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Abstract

In recent years, a number of approaches based on 2D or

3D convolutional neural networks (CNN) have emerged for

video action recognition, achieving state-of-the-art results

on several large-scale benchmark datasets. In this paper,

we carry out in-depth comparative analysis to better un-

derstand the differences between these approaches and the

progress made by them. To this end, we develop an unified

framework for both 2D-CNN and 3D-CNN action models,

which enables us to remove bells and whistles and provides

a common ground for fair comparison. We then conduct

an effort towards a large-scale analysis involving over 300

action recognition models. Our comprehensive analysis re-

veals that a) a significant leap is made in efficiency for ac-

tion recognition, but not in accuracy; b) 2D-CNN and 3D-

CNN models behave similarly in terms of spatio-temporal

representation abilities and transferability. Our codes are

available at https://github.com/IBM/action-

recognition-pytorch.

1. Introduction

With the recent advances in convolutional neural net-

works (CNNs) [59, 24] and the availability of large-scale

video benchmark datasets [31, 44], deep learning ap-

proaches have dominated the field of video action recogni-

tion by using 2D-CNNs [68, 38, 8] or 3D-CNNs [2, 22, 10]

or both [40, 57]. The 2D CNNs perform temporal model-

ing independent of 2D spatial convolutions while their 3D

counterparts learn space and time information jointly by 3D

convolution. These methods have achieved state-of-the-art

performance on multiple large-scale benchmarks such as

Kinetics [31] and Something-Something [20].

Although CNN-based approaches have made impressive

progress in action recognition, there are several fundamen-

tal questions that still largely remain unanswered in the

field. For example, what contributes to improved spatio-
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Figure 1: Recent progress of action recognition on Kinetics-

400 (only models based on InceptionV1 and ResNet50 are in-

cluded). Models marked with ∗ are re-trained and evaluated (see

Section 6.2) while others are from the existing literature. The size

of a circle indicates the 1-clip FLOPs of a model. With temporal

pooling turned off, I3D performs on par with the state-of-the-art

approaches. Best viewed in color.

temporal representations of these recent approaches? Do

these approaches enable more effective temporal modeling,

the crux of the matter for action recognition? Furthermore,

there seems no clear winner between 2D-CNN and 3D-

CNN approaches in terms of accuracy. 3D models report

better performance than 2D models on Kinetics while the

latter are superior on Something-Something. How differ-

ently do these two types of models behave with regard to

spatial-temporal modeling of video data?

We argue that the difficulty of understanding the recent

progress on action recognition is mainly due to the lack

of fairness in performance evaluation related to datasets,

backbones and experimental practices. In contrast to im-

age recognition where ImageNet [4] has served as a gold-

standard benchmark for evaluation, there are at least 4∼5

popular action datasets widely used for evaluation (see Fig-

ure 2). While Kinetics-400 [31] has recently emerged as

a primary benchmark for action recognition, it is known

to be strongly biased towards spatial modeling, thus being
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inappropriate for validating a model’s capability of spatio-

temporal modeling. In addition, there seems to be a ten-

dency in current research to overly focus on pursuing state-

of-the-art (SOTA) performance, but overlooking other im-

portant factors such as the backbone networks and the num-

ber of input frames. For instance, I3D [2] based on 3D-

InceptionV1 has become a “gatekeeper” baseline to com-

pare with for any recently proposed approaches of action

recognition. However such comparisons are often unfair

against stronger backbones such as ResNet50 [24]. As

shown in Figure 1, I3D, with ResNet50 as backbone, per-

forms comparably with or outperforms many recent meth-

ods that are claimed to be better. As a result, such evaluation

are barely informative w.r.t whether the improved results of

an approach come from a better backbone or the algorithm

itself. As discussed in Section 3, performance evaluation

in action recognition may be further confounded by many

other issues such as variations in training and evaluation

protocols, model inputs and pretrained models.

In light of the great need for better understanding of

CNN-based action recognition models, in this paper we pro-

vide a common ground for comparative analysis of 2D-

CNN and 3D-CNN models without any bells and whis-

tles. We conduct comprehensive experiments and analysis

to compare several representative 2D-CNN and 3D-CNN

methods on three large-scale benchmark datasets. Our main

goal is to deliver deep understanding of the important ques-

tions brought up above, especially, a) the current progress

of action recognition and b) the differences between 2D-

CNN and 3D-CNN methods w.r.t spatial-temporal represen-

tations of video data. Our systematic analysis provides in-

sights to researchers to understand spatio-temporal effects

of different action models across backbone and architecture

and will broadly simulate discussions in the community re-

garding a very important but largely neglected issue of fair

comparison in video action recognition.

The main contributions of our work as follows:

• A unified framework for Action Recognition. We

present a unified framework for 2D-CNN and 3D-

CNN approaches and implement several representative

methods for comparative analysis on three standard ac-

tion recognition benchmark datasets.

