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Abstract
Capsule Networks (CapsNets) is a great approach for understanding data in the field of computer vision. CapsNets allow a 
deeper understanding of images compared to the traditional Convolutional Neural Networks. The first test for CapsNet was in 
digits recognition on the ‘MNIST’ dataset, where it successfully achieved high accuracy. CapsNets are reliable at deciphering 
overlapping digits. Deep Capsule Networks achieved state-of-the-art accuracy in CIFAR10 which isn’t achieved by shallow 
capsule networks. Despite all these accomplishments, Deep Capsule Networks are very slow due to the ‘Dynamic Rout-
ing’ algorithm. In this paper, Fast Embedded Capsule Network and Deep Fast Embedded Capsule Network are introduced, 
representing novel capsule network architectures that uses 1D convolution based dynamic routing with a fast element-wise 
multiplication transformation process. These architectures not only compete with the state-of-the-art methods in terms of 
accuracy in the capsule domain, but also excels in terms of speed, and reduced complexity. This is shown by the 58% reduc-
tion in the number of trainable parameters and 64% reduction in the average epoch time in the training process. Experimental 
results shows excellent and verified properties.

Keywords  1D convolutional kernels · CapsNets · Fashion MNIST · CIFAR10 · Facial expressions recognition · MNIST · 
CK+

1  Introduction

Many computer vision tasks had their feature engineering 
done by various feature extraction methods such as His-
togram of Oriented Gradients (HOG), Local Binary Pat-
terns (LBP), and Scale Invariant Feature Transform (SIFT) 
[1]. After the introduction of CNNs in many applications, 

accuracy was improved [2, 3]. The performance of CNNs is 
enhanced by using as much training data as possible, or by 
increasing the depth and the width of the network (e.g., the 
number of levels of the network and the number of units at 
each level).

Despite all the accomplishments of CNNs, they lack the 
ability to understand spatial relationship between features 
and there is spatial invariance caused by pooling. Capsule 
Networks (CapsNets) don’t have these limitations. MNIST 
digit recognition dataset [4] was the first dataset used for 
testing CapsNets [5]. CapsNets provided high accuracy 
and was used in other applications like Facial Expressions 
Recognition Capsules (FERCaps) [6] for emotion detection 
and many others. Despite the success and high accuracy 
observed for such datasets, yet CapsNets’ true potential was 
not fully realized, providing sub-par performance on sev-
eral complex datasets like CIFAR10. DeepCaps [7] achieved 
state-of-the-art performance when used with CIFAR10, but 
still DeepCaps and CapsNets are slow in comparison with 
CNNs due to the clustering and routing algorithms. To 
increase the speed, new simpler architectures with reduced 
complexity and simpler algorithms are needed.
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In this paper, new architectures Fast Embedded Capsule 
Network (FECapsNet) and Deep Fast Embedded Capsule 
Network (Deep-FECapsNet) are proposed to make Cap-
sNets and DeepCaps faster while maintaining accuracy. Both 
architectures rely on two pillars; which are a new 1D con-
volution based dynamic routing that reduces the complexity 
and the number of capsules inputted in the routing process. 
In addition, a new transformation process using element-
wise multiplication for faster processing to predict parent 
capsules from the children capsules is adopted. Experi-
mental results shows remarkable reduction in the number 
of trainable parameters, as well as a high speed gain while 
persevering state-of-the-art accuracy in the capsule domain.

2 � Related work

In this section, 1D convolutions in CNNs are mentioned as 
they will be incorporated later with a new functionality in 
the capsule domain in the new routing algorithm. In addi-
tion, CapsNets are briefly mentioned as they are the basic 
block of all the baseline architectures mentioned. FERCaps 
[6] are then mentioned as an application on CapsNets. 
ResNets [8] are also introduced because when they are com-
bined with CapsNets they represent the building concept of 
DeepCaps that is later compared to the proposed architec-
ture. DeepCaps are also introduced as they will represent the 
benchmark and the evaluation criteria for the performance 
of the proposed method. Enhanced Capsule Network (DE-
CapsNet) [9] is introduced as it’s a competing architecture 
to DeepCaps and it will be compared with the proposed 
method.

