state-of-the-art on this challenging task despite requiring orders of magnitude less computation time.
While the metrics for DAC were computed after at most 100 forward passes, previous methods all
require some sort of iterative optimization. For example, KCL and MCL (Hsu et al., 2017; 2019)
required more than 100 epochs of training for each alphabet to arrive at the cluster assignments in
Table 3. This difference in computation requirements is more clearly demonstrated in Table 4: DAC
requires an average of less than 5 seconds per alphabet whereas KCL and MCL required more than
100. Table 4 additionally shows that in addition to being extremely time-efficient, DAC was more
accurate in estimating k. This demonstrates the efficacy of our overall structure of identifying one
cluster at a time.

7 DISCUSSION AND FUTURE WORK

We have proposed DAC, an approach to amortized clustering using set-input neural networks. DAC
learns to cluster from data, without the need for specifying the number of clusters or the data
generating distribution. It clusters datasets efficiently, using a few forward passes of the dataset
through the network.

There are a number of interesting directions for future research. The clustering results produced
by DAC is almost deterministic because we discretise the membership probabilities in the filtering
process. It would be interesting to take into account uncertainties in cluster assignments. In the
imagenet experiment, we found that we needed a sufficient number of training classes to make DAC
generalize to unseen test classes. Training DAC to generalize to unseen image classes with smaller
numbers of training classes seem to be a challenging problem. Finally, learning DAC along with
state-of-the-art density estimation techniques for images in each cluster is also a promising research
direction.

REFERENCES

E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers. Clustering with deep learning:
taxonomy and new methods. arXiv:1801.07648, 2018.

Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. Integrating constraints and metric learning in
semi-supervised clustering. In Proceedings of the twenty-first international conference on Machine
learning, pp. 11. ACM, 2004.

D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis,
1(1):121–143, 2006.

Deng Cai, Xiaofei He, Xuanhui Wang, Hujun Bao, and Jiawei Han. Locality preserving nonnegative
matrix factorization. In Twenty-First International Joint Conference on Artificial Intelligence,
2009.

8

Under review as a conference paper at ICLR 2020

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel.
Variational lossy autoencoder. In Proceedings of International Conferences on Learning Represen-
tations, 2017.

Xinlei Chen and Deng Cai. Large scale spectral clustering with landmark-based representation. In
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. EMNIST: an extension of MNIST to handwritten
letters. arXiv preprint arXiv:1702.05373, 2017.

H. Edwards and A. Storkey. Towards a neural statistician. In Proceedings of International Conference
on Learning Representations, 2016.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh, D. J.
Rezende, and S. M Ali Eslami. Conditional neural processes. In Proceedings of International
Conference on Machine Learning, 2018a.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. Ali Eslami, and Y. W.
Teh. Neural processes. ICML Workshop on Theoretical Foundations and Applications of Deep
Generative Models, 2018b.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE: masked autoencoder for density
estimation. In Proceedings of International Conference on Machine Learning, 2015.

S. Gershman and N. D. Goodman. Amortized inference in probabilistic reasoning. In Proceedings of
Annual Conference of the Cognitive Science Society, 2014.

A. Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. Learning to cluster in order to transfer across domains
and tasks. arXiv:1711.10125 [cs], November 2017. arXiv: 1711.10125.

Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom, and Zsolt Kira. Multi-class Classifica-
tion without Multi-class Labels. arXiv:1901.00544 [cs, stat], January 2019. arXiv: 1901.00544.

Gabriel Huang, Hugo Larochelle, and Simon Lacoste-Julien. Centroid Networks for Few-Shot
Clustering and Unsupervised Few-Shot Classification. arXiv:1902.08605 [cs, stat], February 2019.
arXiv: 1902.08605.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–218, 1985.

X. Ji, J. F. Henriques, and A Vedaldi. Invariant information clustering for unsupervised image
classification and segmentation. arXiv:1807.06653, 2018.

D. P. Kingma and J. L. Ba. Adam: a method for stochastic optimization. In Proceedings of
International Conference on Learning Representations, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Proceedings of International
Conference on Learning Representations, 2014.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: a framework for
attention-based permutation-invariant neural networks. In Proceedings of International Conference
on Machine Learning, 2019.