• Spatio-Temporal Analysis. We systematically com-

pare 2D-CNN and 3D-CNN models to better under-

stand the differences and spatio-temporal behavior of

these models. Our analysis leads to some interest-

ing findings as follows: a) Temporal pooling tends to

suppress the efficacy of temporal modeling in an ac-

tion model, but surprisingly provides a significant per-

formance boost to TSN [68]; b) By removing non-

structural differences between 2D-CNN and 3D-CNN

models, they behave similarly in terms of spatio-

temporal representation abilities and transferability.

• Benchmarking of SOTA Approaches. We thor-

oughly benchmarked several SOTA approaches and

compared them with I3D. Our analysis reveals that

I3D still stays on par with SOTA approaches in terms

of accuracy (Figure 1) and the recent advance in ac-

tion recognition is mostly on the efficiency side, not

on accuracy. Our analysis also suggests that the in-

put sampling strategy taken by a model (i.e. uniform

or dense sampling) should be considered for fairness

when comparing two models (Section 6.2).

2. Related Work

Video understanding has made rapid progress with the

introduction of a number of large-scale video datasets such

as Kinetics [31], Sports1M [30], Moments-In-Time [44],

and YouTube-8M [1]. A number of models introduced re-

cently have emphasized the need to efficiently model spatio-

temporal information for video action recognition.

Most successful deep architectures for action recogni-

tion are usually based on two-stream model [54], process-

ing RGB frames and optical-flow in two separate CNNs

with a late fusion in upper layers [30]. Two-stream ap-

proaches have been used in different action recognition

methods [3, 6, 19, 75, 56, 63, 70, 66, 11, 12]. Another

straightforward but popular approach is the use of 2D-CNN

to extract frame-level features and then model the tempo-

ral causality. For example, TSN [68] propose consensus

module to aggregate features; on the other hand, TRN [77]

use bag of features to model relationship between frames.

While TSM [38] shifts part of the channels along tempo-

ral dimension, thereby allowing for information to be ex-

changed among neighboring frames, TAM [8] is based on

depthwise 1 × 1 convolutions to capture temporal depen-

dencies across frames effectively. Different methods for

temporal aggregation of feature descriptors have also been

proposed [13, 35, 73, 66, 48, 16, 15]. More complex ap-

proaches have also been investigated for capturing long-

range dependencies, e.g. non-local neural networks [69].

Another approach is to use 3D-CNN, which extends the

success of 2D models in image recognition [28] to recog-

nize actions in videos. For example, C3D [60] learns 3D

ConvNets which outperforms 2D CNNs through the use

of large-scale video datasets. Many variants of 3D-CNNs

are introduced for learning spatio-temporal features such as

I3D [2] and ResNet3D [22]. 3D CNN features were also

demonstrated to generalize well to other vision tasks, such

as action detection [52], video captioning [45], action lo-

calization [47], and video summarization [46]. Nonethe-

less, as 3D convolution leads high computational load, few

works aim to reduce the complexity by decomposing the

3D convolution into 2D spatial convolution and 1D tempo-

ral convolution, e.g., P3D [50], S3D [72], R(2+1)D [62], or

incorporating group convolution [61]; or using a combina-
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tion of 2D-CNN and 3D-CNN [79]. Furthermore, SlowFast

network employs two pathways to capture short-term and

long-term temporal information [10] by processing a video

at both slow and fast frame rates. Beyond that, Timecep-

tion applies the Inception concept in the temporal domain

for capturing long-range temporal dependencies [26]. Fe-

ichtenhofer [9] finds efficient networks by extending 2D ar-

chitectures through a stepwise expansion approach over the

key variables such as temporal duration, frame rate, spatial

resolution, network width, etc. Leveraging weak supervi-

sion [14, 67, 33] or distillation [18] is another recent trend

in action recognition. Few works have assessed the im-

portance of temporal information in a video, e.g., Sigurds-

son et.al analyzed performance per action category based

on different levels of object complexity, verb complexity,

and motion [53]. They state that to differentiate temporally

similar but semantically different videos, its important for

models to develop temporal understanding. Huang et. al

analyzed the effect of motion via an ablation analysis on

C3D model [25]. Nonetheless, these works only study a

limited set of backbone and temporal modeling methods.

3. Challenges of Evaluating Action Models

The first challenge in evaluating action models stem

from the fact that unlike ImageNet for image classification,

action recognition does not have one dataset widely used

for every paper. As shown in Figure 2, the most popular

Kinetics-400 is used by around 60% papers1. On the other

hand, Something-Something (V1 and V2), which has very

different temporal characteristic from Kinetics-400, is also

used by about 50% papers. Furthermore, two successors

of the Kinetics-400 datasets, Kinetics-600 and Kinetics-700

are released recently. It is difficult to evaluate different

methods if they do not test on common datasets. We fur-

ther check those 37 papers how do they compare the perfor-

mance in their paper [60, 68, 2, 17, 50, 78, 58, 77, 5, 76,

22, 65, 34, 79, 72, 62, 69, 23, 42, 29, 49, 38, 8, 36, 26, 41,

10, 61, 71, 39, 57, 51, 74, 7, 64, 9, 37]. We evaluate those

papers from four aspects, including backbone, input length,

training protocol and evaluation protocol. Figure 2 shows

the summary of how papers compare to others differently.