2.1 � 1D convolutions in CNNs

In many architectures, 1D convolutions are used for features 
extraction in 1D signals. As shown in Fig. 1, one 1D convo-
lution kernel can compress a 3D feature map to 2D. To pro-
duce a 3D feature map, the depth of the resulting feature map 
is controlled by the number of 1D filters. 1D convolutions 

usage with CapsNets as in [10] and [11] was limited to fea-
ture extraction, as the input data type in these papers was one 
dimensional data e.g speech, text and ECG signals.

In this paper 1D convolutions aren’t used for feature 
extraction, but they are rather used in the routing process to 
give a compressed embedded representation for the relation-
ships between the features of an object forming the capsules.

2.2 � Brief on ResNets, CapsNets, FERCaps, DeepCaps 
and DE‑CapsNet “baseline architectures”:

CNNs and deep learning, where features are automatically 
extracted and the patterns are learned from the data, has 
become the next evolutionary step and many breakthroughs 
have been achieved in various tasks. Experts aren’t needed 
for designing the kernels to extract features, but a large 
amount of data is needed as well as deep architectures for 
complex features extraction. Despite the success of CNNs, 
CNNs don’t capture the spatial relationships between differ-
ent features, causing them to be susceptible to adversarial 
attacks and to the incapability to detect misplacement of the 
features or deformations.

CapsNets [5] came as a nearer step for the simulation 
of human vision, and to solve this deficiencies of CNN by 
keeping the spatial relationship between the features and 
dealing with the features as vectors instead of scalars. The 
dynamic routing in CapsNets is used to route the data to 
the correct capsules in a similar way to how human vision 
happens. The network has two convolutional layers and one 
fully connected classifier as shown in Fig. 2. CapsNets are 
resistant to adverserial attacks and can detect misplacement 
of features and they work well with simple datasets like 
MNIST. If CapsNets are used with complex datasets like 
CIFAR10, they don’t compete with CNNs in terms of accu-
racy as they aren’t deep enough.

Facial expressions Recognition Capsules (FERCaps) 
represent a modified CapsNets architecture used to clas-
sify basic facial expressions. Facial expressions play an 
important role in the recognition of emotions. The focus is 
on the seven basic emotional states mentioned in the CK+ 
dataset, which are: neutral, happiness, sadness, surprise, 
disgust, fear, and anger [15]. The baseline architecture is 

6 x 6 x256
1 x 1 x256 6 x 6

Fig. 1   Example on 1D convolutional kernels used in the convolution 
of a 3D feature map
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Fig. 2   CapsNets architecture of the system for MNIST [5]
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shown in Fig. 3 and the classification layer is for emotion 
detection “Emotion caps”.

Using the concept of residual learning [8] that mainly 
solve the issue of vanishing gradients in deep neural 
networks using skip connections, DeepCaps [7] then 
appeared. In its core, DeepCaps is a combination of resid-
ual learning with CapsNets and dynamic routing based 
on 3D convolution, to produced a deep architecture that 
achieve state-of-the-art accuracy for CIFAR10, but the 
number of parameters is very high and the speed is low.

DE-CapsNet appeared to represent a simpler archi-
tecture based on residual learning and disperse dynamic 
routing with using small kernel sizes and also a deep net-
work but not as deep as DeepCaps. DE-CapsNets achieved 
higher accuracy with higher speed and less number of 
parameters but they are still slow in comparison with 
CNNs due to the routing/clustering algorithms.

The need for a fast dynamic routing algorithm that 
allow the usage of deep architectures within an accept-
able limit for the number of trainable parameters should 
be thought of as the next step.

3 � The proposed deep fast embedded 
CapsNet (Deep FECapsNet) and its 
shallow version fast embedded CapsNet 
(FECapsNet)

In the beginning of this section, Deep FECapsNet archi-
tecture is introduced, then the shallow FECapsNet is 
introduced later. Deep FECapsNet target is to reduce the 
complexity and increase the speed of DeepCaps while pre-
serving the depth of the architecture, as well as achieving 
state-of-the-art accuracy. As shown in Fig. 4 there are four 
residual blocks composed of different convolution capsule 
layers. Each block or capsule cell has three 3x3 convolu-
tional kernel layers cascaded by a 1x1 convolutional kernel 
layer. Feature maps are divided into groups with constant 
depth. All these convolutional capsule layers have their 
number of routing iterations set to one. There are three 
new blocks ’highlights’ detailed as follows: 

1)	 The first block is the 1D-ConvCaps layer that has been 
introduced where capsule vectors give a compressed and 
embedded representation of the relationship between 
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Fig. 3   FERCaps architecture [6]
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these features using 1d-convolution kernels rather than 
having the features stacked on each other. The 1D-con-
volution kernels act similar to a fast encoder neural net-
work.