F. Li, H. Qiao, B. Zhang, and X. Xi. Discriminatively boosted image clustering with fully convolu-
tional auto-encoders. arXiv:1703.07890, 2017.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pp. 281–297. Oakland, CA, USA, 1967.

9

Under review as a conference paper at ICLR 2020

R. M. Neal. Markov chain sampling methods for Dirchlet process mixture models. Jorunal of
Computational and Graphical Statistics, 9(2):249–265, 2000.

A. Pakman, Y. Wang, C. Mitelut, J. Lee, and L. Paninski. Discrete neural processes. arXiv:1901.00409,
2019.

G. Papamakarios, T. Pavlakou, and Murray I. Masked autoregressive flow. In Advances in Neural
Information Processing Systems, 2017.

M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle, and R. S.
Zemel. Meta-learning for semi-supervised few-shot classification. In Proceedings of International
Conference on Learning Representaitons, 2018.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-
learning with latent embedding optimization. In Proceedings of International Conference on
Learning Representations, 2018.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8), 2000.

A. Stuhlmüller, J. Taylor, and N. D. Goodman. Learning stochastic inverses. In Advances in Neural
Information Processing Systems, 2013.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, 2016.

Xiang Wang, Buyue Qian, and Ian Davidson. On constrained spectral clustering and its applications.
Data Mining and Knowledge Discovery, 28(1):1–30, 2014.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised Deep Embedding for Clustering Analysis.
arXiv:1511.06335 [cs], November 2015. arXiv: 1511.06335.

B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards k-means-friendly spaces: simultaneous
deep learning and clustering. arXiv:1610.04794, 2016a.

J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep representations and image
clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016b.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. Deep sets. In
Advances in Neural Information Processing Systems, 2017.

10

Under review as a conference paper at ICLR 2020

A DETAILED DESCRIPTION OF ACT-ST

We first define an adaptive-computation-time version of PMA,

aPMA(X, k) = MAB([s1, . . . , sk]
>, X), sj = PMA1([s1, . . . , sj−1]

>) for j = 2, . . . , k,
(10)

which enables an RNN-like iterative computation by sequentially extending the parameters for PMA.
The clustering network to output variable number of parameters is then defined as

HX = ISABL(X), H(k)

θ = SABL′(aPMA(H, k)),

vk = sigmoid(mean(rFF(H(k)

θ [:,1]))), sk = 1−
∏
j≤k

vk,

(logit π(k)

j , θ(k)

j)kj=1 = rFF(H(k)

θ [:,2:]), (11)

where [:,1] and [:,2:] are numpy-like notation indexing the columns. sk is a “stop” variable
where sk > 0.5 means the iteration stops at kth step and continues otherwise.

During training, we utilize the true number of clusters as supervision for training ck, yielding the
overall loss function

Ep(X,ktrue)

[
−

nX∑
i=1

log

ktrue∑
j=1

π(ktrue)
j p(xi; θ

(ktrue)
j) +

kmax∑
k=1

BCE(ck,1{k<ktrue})

]
. (12)

where ktrue is the true number of clusters, kmax ≥ ktrue is maximum number of steps to run.

B DETAILS OF MOG EXPERIMENTS

We generated dataset by the following process.

n ∼ Unif(0.3nmax, nmax), k − 1 ∼ Binomial(kmax − 1, 0.5),

π ∼ Dir(α

k︷ ︸︸ ︷
[1, . . . , 1]), (yi)

n
i=1

i.i.d.∼ Cat(π)

(µj)
k
j=1

i.i.d.∼ Normal([0, 0]>, 9I), (σj)
k
j=1

i.i.d.∼ log Normal(log(0.25)[1, 1]>, 0.01I),

xi ∼ Normal(µyi ,diag(σ
2
yi)) for i = 1, . . . , n. (13)

Both ACT-ST and filtering networks were trained with nmax = 1, 000 and kmax = 4. For each step of
training, we sampled a batch of 100 datasets (sharing the same n ∼ Unif(0.3nmax, nmax) to comprise
a tensor of shape 100 × n × 2), and computed the stochastic gradient to update parameters. We
trained the networks for 20,000 steps using ADAM optimizer (Kingma & Ba, 2015) with initial
learning rate 5× 10−4. The results in Table 1 are obtained by testing the trained models on randomly
generated 1,000 datasets with the same generative process.

