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Abstract: Tuberculosis (TB) is a fatal disease in developing countries, with the infection spreading
through direct contact or the air. Despite its seriousness, the early detection of tuberculosis by means
of reliable techniques can save the patients’ lives. A chest X-ray is a recommended screening technique
for locating pulmonary abnormalities. However, analyzing the X-ray images to detect abnormalities
requires highly experienced radiologists. Therefore, artificial intelligence techniques come into play
to help radiologists to perform an accurate diagnosis at the early stages of TB disease. Hence, this
study focuses on applying two AI techniques, CNN and ANN. Furthermore, this study proposes two
different approaches with two systems each to diagnose tuberculosis from two datasets. The first
approach hybridizes two CNN models, which are Res-Net-50 and GoogLeNet techniques. Prior to
the classification stage, the approach applies the principal component analysis (PCA) algorithm to
reduce the features’ dimensionality, aiming to extract the deep features. Then, the SVM algorithm is
used for classifying features with high accuracy. This hybrid approach achieved superior results in
diagnosing tuberculosis based on X-ray images from both datasets. In contrast, the second approach
applies artificial neural networks (ANN) based on the fused features extracted by ResNet-50 and
GoogleNet models and combines them with the features extracted by the gray level co-occurrence
matrix (GLCM), discrete wavelet transform (DWT) and local binary pattern (LBP) algorithms. ANN
achieved superior results for the two tuberculosis datasets. When using the first dataset, the ANN,
with ResNet-50, GLCM, DWT and LBP features, achieved an accuracy of 99.2%, a sensitivity of
99.23%, a specificity of 99.41%, and an AUC of 99.78%. Meanwhile, with the second dataset, ANN,
with the features of ResNet-50, GLCM, DWT and LBP, reached an accuracy of 99.8%, a sensitivity of
99.54%, a specificity of 99.68%, and an AUC of 99.82%. Thus, the proposed methods help doctors and
radiologists to diagnose tuberculosis early and increase chances of survival.

Keywords: deep learning; ANN; tuberculosis; SVM; GLCM; DWT; LBP

1. Introduction

Tuberculosis is one of the most contagious and widespread diseases which leads
to death, according to the reports by the World Health Organization (WHO). According
to a WHO report, in 2019, nearly 11 million people were infected, and 1.5 million died
worldwide; more than 9% of infected people have HIV. The incidence of tuberculosis in
Yemen went up by 2.08% from 48.0 cases per 100,000 people in 2019 to 49.0 cases per
100,000 people in 2020 [1]. In Saudi Arabia, the estimated incidence of active TB (all forms)
is 46 per 100,000 and the incidence of smear-positive TB is 21 cases per 100,000, which gives
an annual risk of infection of 0.35% [2]. According to a WHO report, tuberculosis is the
second most common infectious disease after COVID-19, and the tenth highest cause of
death [3]. Persons with weak immunity, such as people with HIV, diabetes, tobacco users,
or malnutrition, are at higher risk.
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Tuberculosis is spread by a bacteria called Mycobacterium tuberculosis, which is trans-
mitted from person to person through the air by many methods, such as coughing, spitting,
water, and sneezing. Tuberculosis attacks the lungs, which is called pulmonary TB; and
attacks other organs such as the spine and bones, which is called extrapulmonary TB. The
infected person may have one or more of the following clinical symptoms: fever, weight
loss, cough, and night sweats. Such symptoms might be life-threatening if not diagnosed
early. Thus, the accurate and early diagnosis of tuberculosis is crucial to prevent its devel-
opment and control its spread. The accurate diagnosis of tuberculosis requires an accurate
and reliable interpretation of the test results. Therefore, WHO recommended using X-rays
to detect pulmonary malformations due to their availability, high sensitivity and low cost.
As tuberculosis often affects the lungs, and lesions appear, X-ray images show abnormal
shades of the white or gray color [4]. Diagnosis based on X-ray images requires extensive
experience, is time-consuming, and is prone to human error. Despite the lack of skilled
radiologists and limited medical resources, this recommendation was made [5,6]. As a
result, through the development of digital imaging systems, computer vision technolo-
gies, and artificial intelligence-assisted diagnosis of diseases, such challenges have been
addressed. These technologies have been evaluated for biomedical image diagnosis. In the
medical field, artificial intelligence techniques are widely used to assist radiologists and
physicians in improving their diagnosis decision for different disease types. AI techniques
have been applied with many algorithms to increase the accuracy of diagnosis. The main
idea of AI techniques is to learn from the input data in order to predict future unseen cases.
One of the most widely used AI techniques is machine learning, which relies on extracting
the influential features from the medical images to produce efficient and accurate predic-
tions. In addition, deep learning techniques have been applied in many fields, including
biomedical imagery [7]. Neural network techniques consist of multiple hidden layers, and
each layer has units connected to each other to transmit information. Meanwhile, deep
learning techniques consist of many layers with millions of neurons connected by millions
of connections [8]. Deep learning techniques are distinguished by their superior ability
to diagnose huge datasets and extract deep features with high accuracy. Although many
AI-based approaches have been proposed for the diagnosis of tuberculosis, reaching the
required accuracy is still the goal of researchers. Hence, this paper aims at proposing an
accurate and high-level approach to the diagnosis of tuberculosis based on two datasets by
hybridizing different AI techniques. Our ultimate goal is to achieve accurate diagnostic
results by extracting features from deep learning models and combining them with features
of colour, shape and texture extracted by traditional algorithms.

The main contributions in this work are as follows:

• Improving the images of the two X-ray image datasets and increasing the contrast of
the region of interest (ROI).

• Diagnosing TB based on two datasets using a hybrid technique, namely deep feature
extraction using deep learning models and classifying them using the SVM algorithm.

• Selecting the most important features through reducing the dimensions of the high
features using the PCA algorithm.

• Diagnosing tuberculosis based on the two datasets using fused features extracted by
deep learning models and merging them with features extracted by GLCM, DWT and
LBP algorithms.

• Developing effective systems to assist physicians and radiologists in making
proper diagnoses.