2)	 The second block is an implicit one, which is the new 
dynamic routing using a new transformation process to 
map the children capsules to their parent capsules.

3)	 The third block is the Merged FlatCaps Layer that 
merges the newly formed capsules in a 2D-matrix, start-
ing with the number of capsules as its first dimension, 
and the depth or dimension of the capsules as the second 
dimension as shown in Fig. 3. This layer is only seen 
in deep architectures that use residual learning, as this 
layer mainly combine the outputs of the skip connec-
tions forming the needed capsules, hence it won’t be 
added with shallow FECapsNet as there are no skip con-
nections or multiple outputs that need to be combined.

Full details of 1D-ConvCaps and the new dynamic routing 
process are provided in the following subsections.

3.1 � 1D‑ConvCaps layer

The proposed 1D-ConvCaps layer is placed before any cap-
sule layer that has more than one routing iteration as shown 
in the architecture in Fig. 4. This layer takes its input in the 
form of 4D matrices. As shown in Fig. 5, the input feature 
maps are divided into 32 groups and each group has a depth 
of 8. The first step is that all the 32 groups are merged into 
one with depth 32 × 8 . So, the feature map changes into 3D 
instead of 4D, and it has all the high level features of objects 
in the image stacked over each other. Each pixel in the new 
feature map is a 256D vector. 1D-convolution kernels are 
also 256D vectors and each pixel vector in the feature map 
will undergo a 1D convolution process, which is in its 
essence a dot product process with these kernels, produc-
ing a scalar number that is an encoding for the relationship 

between the stacked features. 32 kernels are used to produce 
32 scalars for each 256D-pixel vector in the feature map.

These 32 scalars are then stacked into a vector represent-
ing the new capsule. Before the 1D-ConvCaps layer the 
256D-pixel vector in the feature map was divided into 32 
capsules each is of 8 dimensions, but after the addition of 
1D-ConvCaps, the 256D-pixel vector is transformed into 
one 32D capsule. It should be noted that ’32’ is the same 
number of dimensions of the class capsules and this will 
be the constant number of dimensions for all the capsules. 
The intuition behind making the dimension of the capsules 
constant came from the fact that both the children capsules 
“the part” and the parent capsules “the whole” lie within 
the same 3D space we live in, so they should have the same 
number of dimensions describing their pose.

3.2 � The proposed dynamic routing using 1D 
convolution and element‑wise multiplication

Let ’r’ be the number of routing iterations, ’l’ be the order 
of the layer, ’ Kj|i ’ be the output predictions vectors from 
the element-wise multiplication between the 1D-ConvCaps 
output capsule vectors ’ ui ’ and a randomly initialized weight 
matrix Wij . Wij has three dimensions which are: the number 
of input capsules, the number of output capsules, and the 
constant number of the dimensions of the capsules, while 
’ ui ’ has only two dimensions which are: the number of input 
capsules, the constant number of dimensions of the cap-
sules. ’ ui ’ will have an expanded dimension as we will repeat 
this 2D vector until it becomes a 3D vector with the same 
dimensions as Wij . Let the new dimension-expanded vector 
be uk . The new transformation process now is just a simple 
element-wise multiplication described as:

Proposed Dynamic Routing Algorithm: 

(1)Kj|i = uk ×Wij
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1:	 uk ← repeat(ui , output capsules number)
2:	 Kj|i ← uk ×Wij refer to equation(1)
3:	 For all capsule i in layer l and capsule j in layer l+1:
	   bij ← 0
4:	 for r iterations do:
5:	    for all capsule i in layer l: cij ← softmax(bij)
6:	    for all capsule j in layer (l + 1): sj ← Σi cij Kj|i

7:	    for all capsule j in layer (l + 1): Vj ← squash( sj)
8:	    for all capsule i in layer l and capsule j in layer (l + 1): 

bij ← bij + Kj|i . Vj

9:	 return Vj

It should be noted that the dimensions of bij , and cij have 
been reduced along with Wij . This resulted in having 25,920 
parameters in the class capsule layer in DeepFECapsNet 
instead of 6,553,920 parameters in the Deepcaps baseline 
architecture [7].