Backbone. From our analysis, we observe that about 70%

papers compare results with different backbones (e.g., most

of the papers use ResNet50 as backbone but compare with

I3D [2] which uses InceptionV1 as the backbone). Com-

paring action models with different types of backbones can

often lead to incorrect conclusions, also making harder to

evaluate the advantage of the proposed temporal modeling.

For example, using stronger backbone for I3D, it improves

the results by 4.0% on Kinetics-400 (see Figure 7).

1Kinetics-400 dataset is available after 2017, the used rate increases to

69% if only the papers published after 2017 are counted.

Figure 2: Statistics collected from 37 action recognition papers

from 2015 to 2020. Left: Used datasets. Right: Ratio of papers

used different settings to compare with others.

Input Length. Figure 2 shows that about 80% of the papers

use different number of frames for comparison. It is because

each method could prefer different frame numbers; how-

ever, comparing under different number of frames could fa-

vor either the proposed method or the reference method.

Training Protocol. Due to recent advances in technology,

It is often easier to train action recognition models for a

very long time (epochs) which was not possible a few years

ago, indicating that old methods might not be well-trained.

Furthermore, many works reuse the ImageNet weights to

initialize the models while others are not. It raises the con-

cern that does the gain comes from different training pro-

tocol. Based on our analysis, about 60% of the papers use

different protocols to train action recognition models.

Evaluation Protocol. As the models are trained under dif-

ferent sampling strategies and input lengths, a model is

used to take more than one clip from a video for predic-

tion. Hence, different evaluation protocol could lead un-

clear comparison. About 60% papers evaluated models dif-

ferently when comparing to others.

4. 2D-CNN and 3D-CNN Approaches

To address the above mentioned issue for fair com-

parison, we analyze several popular 2D-CNN and 3D-

CNN approaches for action recognition, including I3D [2],

ResNet3D [21], S3D [72], R(2+1)D [62], TSN [68] and

TAM [8]. These approaches not only yield competitive re-

sults on popular large-scale datasets, but also widely serve

as fundamental building blocks for many other successive

approaches such as SlowFast [10] and CSN [61].

Among these approaches, I3D and ResNet3D are pure

3D-CNN models, differing only in backbones. S3D and

R(2+1)D factorize a 3D convolutional filter into a 2D spa-

tial filter followed by a 1D temporal filter. In such a sense,

they are architecturally similar to 2D models. However, we

categorize them into 3D-CNN models as their implementa-

tions are based on 3D convolutions. While TSN rely only

on 2D convolution without temporal modeling, TAM, an-

other 2D-CNN approach, adds efficient depthwise temporal

aggregation on top of TSN, which shows strong results on

Something-Something [8]. Finally, since SlowFast is ar-

guably one of the best approaches on Kinetics, we use it
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Approach
Model Input

Backbone
Temporal Spatial Temporal Initial

Input Sampling Pooling Module Aggregation Weights

I3D [2]

4D Dense

InceptionV1

Y

3D Conv. 3D Conv. Inflation
R3D [21] ResNet

S3D [72] InceptionV1
2D Conv. 1D Conv.

Inflation

R(2+1)D [62] ResNet Scratch

TAM [8]
3D Uniform

bLResNet
N 2D Conv.

1D dw Conv. ImageNet

TSN [68] InceptionV1 None ImageNet

Table 1: 2D-CNN and 3D-CNN approaches in our study.

as a reference to SOTA results. Apart from using different

types of convolutional kernels, 2D and 3D models differ in

a number of other aspects, including model input, temporal

pooling, and temporal aggregation, as shown in Table 1.

The differences between 2D-CNN and 3D-CNN ap-

proaches make it a challenge to compare these approaches.

To remove the bells and whistles and ensure a fair compar-

ison, we show in Figure 3 that 2D and 3D models can be

represented by a general framework. Under such a frame-

work, an action recognition model is viewed as a sequence

of stacked spatio-temporal modules with temporal pooling

optionally applied. Thus what differentiates a model from

another boils down to only its spatio-temporal module. We

re-implemented all the approaches used in our comparison

under this framework, which allows us to test an approach

flexibly using different configurations such as backbone,

temporal pooling and temporal aggregation. For example,

in S3D-ResNet (i.e., R(2+1)D), we do not expand the chan-

nel dimension between spatial and temporal convolution to

keep it align to S3D [72]. More details on the models and

implementations can be found in the Supplemental.