The rest of this paper is organized as follows: a discussion of several relevant previous
studies is presented in Section 2. The development of the methodologies and materials
used for analyzing and interpreting the X-ray images from the two datasets is presented
in Section 3. A summary the experimental results of the proposed approaches is presented
in Section 4. A discussion and comparison of the performance of the proposed approaches
based on the two tuberculosis datasets are presented in Section 5. The conclusions of this
work are presented in Section 6.
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2. Related Work

The diagnosis of tuberculosis is one of the hot topics in the literature. Researchers
have proposed several approaches with the aim of developing systems with satisfactory
diagnosis accuracy. However, researchers and other interested parties continue to strive to
reach an appropriate accuracy that may enhance diagnosis decisions. As we mentioned
before, what distinguishes our study from other is extracting features from deep learning
models and combining them with features of texture, shape and geometry extracted by
GLCM, DWT and LBP algorithms and classifying them using hybrid techniques for the
accurate and effective diagnosis of tuberculosis. In this part, we will discuss several studies
related to the diagnosis of tuberculosis using deep learning.

For instance, Seelwan et al. [9] presented a DCNN model for diagnosing chest X-rays and
testing it on another dataset. They concluded that the deep learning models developed based
on a training dataset do not have the same performance when applied to another dataset. The
advantage of this technology is that it is developed, but the disadvantage is that it is appropri-
ate for one dataset and it cannot be applied to another dataset. Rubinder et al. [10] developed
three machine learning algorithms to predict tuberculosis based on a dataset from several
hospitals in Punjab, India. The decision tree achieved the best performance for diagnosing
tuberculosis, with an accuracy of 95%. This approach’s advantage is that it uses more than
one algorithm for classification, but the disadvantage of all of the techniques is that they
involve machine learning only. Ram et al. [11] proposed a ResNet model for diagnosing
tuberculosis based on chest X-ray images using the features extracted by the Haar and LBP
methods. The dataset was augmented by a pipeline based on intuitive features. Zhiheng
et al. [12] proposed an SVM algorithm to distinguish pulmonary tuberculosis from lung
disease. The algorithm classifies images based on their discriminatory features. The algo-
rithm’s performance indicates that bronchiectasis is useful in discovering two important
characteristics; the algorithm achieved an accuracy of 85% and a sensitivity of 88%. This
technique’s advantage is that it extracts representative features, but the disadvantage is
that it does not achieve satisfactory accuracy. Olfa et al. [13] developed improved SVM
algorithms to classify chest X-rays based on texture features extracted by the WT method. A
genetic algorithm was applied to select representative features. The selected features were
fed to the SVM algorithm for their classification. The advantage of this method is that it
applies an algorithm to select the features, but its disadvantage is that the selected features
are not tested on more than one classifier. Mustapha et al. [14] developed an EfficientNets
model to diagnose tuberculosis based on two detection datasets. Five types of EfficientNets
were implemented; efficientNet-b4 achieved the best performance, with an accuracy of
92.33%. The advantage of this approach is the application of several EfficientNets to diag-
nose tuberculosis, but its disadvantage is that did not reach high accuracy. Chirath et al. [15]
presented the deep convolutional networh based on the generative adversarial network,
which consists of three different structures to optimize, generate, segment, and classify
chest X-ray images. Data augmentation and parameter tuning based on a genetic algorithm
have been applied to improve diagnostic results; this method achieved an accuracy of 97.1%.
Khin et al. [16] proposed a hybrid algorithm for extracting features from X-ray images
of tuberculosis patients. Then, this method segmented lung regions using DeepLabv3
and performed feature extraction using six handcrafted feature extraction methods and
nine deep feature extraction models. Particle swarm optimization was applied to select
the dominant features from each model. The features were separately fed into the SVM
algorithm for their classification, which achieved an accuracy of 92.5%. The advantage of
this technique is the application of methods for dividing the estuary regions of the lung
and extracting advantages by several algorithms, but the technique’s disadvantage is that
is does not reach the required accuracy. Muhammad et al. [17] presented a new system
for diagnosing tuberculosis based on two datasets using a combination of deep features
extracted using CNN models and handcrafted features extracted using the Gabor filter. The
method achieved good results in the diagnosis of tuberculosis. Pasa et al. [18] proposed
an improved and simple CNN to solve the problem of overfitting and costly computer
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resource requirements. CAMs and salinity maps were tested to visualize X-ray images of
tuberculosis and analyzed them from the radiological perspective. The disadvantage is
that these authors did not develop a model, and instead used a pre-trained CNN model.
Seok et al. [19] proposed a CNN model for tuberculosis detection based on the comparison
of a CNN’s performance based on images (I-CNN) with that of a CNN using demographic
variables (D-CNN). Both models were trained on 1000 images of chest patients. Features
were extracted using six CNN models with demographic variables such as age, height,
weight and gender. The advantage of this approach is that they use demographic variables
along with the features extracted by deep learning models. KHAIRUL et al. [20] presented
a method for improving the X-ray images of tuberculosis by depicting local, general, and
important features. Three algorithms were applied to enhance the X-ray images and fed
images to the EfficientNet and ResNet models, which reached an accuracy of 84.8% and
89.92%, respectively. The model’s advantages include that the images are improved to
show general and local features, but the model did not achieve satisfactory accuracy in
diagnosing tuberculosis. Muhammad et al. [21] presented three CNN models to diagnose
tuberculosis based on a dataset of tuberculosis patients by extracting deep features. XG-
Boost was applied to classify the images, and the DenseNet201-XGBoost model achieved
the best results compared to the other two models. Linh et al. [22] designed a framework
based on three CNN models as classification engines—modified hybrid networks, Efficient-
Net and vision transformer—for classifying X-ray images of tuberculosis. The systems
framework achieved the best accuracy of 97.72%. Chithra et al. [23] proposed an effective
method for diagnosing tuberculosis using the FC-SVNN model. Colors were converted
from RGB to LUV space, the lesion area was segmented by adaptive thresholding, and the
most important features were extracted. The PCA algorithm was applied to reduce the
dimensions of the dataset. The method achieved good results with a rate of 93.5%. The
advantages of this method include the diversity of techniques used for color conversion,
segmentation, extraction and selection features, but it did not reach the required accuracy
for diagnosing tuberculosis.

3. Methods and Materials

This section presents the methodology and materials used to diagnose the infected
cases from two X-ray image datasets for the early detection of tuberculosis, as shown in
Figure 1. The two X-ray datasets were optimized to increase contrast and remove noise. The
current study proposed two approaches. The first approach proposed a hybrid technique
for extracting deep features through two deep learning models and classifying them by
means of the SVM algorithm. On the other hand, in the second approach, the features are
extracted using two deep learning models and combined with the features of GLCM, DWT
and LBP algorithms, and then stored in feature vectors to be fed into an ANN classifier for
high-accuracy diagnosis. It is worth noting that the features of deep learning models were
extracted with high dimensionality, and so the PCA algorithm was applied to reduce the
high dimensionality. Therefore, this figure represents all the methodologies applied in this
study to classify X-ray images for the early detection of tuberculosis.Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 25 
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3.1. Datasets

In this study, the proposed systems were evaluated based on two datasets: the first
(Shenzhen) dataset and the second dataset (TB Chest Radiography Database).