To give a high level explanation of how capsules are 
formed by the orange blocks shown in Fig. 4, The new 
dynamic routing process and Fig. 5 should be viewed con-
currently. As shown in Fig. 5 both capsule tensors from 
CapsCell 3 and CapsCell 4 will be transformed into a cap-
sule vector by the 1D-ConvCaps layer and will be merged 
and flattened to get ui . Then ui is repeated 10 times as the 
next layer has 10 capsules “10 classes”. This is because 
we expect each capsule in ui to give 10 predictions for the 
10 parent capsules. By using element-wise multiplication 
with the transformation matrix Wij , the predictions vectors 
matrix ’ Kj|i ’ is produced. Kj|i represents the predictions of 
each capsule of ui capsules to the parent capsules. In the first 
routing iteration, all prediction vectors are equally weighted 
and summed together to get the final predictions Vj . Then, 
in the following iterations, coupling coefficients are updated 
according to the agreement with Vj and Kj|i.

3.3 � The proposed fast embedded 
CapsNet(FECapsNet) applied on MNIST

A new architecture is proposed to reduce complexity and 
increase the speed of CapsNets. This architecture is based 
on adding the 1D-ConvCaps layer representing the pri-
mary capsule layer and using the new dynamic routing 
instead of the one proposed by Hinton et al. The details 
of the feature maps of the new architecture are shown in 
Fig. 6. Before the primary capsule layer, feature maps are 
not divided the to 32 groups as proposed by Hinton et al; 
instead the whole 6 × 6 × 256 feature map is passed to the 
1D-ConvCaps layer producing a new feature map that is 
6 × 6 × 16 . 16 dimensions/kernels were initially chosen as 
Hinton et al. mentioned that these dimensions are enough 
to capture the pose of any object. The transformation 
matrix responsible for the part-whole relationship, will 
be of dimensions 36 × 10 × 16 as here the part “children 

capsules layer” and the whole “parent capsules layer” both 
contain 16D vectors. Since both the part and the whole 
vectors are in our 3D space, then intuitively both should 
have the same number of dimensions describing their pose. 
During the dynamic routing process, the primary capsule 
vectors will undergo the new dynamic routing proposed 
in this paper.

In the original CapsNet architecture used on MNIST, the 
feature map depth was 256, so 1152 primary capsules were 
taken from it after they were divided into 32 8D groups. 
After using the 1D-ConvCaps layer, the feature map depth 
will be reduced from 256 to 16, so no division into groups is 
needed and the number of primary capsules will become 36 
instead of 1152. This means that the transformation matrix 
dimensions is changed from 1152 × 8 × 10 × 16 in the origi-
nal CapsNets to 36 × 10 × 16 in FECapsNets.

3.4 � The proposed fast embedded 
CapsNet(FECapsNet) applied on CK+

By modifying the FERCaps architecture through adding the 
1D-ConvCaps layer and applying the new dynamic rout-
ing algorithm, the following feature maps shown in Fig. 7 
emerge. FECapsNet for FER has 3 convolutional layers. 
Conv1 has 128 5 × 5 convolution kernels with a stride of 1. 
Conv2 has 256 5 × 5 convolution kernels with a stride of 2. 
Then there are 256 9 × 9 kernels with a stride of 2, then 1000 
1 × 1 embedding kernels, and the classification layer, that has 
the 7 basic emotion classes. Detailed explanation for choos-
ing 1000 1D kernels will be provided in the later sections.

Fig. 6   Feature maps shapes of the proposed architecture FECapsNets 
for MNIST
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4 � Experimental results and evaluation

Six experiments were carried out on CIFAR10, F-MNIST, 
MNIST and CK+, which are different datasets from com-
plexity’s point of view. The results were compared with 
various state-of-the-art methods in the capsule domain. 
The following subsections describe the system, the data-
sets, the experiments and the results in detail.