5. Datasets, Training, Evaluation Protocols

To ensure fair comparison and facilitate reproduciblity,

we train all the models using the same data preprocessing,

training protocol, and evaluation protocol. Below we pro-

vide a brief description and refer the reader to the Supple-

mental for more details including the source codes.

Datasets. We choose Something-Something V2 (SSV2),

Kinetics-400 (Kinetics) and Moments-in-time (MiT) for our

experiments. We also create a mini version of each dataset:

Mini-SSV2 and Mini-Kinetics account for half of their full

datasets by randomly selecting half of the categories of

SSV2 and Kinetics. Mini-MiT is provided on the official

MiT website, consisting of 1/8 of videos in the full dataset.

Training. Following [8], we progressively train the models

using different input frames. Let Ki ∈ [8, 16, 32, 64] where

i = 1 . . . 4. We first train a starter model using 8 frames.

The model is either inflated with (e.g., I3D) or initialized

from (e.g., TAM) its corresponding ImageNet pre-trained

model. We then finetune the model using more frames Ki

from the model using Ki−1 frames.

Evaluation. There are two major evaluation metrics for

video action recognition: clip-level accuracy and video-

level accuracy. Clip-level accuracy is prediction by feeding
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Figure 3: A general framework for 2D-CNN and 3D-CNN ap-

proaches of video action recognition. A video action recognition

model can be viewed as a sequence of stacked spatio-temporal

modules. The input frames are formed as a 3D tensor for 2D mod-

els and 4D tensor for 3D models.

a single clip into the network and video-level accuracy is

the combined predictions of multiple clips; thus, the video-

level accuracy is usually higher than the clip-level accuracy.

By default, we report the clip-level accuracy.

6. Experimental Results and Analysis

In this section, we provide a detailed analysis on the per-

formance of 2D and 3D models (Section 6.1), SOTA results

and transferability (Section 6.2) and their spatio-temporal

effects (Section 6.3). For clarity, from now onwards, we

refer to each of I3D, S3D and TAM as one type of spatio-

temporal module illustrated in Figure 3. We name a specific

model by module-backbone[-tp] where tp indicates that

temporal pooling is applied. For example, I3D-ResNet18-

tp is a 3D model based on ResNet18 with temporal pooling.

To verify the correctness of our implementation, we trained

a I3D-InceptionV1 as the original paper [2], and find that

our model achieves 73.1% top-1 accuracy, which is 2% bet-

ter than the result reported in the original paper. It clearly

justifies the results conducted by our setup is reliable.

6.1. Performance Analysis on Mini Datasets

For each spatio-temporal module, we experiment with 3

backbones (InceptionV1, ResNet18 and ResNet50) and two

scenarios (w/ and w/o temporal pooling) on three datasets.

In each case, 8, 16, 32 and 64 frames are considered as in-

put. This results in a total of 4 × 3 × 2 × 3 × 4 = 288
models to train, many of which haven’t been explored in

the original papers. Since temporal pooling is detrimental to

model performance (see Figure 6), our analysis in this work

mainly focus on models w/o temporal pooling unless other-

wise specified. Figure 4 reports the clip-level top-1 accura-

cies w/o temporal pooling for all models. We refer readers

to the Supplemental for the results w/ temporal pooling.

Backbone Network and Input Length. As seen from

Figure 4, regardless of the spatiotemporal modules used,

there is a general tendency that ResNet50 > InceptionV1

> ResNet18 w.r.t their overall spatiotemporal representa-

tion capability. Longer input frames tend to produce bet-

ter results; however, the performance improvement does not
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Figure 4: Top-1 accuracy of all the compared models without

temporal pooling on three mini-datasets. The video architectures

are separated by color while the backbones by symbol.

(a) I3D-ResNet18 (b) TAM-ResNet18

Figure 5: Performance comparison between Uniform Sam-

pling (U) and Dense Sampling (D). (a) I3D-ResNet18 (b) TAM-

ResNet18. Both models do not include temporal pooling. Solid

bars are the clip-level accuracy while transparent bars indicates

the improvement by the video-level (multi-clip) evaluation.

seem significant after 32 frames on all three datasets.

Input Sampling. Two sampling strategies are widely

adopted in action recognition to create model inputs. The

first one, Uniform sampling, which is often seen in 2D mod-

els, divides a video into multiple equal-length segments and

then randomly selects one frame from each segment. The

other method used by 3D models, dense sampling, instead

directly takes a set of continuous frames as the input. It

is not clear, though, why these two types of models pre-

fer different inputs. Figure 5 shows that uniform sampling

(blue) yields better clip-level accuracies than dense sam-

pling (orange) under all circumstances. This is not surpris-

ing as dense sampling only uses part of the test video in the

clip-level evaluation. Even though the video-level evalua-

tion boosts the performance of dense sampling by 6%∼15%

on Mini-Kinetics and 5%∼20% on Mini-SSV2, its computa-

tional needs are increased proportionally, e.g., 10 clips used

in Figure 5 to get video-level accuracy, increases the FLOPs

by ten folds. Such costs make it inappropriate in practice.