11

Under review as a conference paper at ICLR 2020

6 4 2 0

4

2

0

2

4

6 4 2 0 2

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4 2 0 2 4 6

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

0.25 0.50 0.75 1.00 1.25 1.50 1.75

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

2 0 2 4

4

3

2

1

0

1

2 0 2 4

0

1

2

3

4

5

6

2 0 2 4
6

5

4

3

2

1

0

1 0 1 2 3 4 5

0

1

2

3

4

5

6

2.5 2.0 1.5 1.0 0.5 0.0 0.5

1

0

1

2

3

4 2 0 2 4
6

4

2

0

2

4

6

2 0 2 4 6

6

4

2

0

2

4

6 4 2 0 2 4 6

6

4

2

0

2

4

6 4 2 0 2 4

8

6

4

2

0

4 2 0 2 4
6

4

2

0

2

4

10 8 6 4 2 0 2 4

2

0

2

4

2 0 2 4 6

3

2

1

0

1

2

3

4 2 0 2 4 6

8

6

4

2

0

2

4 2 0 2

2

0

2

4

6

8

3 2 1 0 1 2 3 4

8

6

4

2

0

2

4

4 2 0 2 4
6

4

2

0

2

4

6

2 0 2 4 6

6

4

2

0

2

4

6 4 2 0 2 4 6

6

4

2

0

2

4

6 4 2 0 2 4

8

6

4

2

0

4 2 0 2 4
6

4

2

0

2

4

10 8 6 4 2 0 2 4

2

0

2

4

2 0 2 4 6

3

2

1

0

1

2

3

4 2 0 2 4 6

8

6

4

2

0

2

4 2 0 2

2

0

2

4

6

8

2 0 2 4

8

6

4

2

0

2

4

Figure 4: More clustering results. Top two rows shows ACT-ST applied to the datasets having
k ∈ {1, . . . , 4}. The middle two rows show the same ACT-ST model applied to datasets having
k > 4. The bottom two rows show iterative filtering applied to the same datasets.

12

Under review as a conference paper at ICLR 2020

Table 5: Comparison of iterative filtering and NCP on 100 random datasets with (nmax, kmax) =
(3000, 12). The oracle log-likelihood is −1.5309, and DAC recorded −1.5640. S is the number of
samples per dataset used for NCP.

ARI k-MAE Time [sec]

DAC 0.9616 0.2800 0.0208
NCP (S = 1) 0.7947 1.6333 4.1435

NCP (S = 10) 0.8955 0.8000 5.8920
NCP (S = 50) 0.9098 0.6444 6.7936

C COMPARISON TO NEURAL CLUSTERING PROCESS

We compare DAC to NCP. Due to the sequential nature, the training procedure of NCP does not
scale to the other experiments we conducted. Instead, we trained NCP for MOG data described in
Appendix B with smaller scale having nmax = 100 and kmax = 4. We used the code released by the
authors4 with default hyperparameters. We measured the clustering performance for 100 random
datasets generated with (nmax, kmax) = (3000, 12) (Table 5). Both method generalized well w.r.t. the
number of data points n, but filtering did much better in generalizing for the number of clusters k.
The performance of NCP for clustering depends heavily on the processing order, so we conducted
multiple runs with different random orders and picked the best one w.r.t. the clustering probability
computed from NCP. Ours outperformed NCP with S = 50 samples per dataset with at least two
orders of magnitude faster processing time.

D DETAILS OF MIXTURE OF MAFS AND WARPED GAUSSIAN EXPERIMENTS

We model the cluster density as MAF.

log p(x; θ) = log p(x1) +

d∑
i=2

log p(xi|x1:i−1; θ)

= logNormal(x1|0, 1) +
d∑
i=2

log Normal(xi|µ(x1:i−1, θ), σ2(x1:i−1, θ))

= logNormal(u|0d, Id)−
d∑
i=2

log σ(x1:i−1, θ), (14)

where

u1 = x1, ui =
xi − µi(x1:i−1, θ)
σ(x1:i−1, θ)

. (15)

We can efficiently implement this with MADE (Germain et al., 2015).