4.1 � The system

The experiments are run on the “Google Colab” system 
with the following specifications:

Python Tensor-flow 1.15.2 is used with keras. The RAM 
is approximately 12.6 GB. The GPU has 2496 CUDA 
cores, 12GB GDDR5 VRAM. The CPU has one single 
core hyper threaded Xeon Processors @2.3Ghz i.e. (1 
core, 2 threads).

4.2 � The datasets

The Canadian Institute For Advanced Research (CIFAR10) 
[12]: The dataset consists of 60,000 32x32 colour images. 
There are 50,000 training images and 10,000 test images. 
There are 10 classes, with 6000 images per class. The 
classes are: airplane, automobile, bird, cat, deer, dog, frog, 
horse, ship, and truck.

Fashion-Modified National Institue of Standards and 
Technology database (F-MNIST) [13]: The dataset con-
sists of a training set of 60,000 examples and a test set 
of 10,000 examples. Each example is a 28x28 grayscale 
image, associated with a label from 10 classes. The classes 
are: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, 
Shirt, Sneaker, Bag, and Ankle boot.

The Modified National Institute of Standards and 
Technology database (MNIST) [14]: this dataset contains 
80,000 images of the ten digits. 60,000 images are used 
for training and the rest is divided between validation and 
test samples equally.

The Extended Cohn-Kanade Dataset (CK+) [15]: It is 
for facial expressions recognition is also used for the pur-
pose of generalization of the concept of using embedded 
capsules across different datasets. Around 800 training 
images for 7 classes are used while another 200 images 
are split equally between validation and testing.

4.3 � The performance metrics

Three performance metrics are used to compare different 
architectures with the proposed ones, these metrics are the 
speed, accuracy, and complexity.

The speed is represented by the average epoch time 
in seconds during training for different architectures. By 
taking into account the effect of random initialization, 25 
different runs of each experiment are performed, and the 
average epoch time was obtained from all epochs of all 
25 runs.

The accuracy defines how well the model extracted the 
suitable features.

The complexity is represented by the number of trainable 
parameters and these parameters can be calculated in two 
different stages. The first stage is when normal CNN layers 
are used and the formula is:

Where Nconv is the number of parameters introduced by the 
convolutional layer, Nker is the number of kernels, and Sker 
is the size of the kernel. The second stage is for the dynamic 
routing number of parameters and they can be calculated 
using this formula:

Where Nrout is the number of parameters in the dynamic 
routing stage, Ncaps is the number of children capsule being 
routed, Dtrns represent the dimensions of transformation 
matrix, Nc is the number of target classes, and n represents 
the number of iterations of the routing algorithm (number 
of coupling coefficients).

4.4 � The experiments and results

Experiment 1. Applying Deep-FEcapsNets architecture on 
CIFAR10 dataset:

In this Experiment the Deep-FEcapsNet is applied on 
CIFAR10 which is considered as a complex dataset. As 
shown in Table 1, Deep FE-CapsNet surpassed all the state-
of-the-art methods in the capsule domain in terms of reduced 
complexity by a 50% reduction in the number of trainable 
parameters compared to the next best method which is DE-
CapsNet [9]. The proposed method also has the least average 
epoch time during training indicating that it the fastest. As 
per Table 1 the accuracy of Deep-FEcapsNet comes in the 
second place after DE-CapsNet by 0.21% which is a small 
margin when compared to the doubled speed gain and the 
reduction in complexity.

Experiment 2. Applying Deep-FEcapsNets architecture 
on F-MNIST dataset:

In this Experiment the Deep-FEcapsNet is applied on 
F-MNIST which is considered as a simple dataset with 
plenty of images per class. As shown in Table 2, Deep FE-
CapsNet surpassed all the state-of-the-art methods in the 
capsule domain in terms of reduced complexity, as it has 
less than half the number of trainable parameters of the next 

(2)Nconv = Nker × Sker + Nker

(3)Nrout = Ncaps × Nc × n + Dtrns
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best method which is DE-CapsNet [9]. The proposed method 
also has the least average epoch time during training indicat-
ing that it has the highest speed among all the the capsule 
domain state-of-the-art methods. Regarding the accuracy, 
as shown in Table 2, Deep-FEcapsNet comes in the second 
place after DeepCaps (7 ensembles) by 0.04%.