Thus, all our analysis is based on uniform sampling and

clip-level evaluation unless otherwise stated. We will fur-

ther analyze the effect of input sampling strategies in Sec-

tion 6.2 based on the results from full datasets.

Temporal Pooling. Temporal pooling is usually applied

to 3D models to reduce computational complexity. It is

known that temporal pooling negatively affects model per-

Figure 6: Accuracy gain of the models with temporal pooling

w.r.t. the models without temporal pooling. Temporal pooling

significantly hurts the performance of all models except TSNs.

formance. Such effects, however, have not been well un-

derstood in the literature. Figure 6 shows the performance

gaps between models w/ and w/o temporal pooling across

different backbones and architectures. As can be seen, tem-

poral pooling in general counters the effectiveness of tem-

poral modeling and hurts the performance of action mod-

els, just like what spatial pooling does to object recognition

and detection. For this reason, more recent 3D-CNN ap-

proaches such as SlowFast [10] and X3D [9] drop temporal

pooing and rely on other techniques for reducing compu-

tation. Similarly, one important reason for the prior find-

ing in [27] that 3D models are inferior to C2D (pure spatial

models) on Kinetics and MiT is because their comparisons

neglect the negative impact of temporal pooling on 3D mod-

els. As shown in Section 6.2, I3D w/o temporal pooling is

competitively comparable with the SOTA approaches.

Interestingly, TSN is the only architecture benefiting

from temporal pooling, demonstrating a large boost in per-

formance on Mini-SSV2 (>20%) and Mini-MiT (3%∼5%).

Also, as the number of input frames increases, the improve-

ment is more pronounced. On Mini-Kinetics, even though

TSN is also negatively affected by temporal pooling , it suf-

fers the least and starts seeing positive gains after 32 frames.

To further confirm that, we trained a 32-frame TSN model

with temporal pooling on Kinetics. This model (TSN-R50∗
in Figure 1) achieves a top-1 accuracy of 74.9%, 5.1%

higher than the version w/o temporal pooling and only about

2.0% shy from the SOTA results. We interpret temporal

pooling as a simple form of exchanging information across

frames, which empowers TSN with the ability of temporal

modeling. The consistent improvements by temporal pool-

ing across all the datasets provide strong evidence that tem-

poral modeling is necessary for video action recognition,

even for datasets like Kinetics where temporal information

has been shown less crucial for recognition.

6.2. Benchmarking of SOTA Approaches

Results on Full Datasets. I3D based on InceptionV1 has

been used as an important baseline by many papers to show-
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Figure 7: Performance of I3D models by changing the back-

bone (I3D-R50-tp), removing temporal pooling (I3D-R50-tp) and

adding squeeze-excitation modules (I3D-SE-R50) on Kinetics and

SSV2. Red numbers indicate performance changes. All models

are trained with 32 frames and evaluated using 3 × 10 clips on

Kinetics, and 3 × 2 clips on SSV2, respectively.

case their progress. However, the results of I3D on the mini

datasets, especially the unexpectedly significant impact of

temporal pooling, seem to suggest that the spatio-temporal

modeling capability of I3D has been underestimated by the

field. To more precisely understand the recent progress

in action recognition, we further conduct a more rigorous

benchmarking effort including I3D, TAM and SlowFast on

the full datasets. I3D was the prior SOTA method while

SlowFast [10] and TAM [8], both of which have official

codes released, are competitively comparable with existing

SOTA methods. To ensure apple-to-apple comparison, we

follow the same training settings of SlowFast to train all the

models using 32 frames as input. During evaluation, we use

3× 10 clips for Kinetics and MiT , and 3× 2 clips for SSV2.

We first augment original I3D by a stronger backbone

ResNet50 and turning off temporal pooling. As shown in

Figure 7, ResNet50 alone pushes up the accuracy of I3D by

4.0% on Kinetics, and removing temporal pooling adds an-

other 1.1% performance gain, putting I3D on par with Slow-

Fast in terms of top-1 accuracy. Further inserting Squeeze-

Excitation modules into I3D makes it surpass SlowFast by

0.8%. On SSV2, a stronger backbone provides I3D little

benefit in accuracy, but removing temporal pooling boosts

the performance substantially by 6%, making I3D compa-

rable to TAM. Table 2 provides more detailed results in

this experiment. In summary, I3D-ResNet50 demonstrates

impressive results, staying on par with state-of-the-art ap-

proaches in accuracy on all three datasets. The fact that

I3D remains very strong across multiple large-scale datasets

suggests that the recent progress of action recognition in

terms of accuracy is largely attributed to the use of more

powerful backbone networks, but not the improved spatio-

temporal modeling as expected. Nevertheless, we do ob-

serve that recent approaches such as X3D [9] have made

a large leap ahead in efficiency (FLOPs) compared to I3D.

