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Summary for Day 1

Motivation: understanding intelligence, building AI, scaling
to large scale learning of complex functions

Neural networks and distributed representations

Convolutional neural nets for vision and temporal data

The Curse of Dimensionality: what’s wrong with local
non-parametric estimators (trees, local kernel machines)

What’s wrong with shallow architectures

Optimizing deep architectures
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Grand Goals: Understanding Intelligence, Building AI

Ambitious goal: using statistical learning to understand
intelligence, reach AI

Tasks involving intelligence: visual and auditory perception,
language understanding, intelligent control, long-term
prediction, discovering and understanding of high-level
abstractions...

Remains elusive! (did ML community turn its back on it?)

3 considerations, to scale to learning complex tasks:

computational efficiency
statistical efficiency (nb examples needed)
human-labor/evolution effort (complexity of prior)

(Bengio and Le Cun, 2007)

Yoshua Bengio CIAR 2007 Summer School



Learning from Complicated Densities

These tasks involve

Complicated structures: density is a highly-varying function

Data is very high-dimensional (e.g., 200x200 video is 40000
pixels / image = 1.2 million inputs / sec. @ 30 frames/sec.)

Density possibly concentrates on manifold, but of non-trivial
dimensionality (certainly much more than 10 or 50)

Abstractions MUST be LEARNT, can’t spoon-feed all of them

Many levels of abstractions

LOTS of examples
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Statistical Learning in 2007 → AI?

Lots of progress in learning theory helped us understand
concepts of generalization, capacity, overfitting,
non-parametric estimation of functions.

But most commonly used learning algorithms are severely
limited:

Sensitive to the curse of dimensionality / poor statistical
scaling with the apparent complexity of the function to be
learnt.
Training algorithms computational requirements scaling badly
with number of training examples (e.g. O(n2) time and
memory).
No algorithm able to discover high-level abstractions, yet.
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Context and Abstractions

Consider a learning agent operating in the real world

Context = summary of past experience + current input

Abstraction

= complicated non-linear function of the context that helps to
model it or make predictions about future inputs
discrete abstraction (= class) corresponds to a large set of
possible inputs/contexts
higher-level abstractions are defined in terms of lower-level ones
higher-level abstractions = functions with many twists and
turns, apparently complex, difficult to hand-program

The number of abstractions that humans master is very large
(verbalizable and non-verbalizable)

No hope to pre-program / hardwire all: must learn them.

No hope to hand-label data illustrating well enough all
of them: need unsupervised or semi-supervised learning.

Yoshua Bengio CIAR 2007 Summer School



Neural Networks

Means different things to different people.

Computation performed by the composition of simple
neuron-like units: non-linear transformation of linear
combination of inputs from other neurons.
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Neural Networks

Most common: multi-layer neural networks (MLPs), in
particular the 2-layer network

fθ(x) = b + W tanh(c + Vx)

where x ∈ R
d , f (x), b ∈ R

m, W ∈ R
m×h, c ∈ R

h, V ∈ R
h×m.

Call h=nb hidden units, and parameters θ = (b,W , c ,V ).

Can replace tanh(a) = ea−e−a

ea+e−a by

sigmoid(a) = 1
1+e−a = (tanh(a) +

1)/2.
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Gradient-Based Optimization of a Loss

For each example xt consider that f (xt) incurs a loss Ct . We
would like to minimize the expected loss E [Ct ]. The empirical
loss on a training set is

C =
1

T

T
∑

t=1

Ct .

The gradient ∂C
∂θi

tells us whether we should increase θi or

decrease it. If can’t solve ∂C
∂θ = 0, minimize iteratively.

Batch gradient descent: θ ← θ − ǫ∂C
∂θ

Stochastic or online gradient descent: θ ← θ − ǫ∂Ct
∂θ

SCALES WELL WHEN T →∞. Asymptotic convergence is
guaranteed only if ǫ is reduced roughly in 1/t.

Other numerical optimization techniques have been used, e.g.
Conjugate Gradients, and convex optimization methods when C is
convex in θ (only true when optimizing only last layer of MLP).
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Efficient f (x)⇒ Efficient ∂f (x)
∂x

If one can compute f (x) efficiently in O(N) operations, one can

also compute ∂f (x)
∂x in O(N) operations, for any f .

How?

Expand the computation of f (x) into a flow graph of O(N)
elementary computations, with nodes u

Node u computes a function of its parent nodes and sends its
value to children nodes. Nodes are properly ordered to obtain
f (x) from x .

We can compute ∂f (x)
∂u for every u recursively, starting at

u = f (x) and ending at u = x .

Use the chain rule: ∂f (x)
∂u =

∑

v∈children(u)
∂f (x)

∂v
∂v
∂u in the

inverse order used to compute f (x).
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Supervised, Semi-Supervised, Unsupervised

1 Unsupervised Learning: the goal is to capture salient
features of true unknown distribution of xt ’s, or estimate the
density p(x). If f (x) estimates the density and integrates to
1, we can choose negative log-likelihood (NLL)
Ct = − log f (xt) = KL(p||f ) + H(p). It may be difficult to
satisfy the sum to 1 constraint.