In both experments, the accuracy metrics were referenced 
from [9], while the number of trainable parameters are cal-
culated from equation (2) and equation (3) and are also given 
by the code.

Experiment 3. Applying FECapsNets architecture on 
MNIST dataset:

The experiment compares the performance metrics of the 
conventional CapsNet on the MNIST dataset with that of 
the proposed FECapsNet. Table 3 shows that FECapsNet 
is superior in terms of speed as there is around 98% speed 
gain and 99% reduction in the number of dynamic routing 
parameters in comparison with CapsNet. The proposed shal-
low FECapsNet reached 99.36% in accuracy while CapsNet 

reached 99.75%, so the proposed architecture almost provide 
preserved accuracy.

Experiment 4. Changing the depth dimension of both the 
primary and class capsules and studying the effect and per-
formance metrics on MNIST:

In this experiment, the objective is to study the effect of 
changing the embedded capsules’ dimension on the model’s 
performance on a reasonably simple task like digit recogni-
tion with the MNIST dataset. The primary caps and Digit 
caps dimensions are changed starting from 8D till 20D vec-
tors in four steps. At each dimension, 25 runs are performed 
to get statistically significant results. Table 4 shows the effect 
of this change on performance metrics.

It is observed that when increasing the number of dimen-
sions of the object, the epoch’s average time increases, 
but the total time for training decreases. This is expected 
as the dimensions of the vectors that describe the objects 
are increased, so complexity increases, and the time taken 
in one epoch increases. On the other hand, the model is 
now big enough to be trained on and to grasp the image’s 
complex patterns in less training time and less number of 

Table 1   Comparing state-of-
the-art methods for CIFAR10 
dataset in the Capsule domain 
with the proposed methods with 
respect to accuracy, speed and 
complexity

Method/metric Accuracy (%) Average epoch time 
(secs)

Number of 
trainable 
parameters

CapsNets [5] 89.4 2700 22.4
DeepCaps [7] 91.01 492 13.43
DeepCaps (7 ensembles) [7] 92.74 3144 93.99
DE-CapsNet [9] 92.96 382 11.2
Deep FE-CapsNet (proposed) 92.75 178 5.76

Table 2   Comparing state-of-
the-art methods for F-MNIST 
dataset in the Capsule domain 
with the proposed methods with 
respect to accuracy, speed and 
complexity

Method/metric Accuracy (%) Average epoch time 
(secs)

Number of 
trainable 
parameters

CapsNets [5] 93.9 2700 22.4
DeepCaps [7] 94.46 492 13.43
DeepCaps (7 ensembles) [7] 94.73 3144 93.99
DE-CapsNet [9] 93.64 382 11.2
Deep FE-CapsNet (proposed) 94.69 178 5.76

Table 3   Comparing the performance of CapsNet and FECapsNet on 
the digits in MNIST dataset

Evaluation metrics CapsNet FECapsNet 
(proposed)

Primary/digit capsules Dimensions 8/16 16/16
Average epoch time (secs) 2700 35
Number of dynamic routing parameters 1,509,120 6840
Average number of epochs till convergence 6 7
Accuracy 99.75% 99.36%

Table 4   Experimentation results of changing the dimensionality of 
capsules in FECapsNet to capture the target patterns of the digits in 
MNIST dataset

Evaluation metrics/capsule dimensions 8D 12D 16D 20D

Average epoch time (secs) 21 23 35 40
Dynamic routing parameters number 3960 5400 6840 8640
Average number of epochs till conver-

gence
23 10 7 20
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training epochs. The conclusion here is that the number 
of dimensions of the capsules that describes objects, is a 
hyper-parameter that needs tuning, and that depends on the 
complexity of the patterns to be detected.