3.1.1. The First Dataset Description

This section describes the first Shenzhen dataset, which was created by the US National
Library of Medicine in collaboration with Guangdong Medical College China and Shenzhen
No.3 People’s Hospital. Chest X-rays were acquired from outpatient clinics in September
2012 with a Philips DR Digital Diagnose system. The dataset consists of 662 chest X-rays
in PNG format. The size of each chest X-ray varies a little, and the average image size
is 3000 × 3000 pixels. The dataset was divided into two classes: 326 normal X-rays and
336 tuberculosis X-rays [24]. The dataset also contains 138 X-ray images obtained from the
tuberculosis control program in Montgomery County, Maryland, USA. Abnormal X-rays
contain distorted areas that appear as blurry spots. Figure 2a depicts a set of samples from
the Shenzhen dataset.
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3.1.2. The Second Dataset Description

In this section, the second dataset consisting of X-ray data for tuberculosis created by
researchers from Qatar University, Doha and Dhaka University Bangladesh in collaboration
with a group of physicians at the Hamad Medical Corporation is described. The dataset
was collected from many sources as follows: the National Library of Medicine (NLM) of
the United States, the National Institute of Allergy and Infectious Diseases, the Republic of
Belarus and the NIAID website. The dataset consists of 4200 chest X-rays in PNG format,
with a resolution of 512 × 512 pixels for each X-ray. The dataset was divided into two
classes, 3500 normal X-rays and 700 tuberculosis X-rays [25]. Figure 2b depicts a set of
samples from the second dataset of TB X-rays.

3.2. Chest X-rays Enhancement

Preprocessing is essential in biomedical imaging tasks. For instance, X-ray images
contain artifacts and low contrast due to many reasons, such as acquiring X-ray images
from various devices, patient movement while undergoing X-ray imaging, reflections
caused by lighting, and differences in image size [26]. Such deficiencies in X-ray images
must be addressed before proceeding further. Thus, data preprocessing was applied in this
study by adjusting color scaling and the average grayscale for all chest X-rays. Then, a



Appl. Sci. 2022, 12, 7092 6 of 23

contrast limited adaptive histogram equalization (CLAHE) method was used to improve
the contrast of chest X-rays [27]. The CLAHE works on a fair distribution of light values on
chest X-rays and effectively improves the visibility of edges and local contrast. Each central
pixel is transformed by the derivative of the transformation function based on adjacent
pixels. The number of adjacent pixels is adjusted based on the image’s contrast. The image
is enhanced, and the contrast is increased when the central (target) pixel is smaller than the
neighboring pixel; the contrast of the image is reduced when the central pixel is larger than
the adjacent pixels. Thus, the resulting pixels are proportional to the neighboring pixels,
and so, improved images are obtained. Figure 3 depicts a set of enhanced images for the
two datasets. It is worth noting that the images in Figure 2 are same images in Figure 3
after the optimization process.
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3.3. Combination of Deep Learning and SVM

Applying the pre-trained CNN models requires a computer with a high specification
and intensive computation capability, as it takes a long time to train the model using the
X-ray images from the dataset. Therefore, the hybrid method will address these challenges.
Thus, that it can be applied using a computer of medium cost and specifications, and it is fast
at training model using the dataset and reaches high accuracy. This section describes how
the hybrid method combines CNN models with the SVM algorithm [28]. Enhanced chest
X-rays are fed into CNN models that extract the deep features of the X-ray images. Due to
the high dimensionality of the deep features, the PCA algorithm is implemented to reduce
the dimensions of the deep features and store them in feature vectors. The last layers of
the CNN models are removed and replaced with the SVM algorithm. Low-dimensionality
deep features are sent to the SVM for classification quickly and efficiently.

3.3.1. Deep Features Extraction

The most important feature of deep learning models is that they have many layers for
deep feature extraction. Deep learning techniques extract deep features during the training
phase and check their performance when diagnosing new images (deep features) during
the testing phase. As deep learning models have many layers for feature extraction, each
layer has a specific task for deep feature extraction; for example, the first convolutional
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layer extracts geometric features, the second layer is for edge detection, the third layer is
for color features extraction, the fourth layer is for texture features, and so on [29].

Deep learning models differ in the number of layers they contain. The most important
layers in deep learning models that extract feature maps are convolutional layers, followed
by auxiliary layers for the further processing of deep features and pooling layers to reduce
dimensionality. In the following section, we will discuss each layer in detail.

Convolutional layers: Convolutional layers are the backbone of deep learning mod-
els; the name “convolutional layers” derives from convolutional neural networks. Deep
learning models are distinguished from one model to another according to the number of
convolutional layers. Three main parameters control the efficiency of the convolutional
layers’ work: filter size, zero pad, and P-Step. The filter size f (t) controls the number of
pixels that will be wrapped around the original image x(t) as in Equation (1) [30]. Zero
padding is provided around the edges of the image to preserve the original image in its
natural size. P-Step specifies how much the filter will jump over the image at a time.
For example, if P-Step = 2, the filter will jump over the image by two steps during the
warping process [31].

y(t) = (x ∗ f )(t) =
∫

x(a) f (t − a) da (1)

where y(t) represents the output, f (t) represents the filter and x(t) refers to the input.
Pooling Layer: One of the most important layers in deep learning models that facilitate

computational operations. Convolutional layers produce millions of parameters, which is
challenging due to high computational costs. Therefore, pooling layers solve this challenge
by reducing the dimensionality of high-dimensionality deep features. Deep learning
models provide two techniques for dimensionality reduction, the max pooling technique
and the average pooling technique [32]. The max pooling technique selects the groups of
pixels according to the size of the max pooling filter [33]. It checks the value of each pixel
in the selected group and replaces the selected pixels with the max value as in Equation (2).
The average pooling technique selects the groups of pixels according to the size of the filter.
It works by calculating the average of the selected pixels and replacing all the selected
pixels with their average, as shown in Equation (3).

z(i; j) = maxm,n=1...k f [(i − 1)p + m; (j − 1)p + n] (2)

z(i; j) =
1
k2 ∑

m,n=1...k
f [(i − 1)p + m; (j − 1)p + n] (3)

where m and n represent the sizes of the feature matrix, f refers to the filter pixels, p
represents the step, and k refers to the feature matrix size.