4https://github.com/aripakman/neural_clustering_process

13

https://github.com/aripakman/neural_clustering_process

Under review as a conference paper at ICLR 2020

Table 6: Results on warped Gaussian datasets.

(nmax, kmax) Algorithm LL ARI NMI k-MAE Time [sec]

(1000,4) Spectral - 0.845± 0.003 0.889± 0.002 - 0.103± 0.000
DAC -1.275± 0.015 0.974± 0.001 0.970± 0.001 0.320± 0.035 0.011± 0.000

(3000,12) Spectral - 0.592± 0.001 0.766± 0.001 - 0.572± 0.003
DAC -2.436± 0.029 0.923± 0.002 0.936± 0.001 1.345± 0.099 0.037± 0.001

We generated the warped Gaussian datasets by the following generative process.

n ∼ Unif(0.3nmax, nmax), k − 1 ∼ Binomial(kmax − 1, 0.5),

π ∼ Dir(α

k︷ ︸︸ ︷
[1, . . . , 1]), (yi)

n
i=1

i.i.d.∼ Cat(π)

r̃ ∼ MoG1(y), r = 0.8πr̃,

(aj)
k
j=1

i.i.d.∼ Normal(0,
√
2), (bj)

k
j=1

i.i.d.∼ Normal(0,
√
2)

si = ayi cos ri + 0.1
byi cos ri√
a2yi + b2yi

, ti = byi sin ri + 0.1
ayi sin ri√
a2yi + b2yi

,

(%j)
k
j=1

i.i.d.∼ Unif(0, 2π), Ri =

[
cos %yi − sin %yi
sin %yi cos %yi

]
,

(λj)
k
j=1

i.i.d.∼ Normal(min(k, 4.0)[1, 1]>, I), xi = Ri[si, ti]
> + λyi , (16)

where MoG1(y) denotes the sampling from 1d Mixture of Gaussians with the same parameter
distributions as (13).

The filtering network is constructed as (6) where θ is a 128 dimensional vector to be fed into MAF as a
context vector for a cluster. We implemented log p(x; θ) as a 4 blocks of MAF with MADE (Germain
et al., 2015). The filtering network was trained using random datasets with nmax = 1, 000 and
kmax = 4, and trained for 20,000 steps with ADAM optimizer. We set initial learning rate as 5 · 10−4.
Table 6 compares the resulting DAC to spectral clustering (Shi & Malik, 2000). Spectral clustering
was ran for each dataset from scratch with true number of clusters given. To give a better idea
how good is the estimated log-likelihood values, we trained MAF with same structure (4 blocks of
MADE) but without mixture component and cluster context vectors for 100 random test datasets. We
trained for 20,000 steps for each dataset using ADAM optimizer with learning rate 5 · 10−4. The
log-likelihood values estimated with filtering on the same datasets outperforms the one obtained by
exhaustively training MAF for each dataset, and got -2.570 for MAF and -2.408 for DAC. This
shows that the amortized density estimation works really well.