Moreover, SlowFast performs worse than I3D and TAM on

SSV2 on the Something-Something dataset. We speculate

that this could be related to: (I) that the slow pathway only

uses temporal convolutions after stage4 of ResNet, which

Model
Pretrain

FLOPs
Dataset

dataset Kinetics SSV2 MiT

I3D-ResNet50 ImageNet 335.3G 76.61 62.84 31.21

I3D-ResNet50 None 335.3G 76.54 − −
TAM-ResNet50 ImageNet 171.5G 76.18 63.83 30.80

SlowFast-ResNet50-8×8† [10] None∗ 65.7G 76.40 60.10 31.20

I3D-ResNet101 ImageNet 654.7G 77.80 64.29 −
TAM-ResNet101 ImageNet 327.1G 77.61 65.32 −

SlowFast-ResNet50-8×8‡ [10] None∗ 65.7G 77.00 − −
SlowFast-ResNet50-16×8‡ [10] Kinetics 124.5G − 63.0 −

CorrNet-ResNet50‡ [64] None∗ 115G 77.20 − −
SlowFast-ResNet101-8×8† [10] None 125.9G 76.72 − −
SlowFast-ResNet101-8×8‡ [10] None 125.9G 78.00 − −
SlowFast-ResNet101-16×8‡ [10] None 213G 78.90 − −

CSN-ResNet101‡ [61] None∗ 83G 76.70 − −
CorrNet-ResNet101‡ [64] None∗ 224G 79.20 − −

X3D-L‡ [9] None∗ 24.8G 77.50 − −
X3D-XL‡ [9] None∗ 48.4G 79.10 − −

AssembleNet-501 [51] − − − − 31.41

GST-ResNet101 [36] ImageNet − − − 32.40

∗: Those networks cannot be initialized from ImageNet due to its structure.

†: Retrained by ourselves. ‡: reported by the authors of the paper. 1: Use RGB + Flow.

Table 2: Performance of SOTA models.

Model Pretrain U-Sampling D-Sampling

I3D-ResNet50 ImageNet 76.07 76.61

TAM-ResNet50 ImageNet 76.45 76.18

SlowFast-ResNet50-8×8 − 71.85 76.40

Table 3: Model performance on Kinetics based on uniform and

dense sampling. Uniform sampling trained models are evaluated

under 3 256×256 spatial crops and 2 clips.

weakens its temporal modeling capability; and (II) that the

two-stream architecture is less effective in capturing tempo-

ral dependencies in such a highly temporal dataset.

Uniform Sampling vs Dense Sampling. We revisit the ef-

fect of input sampling on model performance and retrain all

three approaches using uniform sampling on Kinetics. As

shown in Table 3, the small difference between uniform and

dense sampling results indicates that both I3D and TAM are

flexible w.r.t model input. In contrast, uniform sampling is

not as friendly as dense sampling to SlowFast, producing an

accuracy ∼5% lower than dense sampling. We conjecture

that this has to do with dual-path architecture of SlowFast.

Such an architecture is primarily designed for efficiency and

possibly less effective in learning spatial-temporal represen-

tations from sparsely sampled frames (i.e. 8-frame uniform

sampling in this case). This also explains why SlowFast,

when trained with uniform sampling, under performs by 2%

∼ 3% on SSV2 in Table 2 in contrast to I3D and TAM.

Furthermore, Figure 8 (Left) shows model accuracy v.s.

number of clips used for evaluation in uniform and dense

sampling, respectively. As can be observed, the model per-

formance with dense sampling is saturated quickly after

4-5 clips for both I3D and SlowFast. This suggests that

the common practice in the literature of using 10 clips for

dense sampling is often not necessary. As opposed to dense

sampling, uniform sampling benefits slightly (i.e., for Slow-

Fast) or little from multiple clips. This raises another pitfall
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Figure 8: Model performance tested using 3 256×256 spatial

crops and different number of clips. ’U’: uniform sampling; ’D’:

dense sampling. Best viewed in color.

Target dataset

Model UCF101 HMDB51 Jester Mini-SSV2

I3D-ResNet50 97.12 72.32 96.39 65.86

TAM-ResNet50 95.05 71.67 96.35 66.91

SlowFast-ResNet50-8×8 95.67 74.61 96.75 63.93

Table 4: Top-1 Acc. of Transferability study from Kinetics.

that is largely overlooked by the community when assess-

ing model efficiency, i.e., the impact of input sampling. As

shown in Figure 8 (Right), when putting I3D and SlowFast

in a plot of accuracy v.s. FLOPs for comparison, the ad-

vantage of SlowFast over I3D is better and more fairly rep-

resented, i.e., when considering uniform sampling for I3D,

SlowFast is only slightly more accurate but at the same effi-

ciency in FLOPs. This clearly suggests that input sampling

strategy of a model (i.e. uniform or dense) should factor in

evaluation for fairness when comparing it to another model.