Auxiliary layers: Deep learning models have auxiliary layers such as the rectified
linear units (ReLU) layer, which follows the convolutional layers. The main task of the
ReLU layer is to pass the values of the positive features and convert the values of the
negative features to zero. The dropout layer prevents overfitting; in this work, this layer
was set to 50%, which means that the layer passes 50% of the features each time.

The deep features were extracted from two chest X-ray datasets by the ResNet-50 [34]
and GoogLeNet [35] models and sent to the PCA method for dimensionality reduction and
stored in feature vectors.

3.3.2. Support Vector Machine

In the hybrid method, the classification layers are removed from deep learning models
and replaced by the SVM algorithm. The deep features are extracted by deep learning
models; the features are stored in feature vectors and sent to the classification stage by the
SVM algorithm [36].
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The SVM algorithm is a supervised algorithm that solves many tasks, including clas-
sification tasks. SVM distributes the dataset in n dimensions, where n represents the
deep features, and each value of the deep features represents a specific coordinate [37].
The algorithm separates the dataset classes by a hyperplane. The algorithm generates
many hyperplanes, and each hyperplane has a margin between different classes. Thus,
the algorithm chooses the one hyperplane that has the maximum margin between classes.
Support vectors define the best hyperplane, and which data points are above or near
the hyperplane. There are two types of SVM algorithm, linear and non-linear [38]. The
linear type was applied in this study because the dataset is linearly separable. The algo-
rithm created a single hyperplane to separate the dataset into two classes, namely normal
and tuberculosis.

Figure 4 describes the methodology of the hybrid method for classifying chest X-rays.
It can be seen from the figure that deep learning models are fed with optimized images.
Deep learning models for extracting deep features. Because of the high dimensionality of
the features, the dimensions were reduced by applying the PCA algorithm and storing
them in the feature vectors [39]. The last part of the technique involves classifying feature
vectors by the SVM algorithm.
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3.4. The ANN Classifier Based on Fusion of Features

This section presents a novel method for diagnosing tuberculosis using X-ray images
by integrating features extracted from deep learning models (ResNet-50 and GoogLeNet)
with algorithms (GLCM, DWT, and LBP) and classifying them using an ANN classifier [40].
The steps to implement the proposed method are as follows: first, we feed the enhanced
X-ray images into the ResNet-50 and GoogLeNet models. These models extract deep
features through convolutional, pooling, and auxiliary layers. ResNet-50 and GoogLeNet
produce 2048 deep features and store them in feature vectors with a size of 662 × 2048
for the first dataset and 4200 × 2048 for the second dataset. Second, the PCA algorithm
is used to reduce the dimensions of the two datasets while retaining the most important
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basic features. After PCA is applied, the dataset feature size becomes 662 × 512 for the first
dataset and 4200 × 512 for the second dataset. Third, the extraction of texture and shape
features by GLCM, DWT, and LBP algorithms is performed.

The GLCM algorithm represents the region of interest in a matrix of gray levels to
extract texture features from the gray levels. The algorithm distinguishes the smooth
from the coarse regions, because the smooth regions have almost the same pixel values,
while the coarse regions have significantly different pixel values. The algorithm produces
13 statistical measures by collecting spatial information [41]. Each measure represents a
feature. Thus, spatial information determines the relationship between a pixel and its
neighbors according to distance d and angle θ [42].

The DWT algorithm analyzes the input X-ray images as signals using low- and high-
pass filters. In this work, a single-level discrete 2-D wavelet transform (dwt2) function was
used to analyze the X-ray images of tuberculosis and classify them into approximation and
detail coefficients [43].

This function was used because it produces approximation and detail coefficients
from which statistical measures such as mean, standard deviation, and variance are ex-
tracted from each component. Therefore, these statistical measures are of importance in
representing the important features of the images [44]. Low filters produce approximate
parameters that extract three statistical features: standard deviation, variance, and mean,
while high filters produce three detailed parameters (diagonal, vertical and horizontal),
from each of which nine statistical features such as standard deviation, variance and mean
are extracted [45]. Thus, the algorithm produces 12 features.

The LBP algorithm extracts the texture characteristics of binary surfaces by analyzing
the contrast between local texture pixels. The algorithm is set to 6 × 6 pixels; each chest
X-ray is represented in a matrix, and then each pixel in the X-ray is replaced by 35 adjacent
pixels according to Equation (4) [46]. The process continues until each pixel in the X-ray
is replaced by neighboring pixels. The algorithm compares the gray levels of each central
pixel (gc) and the gray levels of neighboring pixels (gp) [47].

LBPR,P =
P−1

∑
p=0

s
(

gp − gc
)
2p (4)

s
(

gp − gc
)
=

{
0, gp − gc < 0
1, gp − gc ≥ 0

where gp means the grey value of neighboring pixels, P refers to the number of neighboring
pixels, R is the radius for neighboring pixels, gc means the grey value of the goal pixel.

Thereafter, we combine the deep features extracted by ResNet-50 with features ex-
tracted by GLCM, DWT, and LBP; similarly, deep features extracted by GoogLeNet are
combined with features extracted by GLCM, DWT, and LBP. Thus, after merging, the
size of the feature vectors becomes 662 × 740 for the first dataset and 4200 × 740 for the
second dataset.

Finally, the feature vectors of the two datasets are fed into the ANN classifier. The
input layer receives 740 features as input units. The hidden layers are set to 15 hidden
layers. The output layer produces two neurons, with each neuron representing one class of
the dataset.

Figure 5 shows the basic structure of the proposed system for diagnosing tuberculosis
based on two datasets using an ANN classifier based on integrating the features of deep
learning with the features of the GLCM, DWT, and LBP methods.
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4. Experimental Results of the Proposed Systems
4.1. Split the Two Datasets

To achieve the aim of this study, the proposed systems in this study were evaluated
through chest X-ray images from two datasets. The first dataset (Shenzhen) contains
662 chest X-rays divided into two classes: 326 normal X-rays and 336 tuberculosis X-rays.
The second dataset contains 4200 chest X-rays divided into two classes: 3500 normal X-rays
and 700 tuberculosis X-rays. The two datasets were divided into 80% for training and
validation and 20% for the testing of the proposed systems. Table 1 summarizes the number
of X-ray images for the two datasets during all phases.