Experiment 5. Applying FECapsNet on CK+ 
FERdatabase:

This experiment investigates the performance of FECap-
sNets on the CK+ dataset for facial expressions recogni-
tion, to observe the effect of applying the FECapsNets on 
more complex patterns like facial expressions rather than 
simple digits. Faces and facial expressions are known for 
their complexity, so choosing a dataset like CK+ that has 
less training images per emotion/class will be an excellent 
example of a challenging dataset. The expectation here is 
that if the number of primary capsules reduces, then their 
dimensions must increase so that the complex face patterns 
can be described in a smaller number of capsules. Thirty six 
1000D-capsules were chosen to be able to capture the com-
plex facial expressions patterns. The average epoch time was 
reduced from 20.3 in FERCaps to 3.5 secs in FECapsNet as 
seen in Table 5, which is good but not as huge as the speed 
gain observed in the MNIST dataset. This is because CK+ 
has a much smaller training dataset than MNIST, but still 
FECapsNet is faster and has less dynamic routing parameters 
than FERCaps.

Experiment 6. Changing the depth dimension of both the 
primary and class capsules and studying the effect and per-
formance metrics on CK+:

In this experiment, the range of capsules dimensions is 
large “in thousands” as the training samples are few per each 
class and the facial features are relatively complex.

When using 16D primary capsules in FECapsNets for 
FER on CK+, 50% validation accuracy is never reached. 
The training accuracy never passes 40%, which indicates that 
the model is too simple to catch the patterns needed in the 

dataset. That did not happen when FECapsNets was used on 
MNIST dataset as 16 dimensions were enough to describe 
digits, but 16 dimensions are not enough to detect various 
facial expressions in CK+ dataset. By inspecting Table 6, 
it is observed that when increasing the dimensions of the 
primary capsule vectors to 1000, the model starts to con-
verge at 98% validation accuracy after 61 epochs and takes 
less number of epochs “21” when using 2000-dimensional 
capsules. When increasing the dimensions more than 2000, 
the number of epochs needed to reach 98% accuracy on vali-
dation increases, suggesting that the model is overshooting 
the global optima and needs more epochs to reach it as the 
learning rate decreases as ‘ADAM’ optimization algorithm 
is used in the model. This is a sign of over-fitting or that the 
model is becoming more complex than needed.

The first two experiments were run on keras as it is easier 
for handling deep and complex architectures, but slower than 
using tensor-flow directly. The next four experiments are run 
on tensor-flow directly as shallow architectures are used, so 
the time taken in the epochs for the shallow architectures is 
less than that of the deep architectures.

5 � Conclusion

In this paper two new architectures ’FECapsNet’ and 
’Deep-FEcapsNets’ are proposed. Inspiration was drawn 
from residual learning, Inception models and DeepCaps. 
1D-convCaps layer where one 1D-convolution is used to 
form capsules from an embedded representation of rela-
tionships between the features rather than using the fea-
tures directly, and a new simpler transformation process in 
the dynamic routing were introduced, producing more than 
50% reduction in the number of parameters of the deep 
models in comparison with capsule domain state-of-the-art 

Table 5   Comparing the 
performance of FERCaps and 
FECapsNet on the digits in 
CK+ dataset

Evaluation metrics FERCaps FECapsNet (proposed)

Primary/emotion capsules Dimensions 8/16 1000/1000
Average epoch time (secs) 20.3 3.5
Number of dynamic routing parameters 1,056,384 252,756
Average number of epochs till convergence 18 61
Accuracy 98.18% 98%

Table 6   Experimentation results of changing the dimensionality of capsules in FECapsNet to capture the target patterns of the digits in CK+ 
dataset

Evaluation metrics/capsule dimensions 1000D 2000D 3000D 4000D

Average epoch time (secs) 3.5 4.8 5.1 6.12
Dynamic routing parameters number (millions) 0.253 0.501 0.753 1.008
Average number of epochs till convergence 61 21 29 38
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deep models, and more than 98% reduction for the shallow 
models that heavily depends on the dynamic routing layer.

There are two methods that can enhance the perfor-
mance of FECapsNet when working on complex datasets 
like CIFAR10 and CK+. The two methods are to simply 
increase the number of dimensions of the capsules or to 
use deeper architectures to detect the needed complex fea-
tures in deep layers. Experimental results tested on the 
CIFAR10, MNIST, F-MNIST and CK+ datasets confirm 
higher speeds and reduced complexity compared to Cap-
sNet, FERCaps, DeepCaps and DE-CapsNet, while pre-
serving state-of-the-art accuracy.
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