Model Transferability. We further compare the transfer-

ability of the three models trained above on four small-

scale datasets including UCF101 [55], HMDB51 [32],

Jester [43], and Mini-SSV2. We follow the same training

setting in Section 5 and finetune 45 epochs with cosine an-

nealing learning rate schedule starting with 0.01; further-

more, since those are 32-frame models, we trained the mod-

els with a batch size of 48 with synchronized batch normal-

ization. Table 4 shows the results, indicating that all the

three models have very similar performance (difference of

less than 2%) on the downstream tasks. In particular, I3D

performs on par with the SOTA approaches like TAM and

SlowFast in transfer learning (e.g., I3D obtains the best ac-

curacy of 97.12% on UCF101), which once again corrobo-

rates the fact that the improved spatio-temporal modeling is

largely due the use of stronger backbones.

6.3. Analysis of Spatio­temporal Effects

It’s generally believed that temporal modeling is the

core for action recognition and state-of-the-art approaches

can capture better temporal information. However, it has

also been demonstrated on datasets such as Kinetics and

Moments-in-Time (MiT) [44] that approaches purely based

on spatial modeling [68, 44] can achieve very competi-

tive results compared to more sophisticated spatio-temporal

models. More recently, a paper [27] also shows that 2D

models outperform their 3D counterparts on the MiT bench-

Dataset Frames
InceptionV1 ResNet50

None I3D Conv. TAM None I3D Conv. TAM TSM NLN

Mini-SSV2
f=8 33.1 56.4 58.2 59.7 33.9 62.6 61.6 65.4 64.1 53.0

f=16 34.7 61.8 63.7 63.9 35.3 66.2 65.7 68.6 67.4 55.0

Mini-Kinetics
f=8 70.4 68.1 68.3 68.8 72.1 73.3 71.5 74.1 74.1 73.7

f=16 70.5 70.9 70.7 70.0 72.5 75.5 73.4 76.4 75.6 74.5

Table 5: Performance of different temporal aggregation strategies

w/o temporal pooling. FLOPs and parameters of different models

can be found in the supplementary material.

mark. These findings seem to imply that more complex tem-

poral modeling is not necessary for “static” datasets such as

Kinetics and MiT . We believe that lack of fairness in per-

formance evaluation leads to confusion on understanding

significance of temporal modeling for action recognition.

Temporal Aggregation. The essence of temporal model-

ing is how it aggregates temporal information. The 2D ar-

chitecture offers great flexibility in temporal modeling. For

example, TSM [38] and TAM [8] can be easily inserted into

a CNN for learning spatio-temporal features. Here we ana-

lyze several basic temporal aggregations on top of the 2D ar-

chitecture including 1D convolution (Conv, i.e., S3D [72]),

1D depthwise convolution (dw Conv, i.e., TAM), and TSM.

We also consider the non-local network module (NLN) [69]

for its ability to capture long-range temporal video depen-

dencies add 3 NLN modules and 2 NLN modules at stage 2

and stage 3 of TSN-ResNet50, respectively as in [69].

Table 5 shows results of using different temporal aggre-

gations as well as those of TSN (i.e., w/o any temporal ag-

gregation) on InceptionV1 and ResNet50. The results sug-

gest that effective temporal modeling is required for achiev-

ing competitive results, even on datasets such as Kinetics

where temporal information is thought as non-essential for

recognition. On the other hand, TAM and TSM, while be-

ing simple and efficient, demonstrate better performance

than the I3D, 1D regular convolution and the NLN mod-

ule, which have more parameters and FLOPs. We argue

it is because the frames sampled under uniform sampling

are sparse and it is not suitable to model temporal informa-

tion in 3D convolution. While TAM and TSM use depth-

wise convolution that is more effective to model temporal

information since it only consider the single feature map at

different frames once instead of combining all channels of

frames once. We also find the same pattern on full Kinetics

in Table 3. Interestingly, the NLN module does not per-

form as expected on Mini-SSV2. This is possibly because

NLN models temporal dependencies through matching spa-

tial features between frames, which are weak in Mini-SSV2.

Locations of Temporal Modules. In [72] and [62], some

preliminary analysis w.r.t the effect of the locations of tem-

poral modules on 3D models was performed on Kinetics-

400. In this experiment, we conduct a similar experiment on

both Mini-Kinetics and Mini-SSV2 to understand if this is so

for 2D models. We modified TAM-ResNet18 in a number
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Top-1 Acc.

# of TAMs locations Mini-SSV2 Mini-Kinetics

8 All 59.1 69.08

4 Top-half 59.7 69.21

4 Bottom-half 56.5 69.27

4 Uniform-half 59.4 69.14

Top and bottom mean the residual blocks closer to output and input respectively.