Table 1. Splitting the two X-ray datasets for TB.

Datasets First Dataset Second Dataset

Phase Training and
Validation

Testing 20%

Training and
Validation

Testing 20%
Classes Training

(80%)
Validation

(20%)
Training

(80%)
Validation

(20%)

Normal 209 52 65 2240 560 700
Tuberculosis 215 54 67 448 112 140

4.2. Proposed Systems Evaluation Metrics

The proposed systems in this study were evaluated based on two datasets for tubercu-
losis using the same evaluation scales for all systems. All the proposed systems generated
the confusion matrix, which is the gold standard for evaluating the performance of the
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systems. The confusion matrix contains all of the appropriate dataset samples, denoted as
TP and TN, and inappropriately sample, denoted as FP and FN. The performance of the
systems was evaluated by means of accuracy, sensitivity, precision, specificity, and AUC, as
in Equations (5)–(9). Therefore, the standard equations used to measure the performance of
the systems obtain their data through the confusion matrix [48].

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100% (5)

Sensitivity =
TP

TP + FN
∗ 100% (6)

Precision =
TP

TP + FP
∗ 100% (7)

Specificity =
TN

TN + FP
∗ 100 (8)

AUC =
True Positive Rate
False Positive Rate

=
Sensitivity
Specificity

(9)

where TP refers to X-ray images perfectly categorized as tuberculosis, TN refers to X-ray
images perfectly categorized as normal, FP refers to normal X-ray images categorized as
tuberculosis, and FN refers to tuberculosis X-ray images categorized as normal.

4.3. Augmentation and Balance of Data

The lack of medical images is one of the limitations of CNN models. This limitation
was addressed by a data augmentation technique. Additionally, the unbalanced dataset is
one of the challenges, because the accuracy tends towards the majority class [49]. Therefore,
this challenge was overcome by applying data augmentation for the minority classes more
than for the majority classes [50]. It is noted that the first dataset is almost balanced, and so
the limitation of data shortage is addressed by increasing the images by an equal amount
for both classes. For the second dataset, it is noted that the dataset needs to be balanced,
and we increased the number of X-ray images for the minority classes. The data were
artificially augmented from the same dataset by many operations, such as shifting, flipping,
rotating in several directions, and others. Table 2 shows the number of artificially increased
X-ray images. For the first dataset, the number of images was increased by nine times for
each image for both classes. For the second dataset, the number of images was increased
by four times for tuberculosis, while the number of images in the normal class was not
increased, and the image number remained the same. Thus, the lack of images and the
imbalance of the dataset were overcome.

Table 2. Data augmentation for X-ray tuberculosis images to balance the two datasets.

Phase Training Phase

Datasets First Dataset Second Dataset

Classes Normal Tuberculosis Normal Tuberculosis

Before
augmentation 209 215 2240 448

After
augmentation 2090 2150 2240 2240

4.4. Results of the Hybrid Systems Approach

This section summarizes the results of hybrid systems consisting of two parts:
ResNet-50 and GoogLeNet models for feature extraction. The second part is the SVM al-
gorithm for classifying the features extracted from the first part. The hybrid systems are called
ResNet-50 + SVM and GoogLeNet + SVM. What distinguishes this method is its speed in
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diagnosing the dataset, its implementation on a medium-cost computer, and its high accuracy
in diagnosis. The two hybrid systems were evaluated based on the two tuberculosis datasets.

Table 3 summarizes the performance results of the hybrid approaches for diagnosing
the two tuberculosis datasets. It is noted that GoogLeNet + SVM achieved better results
than ResNet-50 + SVM for the first dataset, while ResNet-50 + SVM performed better than
GoogLeNet + SVM for the second dataset. The systems performance results are as follows:
first, for the first dataset, ResNet-50 + SVM reached an accuracy of 95.5%, a sensitivity of
96.14%, a precision of 95.72%, a specificity of 95.84%, and an AUC of 97.28%. In comparison,
GoogLeNet + SVM achieved an accuracy of 97%, a sensitivity of 97.21%, a precision of
97.45%, a specificity of 97.38%, and AUC of 98.13%. Second, for the second dataset,
ResNet-50 + SVM reached an accuracy of 98.1%, a sensitivity of 95.52%, a precision of
97.11%, a specificity of 95.61%, and an AUC of 98.43%. In comparison, GoogLeNet + SVM
achieved an accuracy of 97.1%, a sensitivity of 95%, a precision of 94.5%, a specificity of
94.85%, and an AUC of 97.63%.

Table 3. Results of the performance of hybrid systems on the two tuberculosis datasets.

Datasets First Dataset Second Dataset

Measure ResNet-50 + SVM GoogLeNet + SVM ResNet-50 + SVM GoogLeNet + SVM

Accuracy % 95.5 97 98.1 97.1
Sensitivity % 96.14 97.21 95.52 95
Precision % 95.72 97.45 97.11 94.5

Specificity % 95.84 97.38 95.61 94.85
AUC % 97.28 98.13 98.43 97.63

Figure 6 displays the results of performing the hybrid approaches to classify the
two X-ray datasets for the early detection of tuberculosis.
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Figure 7 presents the confusion matrix generated using the hybrid approaches
(ResNet-50 + SVM and GoogLeNet + SVM) based on the first dataset for tuberculosis
diagnosis. The ResNet-50 + SVM system reached an accuracy of 92.3% and 98.5% when
classifying normal and tuberculosis classes, respectively. In contrast, GoogLeNet + SVM
system achieved an accuracy of 96.9% and 97% when classifying normal and tuberculosis
classes, respectively.
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Figure 8 presents the performance of the hybrid approaches (ResNet-50 + SVM and
GoogLeNet + SVM) based on the second dataset for tuberculosis diagnosis. The ResNet-50
+ SVM system reached an accuracy of 99.3% and 92.1% when classifying normal and tuberculosis
classes. In contrast, GoogLeNet + SVM system reached an accuracy of 98.1% and 92.1%
when classifying normal and tuberculosis classes.
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4.5. Results of ANN Classifier Based on Fusion of Features

This section summarizes the results of the performance of the ANN classifier based
on the two X-ray datasets for early diagnosis of tuberculosis based on a set of hybrid
features extracted by several techniques. This technique aims to extract the features using
CNN models (ResNet-50 and GoogLeNet) and combine them with the shape and texture
features extracted by the GLCM, DWT and LBP algorithms, then feed them into an ANN
classifier. It is worth noting that both the ResNet-50 and GoogLeNet models produced
2048 deep features; the high dimensionality was reduced by the PCA algorithm, which
reduced the dimensions of the deep features to 512 features and stored them in feature
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vectors. The features extracted by the GLCM, DWT and LBP algorithms were combined to
produce 228 features and stored in feature vectors. Finally, the features of CNN models
were combined with the features of the GLCM, DWT and LBP algorithms, which produced
740 representative features. Thus, the size of the first dataset was 662 × 740, while the
size of the second dataset was 4200 × 740, and these were fed into an ANN classifier to
classify them with high precision. This section summarizes a set of tools for evaluating the
performance of the ANN classifier based on the two tuberculosis datasets.