14

Under review as a conference paper at ICLR 2020

4 3 2 1 0 1 2 3

12

10

8

6

4

2

0

2

4

6 4 2 0 2

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

2 0 2 4 6

6

4

2

0

2

4

6

1.0 1.5 2.0 2.5 3.0 3.5 4.0

2

3

4

5

6

7

8

9

2 0 2 4 6 8

6

8

10

12

14

2 3 4 5 6 7 8 9

2

1

0

1

2

3

5.0 2.5 0.0 2.5 5.0 7.5
4

2

0

2

4

6

6 4 2 0 2 4 6
8

6

4

2

0

2

4

6

8

2 1 0 1 2 3

1.0

1.5

2.0

2.5

3.0

4 2 0 2 4 6 8

1

0

1

2

7.5 5.0 2.5 0.0 2.5 5.0 7.5

4

3

2

1

0

1

2

3

4

4 2 0 2 4

3

2

1

0

1

2

7.5 5.0 2.5 0.0 2.5 5.0 7.5

4

2

0

2

4

6

8

7.5 5.0 2.5 0.0 2.5 5.0 7.5

4

2

0

2

4 2 0 2 4 6 8
8

6

4

2

0

2

4

4 2 0 2 4 6 8

2

0

2

4

6

8

4 2 0 2 4

6

4

2

0

2

4

6

8

6 4 2 0 2

4

2

0

2

4

6

8

2 0 2 4 6 8
6

4

2

0

2

4

6

8

0 2 4 6
4

3

2

1

0

1

2

3

4

8 6 4 2 0 2 4

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

7.5 5.0 2.5 0.0 2.5 5.0 7.5
10

8

6

4

2

0

2

4

6

2 0 2 4 6

10

5

0

5

10

5 4 3 2 1 0 1

6

4

2

0

2

4

6

7.5 5.0 2.5 0.0 2.5 5.0
8

6

4

2

0

2

4

6

6 4 2 0 2 4

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10 8 6 4 2 0 2 4

6

4

2

0

2

4

6 4 2 0 2

10.0

7.5

5.0

2.5

0.0

2.5

5.0

2.5 0.0 2.5 5.0 7.5 10.0 12.5
7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

2 0 2 4 6

2

1

0

1

2

3

4

5

6

Figure 5: More clustering results for warped Gaussian datasets.

15

Under review as a conference paper at ICLR 2020

E DETAILS OF MIXTURE OF NEURAL STATISTICIANS AND EMNIST
EXPERIMENTS

E.1 MIXTURE OF NEURAL STATISTICIANS

Let X = [x1, . . . , xn]
> be an input set. We construct a filtering network as follows.

henc,i = Encoder(xi) for i = 1, . . . , n, HX = ISABL([henc,1, . . . , henc,n]
>),

Hθ = PMA1(HX), θ = rFF(Hθ), zi ∼ q(zi|henc,i, θ) for i = 1, . . . , n

hdec,i = Decoder(zi, θ) for i = 1, . . . , n, x̃i ∼ p(xi|hdec,i) for i = 1, . . . , n

Hm = ISABL(MAB(HX , Hθ)), m = sigmoid(rFF(Hm)). (17)

The log-likelihood for a particular cluster log p({xi|yi = j}; θ) is then approximate by the variational
lower-bound,

log p({xi|yi = j}; θ) ≥
∑
i|yi=j

∫
q(zi|henc,i, θ) log

p(xi|hdec,i)p(zi)

q(zi|henc,i, θ)
dzi

=
∑
i|yi=j

(
Eq(zi|henc,i,θ))[log p(xi|hdec,i)]−KL[q(zi|henc,i, θ)‖p(zi)]

)
. (18)

Once the clustering is done, the likelihood of the whole dataset X can be lower-bounded as

log p(X; θ1, . . . , θk) ≥
k∑
j=1

πj log p({xi|yi = j}; θj). (19)

The likelihood lower-bounding for each cluster corresponds to the NS except for that the context
vector is constructed with ISAB and PMA, so we call this model a mixture of NSs.

E.2 EXPERIMENTS ON EMNIST DATA

We trained the model described in (17) to EMNIST (Cohen et al., 2017). We picked “balanced” split,
with 47 class / 112,800 training images / 18,800 test images. At each training step, we generated
10 randomly clustered dataset with (nmax, kmax) = (1000, 4) and trained the network by the loss
function (5) with the log-likelihood part replaced by (18). For Encoder(xi) and Decoder(zi, θ), we
used three layers of multilayer perceptrons. For the variational distribution q(zi|henc,i, θ), we used
Gaussian distribution with parameters constructed by a fully-connected layer taking [henc,i, θ] as
inputs. Following Chen et al. (2017), We used an autoregressive prior distribution constructed by
MAF for p(z). For the likelihood distribution, p(x|hdec,i), we used Bernoulli distribution. Each
training image was stochastically binarized.

Table 7 shows that iterative filtering can decently cluster EMNIST. Fig. 6 shows that given a set of
100 images with 4 clusters, the filtering can correctly identify a cluster and learns the generative
model to describe it. Fig. 7 shows the clustering results using iterative filtering for 100 images.

Table 7: The results on EMNIST.

(nmax, kmax) LL/pixel ARI k-MAE

(1000,4) -0.193± 0.002 0.887± 0.005 0.607± 0.093
(3000,12) -0.199± 0.003 0.728± 0.019 1.668± 0.147

F MORE RESULTS FOR OMNIGLOT EXPERIMENTS

We present more detailed comparion of KCL, MCL and ours for each alphabet.