2 Supervised Learning: Ct compares f (xt) with some observed
target yt , e.g.,
Ct = (f (xt)− yt)

2 for regression
Ct = − log softmax(f (xt))yt = conditional NLL for
probabilistic classification, with
u = softmax(v)⇔ ui = evi

P

j e
vj , and softmax(f (xt))i estimates

P(Yt = i |xt). Often (xt , yt) illustrates an abstraction that we
want the learning algorithm to capture.

3 Semi-supervised Learning: Many unlabeled inputs xt along
with a few (xt , yt) pairs available.
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RBF Networks and Local Representations

If each neuron of our MLP computes
e−||x−w ||2/σ2

for input x , with parameters w and σ, we have a Radial Basis
Function (RBF) network (Moody and Darken, 1989;
Niranjan and Fallside, 1990).

This is a kind of grandmother cell: when x is close to the pattern
w , the cell is activated strongly.

Small σ → 0 few cells respond. softmax(activations) → normalized
RBFs, the nearest neighbors of x always respond. σ → 0 :
one-hot encoding of the input (the nearest neighbor responds).

Unsupervised learning can be used to set the w : e.g. pick a
random subset of examples xt , or all of them, or a smartly selected
subset of the most representative prototypes. This has given rise to
Support Vector Machines (SVMs).
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Local vs Distributed Representation

RBF net w/ small σ very inefficiently represents the input.

What about large σ? f (x) too smooth.

As σ →∞, we can show that

1 f (x)→ 2nd order polynomial in x , then

2 f (x)→ affine function of x , then

3 f (x)→ constant.

More units are on, but they mostly do the same thing!

Solution?

Let the hidden units be more “orthogonal” (e.g. as in PCA),
describing different aspects of the input ⇒ distributed
representations (Hinton, 1986;
Rumelhart, McClelland and the PDP Research Group, 1986;
Bengio, Ducharme and Vincent, 2001)
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Local vs Distributed Representation

To abstract the representation problem a bit, consider the hidden
units are just binary and consider two extremes:

1 With h independent binary hidden units (distributed
representation) one can represent 2h different input patterns

2 With h maximally dependent binary hidden units (e.g.,
one-hot), one can represent only h different input patterns

⇒ distributed representations can be exponentially more
efficient than local ones. (Bengio and Le Cun, 2007)

More evidence of this later.
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Auto-Associators

Auto-Associator = unsupervised learning of internal distributed
representation h(x), a.k.a. auto-encoder
(Rumelhart, McClelland and the PDP Research Group, 1986;
DeMers and Cottrell, 1993; Hinton and Zemel, 1994).
Two functions in an AA:

1 h(x) maps x to distributed representation (encoder)
2 P(X = x |H = h) tries to reconstruct x from h (decoder)

If P(X = x |H = h(x)) = 1, we have perfect reconstruction.

Can be implemented with an MLP. Simplest AA, for binary inputs:

h(x) = sigmoid(b + Wx)

P(X = x |H = h) =
∏

i

P(Xi = xi |H = h)

P(Xi = 1|H = h) = sigmoid(ci + V ′
i h)

often find V ≈W ′ so may force V = W ′.

For Gaussian inputs, can take P(X = x |H = h) ∝ e−0.5||x−Vh||2/σ2
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Convolutional Neural Networks

Convolutional neural networks exploit simple properties of images:

1 translation invariance

2 nearby pixels have stronger statistical dependency

3 hierarchy of local to global abstractions makes sense

This is achieved with three tricks (LeCun et al., 1989;
LeCun and Bengio, 1995; LeCun et al., 1998b):

1 Partial + local connectivity: hidden neurons only connected
to subset of spatially near neurons at previous layer.

2 Weight sharing: each neuron gets duplicated at different
locations

3 Pooling / subsampling: the max or average of nearby
neurons is propagated upward, making the network very
robust to small distortions of input image
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Convolutional Neural Networks

Example of supervised convolutional network successfully trained
on handwritten digit image classification tasks:

Neurons at the same layer with the same weights compute a
convolution of the image at the previous layer, followed by a
non-linearity: result = another image.

Different convolution kernels = different image planes.

Yoshua Bengio CIAR 2007 Summer School



Convolutional Neural Networks

Convolutional layer with K × K convolutions:

yk(i , j) = tanh(bk +

K
∑

s=1

K
∑

t=1

∑

l

wk,l ,s,t xl(i − s, j − t))

Subsampling layer S × S :

yk(i , j) = tanh(bk + ck

S×(i+1)−1
∑

i ′=S×i

S×(j+1)−1
∑

j ′=S×j

xk(i ′, j ′))

Implementation: must pay attention to matching image sizes.

Time-Delay Neural Networks (TDNN): same principle, 1-dimension
(time). (Lang and Hinton, 1988)

Yoshua Bengio CIAR 2007 Summer School



Convolutional Neural Networks

Summary of comparative results (LeCun et al., 1998a):
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Local vs Non-Local Generalization

Local generalization: core of most non-parametric ML

To infer f at x , look for training examples xi near x

Simple example: nearest neighbor classifier

Fails when target function varies a lot compared to how much
the training examples “fill the space”

?

test example

training
examples

Variations are not arbitrary: they

are caused by the structure of the

world and the laws of physics.