4.5.1. Validation Checks and Gradient

The validation check and gradient are tools for assessing the performance of the ANN
based on the two tuberculosis X-ray datasets. Validation and gradient values are recorded
in each epoch, and the least error is calculated to obtain the best network performance.
Figure 9 describes the validation check and gradient generated by the ANN for diagnosing
the two tuberculosis datasets. For the first dataset, it is noted that the ANN network with
ResNet-50, GLCM, DWT and LBP features reached the best network performance at a
gradient of 0.030079 at epoch 33 and a validation check with a value of 6 at epoch 33.
Meanwhile, the network with GoogLeNet, GLCM, DWT and LBP features reached the
best network performance at a gradient of 0.0009887 at epoch 26 and a validation check
with a value of 6 at epoch 26. For the second dataset, we note that an ANN network with
features of ResNet-50, GLCM, DWT and LBP achieved the best network performance at
a gradient of 0.00059127 at epoch 47 and validation check with a value of 6 at epoch 47,
while with GoogLeNet, GLCM, DWT and LBP features, the ANN network achieved the
best performance at a gradient of 0.00028374 at epoch 34 and a validation check with a
value of 6 at epoch 34.
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Figure 9. Display validation checks and gradient of the ANN to classify the two datasets based on
the hybrid features. (a) ResNet-50, GLCM, DWT first dataset and LBP. (b) GoogLeNet, GLCM, DWT
and LBP first dataset. (c) ResNet-50, GLCM, DWT and LBP second dataset. (d) GoogLeNet, GLCM,
DWT and LBP second dataset.
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4.5.2. Best Validation Performance

The cross-entropy, or mean square error, is one of the most important tools for eval-
uating the ANN classifier on the two X-ray datasets for tuberculosis. Mean square error
values between actual and expected values are recorded in all epochs during all phases
of splitting of the dataset. The grid generates the mean squared error in different colors,
where each color represents a phase; a green color represents the evaluation of the network
during validation, a blue color represents its performance during the training of the dataset,
and a red color represents its performance during the testing of new samples, while the
best performance of the network is represented by the dashed lines between the x and y
axes. Figure 10 shows the cross-entropy produced using an ANN classifier for diagnosing
the two tuberculosis datasets. For the first dataset, it is noticed that the ANN network
with the features of ResNet-50, GLCM, DWT and LBP reached the best performance when
the minimum error was 0.0051026 at epoch 10, while with the features of GoogLeNet,
GLCM, DWT and LBP, it reached the best performance for the network when the minimum
error was 0.010765 at epoch 20. For the second dataset, note that ANN with ResNet-50,
GLCM, DWT and LBP features obtained the best performance when the minimum er-
ror was 0.041676 at epoch 27, whereas with GoogLeNet, GLCM, DWT and LBP features,
it achieved the best network performance when the minimum error was 0.0041272 at
epoch 28.
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Figure 10. Display validation performance of the ANN to classify the two datasets based on the
hybrid features. (a) ResNet-50, GLCM, DWT first dataset and LBP. (b) GoogLeNet, GLCM, DWT and
LBP first dataset. (c) ResNet-50, GLCM, DWT and LBP second dataset. (d) GoogLeNet, GLCM, DWT
and LBP second dataset.
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4.5.3. Error Histogram

An error histogram is one of the tools used for evaluating the ANN on the two X-ray
datasets for tuberculosis. Error values between the target and output values are recorded
in all epochs during all stages of dataset splitting. The bin histogram is generated using
an ANN classifier in different colors. Each color represents a phase; green represents the
classifier’s evaluation during validation, a blue color represents its performance during the
training of the dataset, a red color represents its performance during testing new samples,
and the best performance of the network is depicted in orange. Figure 11 shows the error
histogram generated by an ANN classifier for classifying the two tuberculosis datasets. For
the first dataset, it is noted that the ANN network with the features of ResNet-50, GLCM,
DWT and LBP reached the best performance with 20 bins between the values of −0.9446
and 0.947, while with the features of GoogLeNet, GLCM, DWT and LBP, it achieved the best
performance for the network with 20 bins between the values of −0.9492 and 0.9496. For the
second dataset, note that ANN with ResNet-50, GLCM, DWT and LBP features achieved
the best performance with 20 bins between −0.9483 and 0.9483, while with GoogLeNet,
GLCM, DWT and LBP features, it reached the best performance with 20 bins with values
between −0.949 and 0.95.
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Figure 11. Display error histogram of the ANN to classify the two datasets based on the hybrid
features. (a) ResNet-50, GLCM, DWT first dataset and LBP. (b) GoogLeNet, GLCM, DWT and LBP
first dataset. (c) ResNet-50, GLCM, DWT and LBP second dataset. (d) GoogLeNet, GLCM, DWT and
LBP second dataset.
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4.5.4. Confusion Matrix

The confusion matrix is the most important tool for summarizing the results of deep
and machine learning systems. This section presents a confusion matrix of an ANN based
on hybrid features for the early diagnosis tuberculosis based on the two tuberculosis
datasets. The confusion matrix contains all of the appropriately and inappropriately
diagnosed X-rays. A well-diagnosed X-ray falls on the primary diagonal of the confusion
matrix, while a misdiagnosed X-ray falls on the rest of the confusion matrix. Class 1
represents normal X-rays, and class 2 represents tuberculosis X-rays. Figure 12 displays the
confusion matrix generated by the ANN to classify the first dataset’s tuberculosis X-rays.
The ANN network, when fed with the hybrid features extracted by ResNet-50, GLCM,
DWT and LBP, achieved an overall accuracy of 99.2%, while the ANN network fed with
the hybrid features extracted by GoogLeNet, GLCM, DWT and LBP reached an overall
accuracy of 98.5%.
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Figure 13 displays the ANN confusion matrix for classifying the second dataset’s
tuberculosis X-rays. The ANN classifier, when fed with the hybrid features extracted by
ResNet-50, GLCM, DWT and LBP, obtained an overall accuracy of 99.8%, while the ANN
classifier fed with the hybrid features extracted by GoogLeNet, GLCM, DWT and LBP
obtained an overall accuracy of 99.3%.