Table 6: Performance comparison by using different numbers and

locations of TAMs in ResNet18 (w/o temporal pooling).

of different ways by keeping: a) half of the temporal mod-

ules only in the bottom network layers (Bottom-Half ); b)

half of the temporal modules only in the top network lay-

ers (Top-Half ); c) every other temporal module (Uniform-

Half ); and d) all the temporal modules (All). As observed

in Table 6, only half of the temporal modules (Top-Half )

is needed to achieve the best accuracy on Mini-SSV2 while

the accuracy on Mini-Kinetics is not sensitive to the num-

ber and locations of temporal modules. It is thus interesting

to explore if this insightful observation can lead to an effi-

cient but effective video architecture by mixing 2D and 3D

modelings, similar to the idea of ECO in [79].

Disentangling Spatial and Temporal Effects. So far we

have only looked at the overall spatio-temporal effects of a

model (i.e., top-1 accuracy) in our analysis. Here we fur-

ther disentangle the spatial and temporal contributions of a

model to understand its ability of spatio-temporal model-

ing. Doing so provides great insights into which informa-

tion, spatial or temporal, is more essential to recognition.

We treat TSN w/o temporal pooling as the baseline spa-

tial model as it does not model temporal information. TSN

can evolve into different types of spatio-temporal models

by adding temporal modules on top of it. With this, we

compute the spatial and temporal contributions of a model

as follows. Let Sb
a(k) be the accuracy of a model of some

architecture a that is based on a backbone b and takes k
frames as input. For instance, SResNet50

I3D (16) is the accu-

racy of a 16-frame I3D-ResNet50 model. Then the spatial

contribution Φb
a and temporal improvement of a model Ψb

a

(k is omitted here for clarity) are given by,

Φb
a =Sb

TSN/max (Sb
a, S

b
TSN )

Ψb
a =(Sb

a − Sb
TSN )/(100− Sb

TSN ).
(1)

Note that Φb
a is between 0 and 1; Ψb

a < 0 indicates that

temporal modeling is harmful to model performance. We

further combine Φb
a and Ψb

a across all models with different

backbone networks to obtain average spatial and temporal

contributions of a network architecture, as shown below.

Φ̄a =
1

ZΦ

∑

b∈B

∑

k∈K

Φb
a(k), Ψ̄a =

1

ZΨ

∑

b∈B

∑

k∈K

Ψb
a(k),

(2)

where B = {InceptionV1, ResNet18, ResNet50}, K = {8,

16, 32, 64}. ZΦ and ZΨ are the normalization factors.

Datasets Metrics I3D S3D TAM

Φ̄a 0.53 0.53 0.52

Mini-SSV2 Ψ̄ta
a 0.46 0.45 0.47

Ψ̄ta+tp
a 0.38 0.38 0.37

Φ̄a 0.97 0.97 0.96

Mini-Kinetics Ψ̄ta
a 0.06 0.08 0.09

Ψ̄ta+tp
a -0.08 -0.10 -0.12

Φ̄a 0.89 0.91 0.87

Mini-MiT Ψ̄ta
a 0.04 0.03 0.04

Ψ̄ta+tp
a 0.02 0.02 0.04

Ψ̄
ta
a : the improvement from temporal aggregation only.

Ψ̄
ta+tp
a : the improvement from combining temporal

Table 7: Effects of spatio-temporal modeling.

Table 7 shows the results of Φ̄a and Ψ̄a for three spatio-

temporal representations. All three representations behave

similarly, namely their spatial modeling contributes slightly

more than temporal modeling on Mini-SSV2, much higher

on Mini-MiT , and dominantly on Mini-Kinetics. This con-

vincingly explains why a model lack of temporal modeling

like TSN can perform well on Mini-Kinetics, but fail badly

on Mini-SSV2. Note that similar observations have been

made in the literature, but not in a quantitative way like

ours. Furthermore, while all the approaches indicate the

utmost importance of spatial modeling on mini-Kinetics,

the results of Ψ̄ta
a suggest that temporal modeling is more

effective on Mini-Kinetics than on Mini-MiT for both 2D

and 3D approaches. We also observe that temporal pool-

ing deters the effectiveness of temporal modeling on all the

approach from the results of Ψ̄ta+tp
a , which are constantly

lower than Ψ̄ta
a . Such damage is especially substantial on

Mini-Kinetics, indicated by the negative values of Ψ̄ta+tp
a .

7. Conclusion

In this paper, we conducted a comprehensive compara-

tive analysis of several representative CNN-based video ac-

tion recognition approaches with different backbones and

temporal aggregations. Our extensive analysis enables bet-

ter understanding of the differences and spatio-temporal ef-

fects of 2D-CNN and 3D-CNN approaches. It also provides

significant insights with regard to the efficacy of spatio-

temporal representations for action recognition.
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