16

Under review as a conference paper at ICLR 2020

Table 8: Absolute error of cluster number (k) estimate and time per dataset on the Omniglot
benchmark. We show averages on the bottom row. Lower is better for both metrics.

Absolute Error of k Time (s)

Alphabet k KCL MCL DACAF KCL MCL DACAF

Angelic 20 6 2 2 110.6 102.5 3.3
Atemayar Q. 26 8 0 5 116.2 115.0 3.5
Atlantean 26 15 1 10 115.5 112.5 4.1
Aurek_Besh 26 2 4 1 190.2 113.2 2.9
Avesta 26 6 3 1 116.3 115.9 3.9
Ge_ez 26 6 1 3 116.4 112.8 4.2
Glagolitic 45 0 9 5 140.4 141.2 4.6
Gurmukhi 45 2 14 7 143.1 144.8 5.1
Kannada 41 3 11 5 137.4 138.8 4.5
Keble 26 2 3 2 114.4 112.0 3.1
Malayalam 47 0 12 8 146.6 148.3 4.5
Manipuri 40 1 7 8 134.9 135.7 4.3
Mongolian 30 6 1 0 122.0 119.6 4.1
Old Church S. 45 0 7 3 140.1 142.4 4.9
Oriya 46 3 14 9 144.6 143.9 5.4
Sylheti 28 22 2 5 117.3 117.2 4.8
Syriac_Serto 23 15 1 4 112.5 118.0 4.1
Tengwar 25 16 1 4 113.0 110.6 4.7
Tibetan 42 0 8 3 139.9 135.7 5.1
ULOG 26 14 1 6 114.5 110.8 4.2

Average 6.4 5.1 4.6 129.3 124.5 4.3

17

Under review as a conference paper at ICLR 2020

In
 c

lu
st

er

Ge
ne

ra
te

d
No

t i
n

clu
st

er

Fi
gu

re
6:

A
st

ep
of

fil
te

rin
g

fo
r1

00
EM

N
IS

T
im

ag
es

w
ith

4
cl

us
te

rs
.(

Le
ft)

im
ag

es
be

lo
ng

to
th

e
cl

us
te

ri
de

nt
ifi

ed
by

th
e

fil
te

rin
g

st
ep

.(
M

id
dl

e)
Im

ag
es

ge
ne

ra
te

d
by

de
co

di
ng

ra
nd

om
la

te
nt

ve
ct

or
s
z
∼
p
(z
)

pa
ss

ed
th

ro
ug

h
th

e
de

co
de

r,
w

ith
cl

us
te

rc
on

te
xt

ve
ct

or
ex

tra
ct

ed
fr

om
th

e
fil

te
rin

g
st

ep
.(

R
ig

ht
)I

m
ag

es
do

no
tb

el
on

g
to

th
e

cl
us

te
ri

de
nt

ifi
ed

th
e

fil
te

ri
ng

st
ep

.

18

Under review as a conference paper at ICLR 2020

Figure 7: Clustering results of 100 EMNIST images with 4 ground-truth clusters by iterative filtering.
Each block corresponds to a cluster.

19

	Introduction
	A Primer on Set Transformer and Amortized Clustering
	Set Transformer
	Amortized Clustering with Set Transformer

	Deep Amortized Clustering
	Filtering: inferring one cluster at a time
	Beyond Simple Parametric Families
	Deep Amortized Clustering

	Related Works
	Experiments on Synthetic Datasets
	2D Mixture of Gaussians
	2D Mixture of Warped Gaussians

	Experiments on Real Datasets
	Clustering EMNIST with Mixture of Neural Statisticians
	Clustering Embedded Imagenet
	Clustering Omniglot Images

	Discussion and Future Work
	Detailed description of ACT-ST
	Details of MoG experiments
	Comparison to neural clustering process
	Details of mixture of MAFs and warped Gaussian experiments
	Details of mixture of neural statisticians and EMNIST experiments
	Mixture of neural statisticians
	Experiments on EMNIST data

	More results for Omniglot Experiments