The technique of incorporating features extracted by CNN models and GLCM, DWT
and LBP algorithms contributed to the accurate diagnosis of tuberculosis based on X-ray
images. Table 4 summarizes the results achieved by the ANN algorithm when fed with
hybrid features, which achieved promising results in the early detection of tuberculosis.
The ANN classifier acheived the following results: first, for the first dataset, when the
ANN was fed with the hybrid features extracted by ResNet-50, GLCM, DWT and LBP, it
reached an accuracy of 99.2%, a sensitivity of 99.23%, a precision of 99.5%, a specificity
of 99.41%, and an AUC of 99.78%. In contrast, when the ANN was fed with the hybrid
features extracted by ResNet-50, GLCM, DWT and LBP, it obtained an accuracy of 98.5%, a
sensitivity of 98.71%, a precision of 99.21%, a specificity of 98.56%, and an AUC of 99.28%.
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Table 4. Results of the ANN classifier based on the hybrid features for the two tuberculosis datasets.

Datasets First Dataset Second Dataset

Hybrid Features ResNet-50, GLCM,
DWT and LBP

GoogLeNet, GLCM,
DWT and LBP

ResNet-50, GLCM,
DWT and LBP

GoogLeNet, GLCM,
DWT and LBP

Accuracy % 99.2 98.5 99.8 99.3
Sensitivity % 99.23 98.71 99.54 98.5
Precision % 99.5 99.21 100 99.41

Specificity % 99.41 98.56 99.68 98.66
AUC % 99.78 99.28 99.82 99.32

Secondly, for the second dataset, when the ANN was fed with the hybrid features
extracted by ResNet-50, GLCM, DWT and LBP, it obtained an accuracy of 99.8%, a sensitivity
of 99.54%, a precision of 100%, a specificity of 99.68%, and an AUC of 99.82%. In contrast,
when the ANN was fed with the hybrid features extracted by ResNet-50, GLCM, DWT
and LBP, it obtained an accuracy of 99.3%, a sensitivity of 98.5%, a precision of 99.41%, a
specificity of 98.66%, and an AUC of 99.32%.

Figure 14 presents the performance of the ANN when classifying the two X-ray
datasets for the early detection of tuberculosis.
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5. Discussion and Comparison of the Implementation of the Proposed Techniques

This study deals with modern and effective methodologies for classifying two X-
ray datasets for the early detection of tuberculosis using two proposed approaches; each
approach contains two different systems. Initially, due to the images containing noise and
low contrast, all images of the two datasets were enhanced. Due to the scarcity of images in
the two datasets, the data augmentation method was used for two purposes: to overcome
the limitation of the lack of images, and to address the problem of unbalanced classes in
the two datasets.

The first proposed approach is a hybrid method consisting of deep learning models
(ResNet-50 and GoogLeNet), which receive optimized images and extract deep features
through convolutional and auxiliary layers and store them in feature vectors. The PCA
method was used to reduce the high dimensionality of the deep features. The last layers of
the ResNet-50 and GoogLeNet models were removed and replaced with an SVM method
that receives low-dimensionality features and classifies them with high accuracy and
efficiency. Thus, the first proposed approach consists of two hybrid systems, ResNet-50 +
SVM and GoogLeNet + SVM.

The second proposed approach is based on the hybrid features of several techniques
and their classification by the ANN classifier. The second proposed approach consists of
a single system, an ANN, which is fed with two different hybrid feature methods: first,
a hybrid feature extracted by ResNet-50, GLCM, DWT and LBP; and second, the hybrid
features extracted by GoogLeNet, GLCM, DWT and LBP.

The first proposed approach reached an overall accuracy of 95.5% and 97% for the
two hybrid systems, namely ResNet-50 + SVM and GoogLeNet + SVM, respectively, when
classifying the first dataset. Additionally, an overall accuracy of 98.1% and 97.1% was
obtained for the two-hybrid systems, namely ResNet-50 + SVM and GoogLeNet + SVM,
respectively, for the classification of the second dataset. The performance of the the second
proposed is approach as follows: first, for the first dataset, the ANN classifier achieved an
overall accuracy of 99.2% when fed with hybrid features from ResNet-50, GLCM, DWT and
LBP; in contrast, it achieved an overall accuracy of 98.5% when fed with hybrid features
from GoogLeNet, GLCM, DWT and LBP. Second, for the second dataset, the ANN classifier
achieved an overall accuracy of 99.8% when fed with hybrid features from ResNet-50,
GLCM, DWT and LBP; in contrast, it achieved an overall accuracy of 99.3% when fed with
hybrid features from GoogLeNet, GLCM, DWT and LBP.

Table 5 describes the performance results of all of the proposed approaches for clas-
sifying the two X-ray datasets for the early detection of tuberculosis. First, for the first
dataset, an ANN classifier with features of ResNet-50, GLCM, DWT and LBP achieved
the best accuracy when classifying normal image classification of 98.5%, whereas ANN,
based on the features of both methods, achieved the best accuracy for the classification
of tuberculosis images of 100%. Second, for the second dataset, an ANN classifier with
features from ResNet-50, GLCM, DWT and LBP achieved the best accuracy in normal image
classification of 100% and the best accuracy in tuberculosis image classification of 98.6%.

Figure 15 presents the performance of all of the proposed X-ray diagnostic systems for
the two tuberculosis datasets.

Table 6 and Figure 16 summarize a comparison between the performance of the
proposed system in classifying the tuberculosis datasets and that of the systems in previous
relevant studies. It is noted that the performance of our proposed system outperforms all
previous systems. It is also noted that our systems were evaluated with many evaluation
criteria, while the systems of previous studies were limited to some evaluation criteria.
Previous systems achieved an accuracy of between 77% and 96.20%, while ours achieved an
accuracy of 99.8%. Previous systems achieved a sensitivity between 72% and 98.7%, while
our system achieved a sensitivity of 99.54%. Previous systems achieved a precision range
of 80% to 96.1%, while our system achieved a precision of 99.68%. The previous systems
achieved a specificity between 82% and 93.7%, while our system achieved a specificity of
100%. Finally, the previous systems achieved an AUC between 85.02% and 99.5%, while



Appl. Sci. 2022, 12, 7092 20 of 23

our system achieved an AUC of 99.82%. Therefore, our proposed systems outperformed
the previous related systems in terms of performance.

Table 5. Performance of all proposed approaches for the early detection of tuberculosis.

Datasets First Dataset Second Dataset

Systems Normal Tuberculosis Accuracy % Normal Tuberculosis Accuracy %

Hybrid model ResNet-50 + SVM 92.3 98.5 95.5 99.3 92.1 98.1
GoogLeNet + SVM 96.9 97 97 98.1 92.1 97.1

Fusion
Features

ANN
classifier

ResNet-50, GLCM,
DWT and LBP 98.5 100 99.2 100 98.6 99.8

GoogLeNet GLCM,
DWT and LBP 96.9 100 98.5 99.7 97.1 99.3

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 25 
 

 

tuberculosis images of 100%. Second, for the second dataset, an ANN classifier with fea-
tures from ResNet-50, GLCM, DWT and LBP achieved the best accuracy in normal image 
classification of 100% and the best accuracy in tuberculosis image classification of 98.6%. 

Table 5. Performance of all proposed approaches for the early detection of tuberculosis. 

Datasets First Dataset Second Dataset 
Systems Normal Tuberculosis Accuracy % Normal Tuberculosis Accuracy % 

Hybrid model 
ResNet-50 + SVM 92.3 98.5 95.5 99.3 92.1 98.1 

GoogLeNet + SVM 96.9 97 97 98.1 92.1 97.1 
Fusion 

Features 
ANN 

classifier 
ResNet-50, GLCM, DWT and LBP 98.5 100 99.2 100 98.6 99.8 
GoogLeNet GLCM, DWT and LBP 96.9 100 98.5 99.7 97.1 99.3 

Figure 15 presents the performance of all of the proposed X-ray diagnostic systems 
for the two tuberculosis datasets. 

 
Figure 15. Performance of all of the proposed approaches when classifying the two tuberculosis 
datasets. 

Table 6 and Figure 16 summarize a comparison between the performance of the pro-
posed system in classifying the tuberculosis datasets and that of the systems in previous 
relevant studies. It is noted that the performance of our proposed system outperforms all 
previous systems. It is also noted that our systems were evaluated with many evaluation 
criteria, while the systems of previous studies were limited to some evaluation criteria. 
Previous systems achieved an accuracy of between 77% and 96.20%, while ours achieved 
an accuracy of 99.8%. Previous systems achieved a sensitivity between 72% and 98.7%, 
while our system achieved a sensitivity of 99.54%. Previous systems achieved a precision 
range of 80% to 96.1%, while our system achieved a precision of 99.68%. The previous 
systems achieved a specificity between 82% and 93.7%, while our system achieved a spec-
ificity of 100%. Finally, the previous systems achieved an AUC between 85.02% and 99.5%, 
while our system achieved an AUC of 99.82%. Therefore, our proposed systems outper-
formed the previous related systems in terms of performance. 

Table 6. Comparison of the performance of the proposed systems with that of the previous related 
systems. 

Previous Research Accuracy (%) Sensitivity (%) Precision % Specificity (%) AUC % Training/Testing Ratio 
Seelwan et al. [9] 77 72 - 82 85.02 75:25 
Kaur et al. [10] 95 91 92 - 95 80:20 
Xing et al. [12] 85 88 80 - 84 80:20 
Win et al. [16] 92.7 - - - 99.5 70:30 

 Duong et al. [22] 96.17 97.4 96.1 - - 88:12 
Li et al. [51] 96.2 98.7 - 93.7 - 75:25 

Stefanus et al. [52] 89.77 90.91 - 88.64 - - 
Dinesh et al. [53] 87.9 85.9 85.9 - - 80:20 

Figure 15. Performance of all of the proposed approaches when classifying the two tuberculosis datasets.

Table 6. Comparison of the performance of the proposed systems with that of the previous
related systems.

Previous Research Accuracy (%) Sensitivity (%) Precision % Specificity (%) AUC % Training/
Testing Ratio

Seelwan et al. [9] 77 72 - 82 85.02 75:25
Kaur et al. [10] 95 91 92 - 95 80:20
Xing et al. [12] 85 88 80 - 84 80:20
Win et al. [16] 92.7 - - - 99.5 70:30

Duong et al. [22] 96.17 97.4 96.1 - - 88:12
Li et al. [51] 96.2 98.7 - 93.7 - 75:25

Stefanus et al. [52] 89.77 90.91 - 88.64 - -
Dinesh et al. [53] 87.9 85.9 85.9 - - 80:20
Proposed model 99.8 99.54 99.68 100 99.82 80:20
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6. Conclusions

Tuberculosis infection, with its rapid spread, has become a critical health problem.
Such criticality may be reduced if the disease is detected at early stages, which can be
achieved using a chest X-ray. Thus, this study deals with the classification of chest X-rays
for the early detection of tuberculosis. In this study, two new proposed approaches are
discussed; each approach has two different systems for classifying the two tuberculosis
datasets. The first proposed approach is a two-part hybrid technology: the ResNet-50
and GoogLeNet CNN models and the SVM algorithm. The goal of CNN models is to
extract deep features and store them in feature vectors. Since CNN models extract high-
dimensionality features, the PCA technique was applied to reduce the dimensions of high-
dimensionality features. The advantages of the SVM algorithm are its speed in training the
dataset and its high accuracy in diagnosing the tuberculosis dataset. The hybrid techniques
yielded promising results in diagnosing the two tuberculosis datasets. The second proposed
approach is an ANN based on fused features extracted by the ResNet-50, GLCM, DWT
and LBP and the GoogLeNet, GLCM, DWT and LBP. These approaches yielded promising
results in diagnosing tuberculosis in the two datasets. An ANN network with features of
ResNet-50, GLCM, DWT and LBP achieved an accuracy of 99.2%, a sensitivity of 99.23%,
and a specificity of 99.41% for the first dataset; with the second dataset, it achieved an
accuracy of 99.8%, a sensitivity of 99.54%, and a specificity of 99.68%.

Future work should involve extracting deep features using CNN models and inte-
grating them into feature vectors to classify them using machine learning algorithms and
neural networks.

The limitations encountered in this study include the lack of images in the tuberculosis
dataset, which was overcome by means of the technique of artificially augmenting the data.
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