(Bengio and Monperrus, 2005;
Bengio, Delalleau and Le Roux, 2006)
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Smoothness Prior is Not Enough

Assume target f more likely to be smooth, i.e., if x ≈ y then
f (x) ≈ f (y).

Useful but unsufficient prior!

unfit to learn functions that vary a lot, e.g. needed for
complex AI tasks, e.g. natural language, machine translation,
general-purpose vision, robotics...

Problem with SVMs with local kernel, manifold learning
algorithms (LLE, ISOMAP, kernel PCA), graph-based
semi-supervised learning, decision trees...
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Local Learning Algorithms

A learned parameter of the model influences the value of the
learned function in a local area of the input domain.

With local kernel machine

f (x) =
∑

i

αiK (x , xi ),

αi only influences f (x) for x near xi .

Examples:

nearest-neighbor algorithms

local kernel machines

most non-parametric models except multi-layer neural
networks and decision trees and boosted trees
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Mathematical Problem with Local Learning

Theorem

With K the Gaussian kernel and target f (·) changing sign at least
2k times along some straight line (i.e. that line crosses the decision
surface at least 2k times), then at least k examples are required.

decision surface

Class −1

Class 1

With local kernels, learn-
ing a function that has
many “bumps” requires as
many examples as bumps.
(Bengio, Delalleau and Le Roux, 2006;
Bengio and Le Cun, 2007)

Yoshua Bengio CIAR 2007 Summer School



The Curse of Dimensionality

Mathematical problem with classical non-parametric models

May need to have examples for each probable combination of the
variables of interest.

OK for 2 or 3 variables,
⇒ NOT OK for more abstract concepts...
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Mathematical Problem with Local Kernels

Theorem

With K the Gaussian kernel, and the goal
to learn a maximally changing binary
function (f (x) 6= f (x ′) when |x − x ′| = 1)
with d inputs, then at least 2d−1 examples
are required.

⇒ need to cover the space of possibilities with examples

⇒ may require nb examples exponential in nb inputs

= strongly negative mathematical results on local kernel machines

Other similar results in (Bengio, Delalleau and Le Roux, 2006).
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Curse of Dimensionality for Manifold Learning

Many manifold learning algorithms are
kernel methods with an “equivalent” lo-
cal kernel:

LLE (Saul and Roweis, 2002)

Isomap (Tenenbaum, de Silva &

Langford 2000)

kernel PCA
(Schölkopf, Smola and Müller, 1996)

dim. red. in spectral clustering
(Weiss, 1999)

Laplacian Eigenmaps
(Belkin and Niyogi, 2002),

etc.

However, the kernel KD is data-
dependent. (Bengio et al., 2004)
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Ex: Translation of a High Contrast Image

∃ examples of non-local learning with no domain-specific prior
knowledge, successfully learning such manifolds (rotations and
translations), (Bengio and Monperrus, 2005;
Bengio, Larochelle and Vincent, 2006), generalizing far from
training examples.
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Decision Trees

(Breiman et al., 1984)

Non-parametric

Non-convex
optimization but
greedy heuristics work
well

Recursively partitions
the space, usually
axis-wise; puts
constant prediction
on leaves (rect.
regions).

x1<2

x2<1

x1<0.5 x1<1.25

R1

R2 R3 R4 R5

x1

x2

2

R1
1

R2

.5

R3

R4

R5

1.25
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Negative Results on Decision Trees

Decision Trees do not Generalize to New Variations!

Proposition

If N is the number of pieces required to approach a target function
with a piece-wise constant approximation with error ǫ, then a
constant-leaves decision tree requires at least N examples to obtain
generalization error ǫ.

Target fn may have a huge nb of variations, but these may be
structured = “simple” expression, yet not tree-learnable.

Corollary

Nb exemples required to train a constant-leaves decision tree can
grow exponentially with d (input dim.)

(Bengio, Delalleau and Simard, 2007)
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Negative Results on Decision Trees

Lemma

On d-bits parity task, constant-leaves decision tree with
axis-aligned decision nodes will have a generalization error of 1

2 on
leaf nodes of depth less than d .

Theorem

On d-bits parity task, constant-leaves decision tree with
axis-aligned decision nodes trained with n examples will have
generalization error in [12 − n

2d+1 , 1 − n
2d+1 ].

Corollary

On d-bits parity task, constant-leaves decision tree with
axis-aligned decision nodes requires at least 2d (1− 2ǫ)
examples to reach gen. error ≤ ǫ.
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Another Justification for Boosting Trees

Boosted classification trees (Freund and Schapire, 1996):
f (x) = sign(

∑

i αiTi(x)) (Ti (x) = prediction of i -th tree)

Often generalize better than single trees

Many explanations have already been proposed.

Another: above theorems do not apply to boosted trees.

Proposition

A sum of n trees can represent a nb of piece-wise constant regions
exponential in n, whereas a single tree can only represent a number
of regions = nb of leaves.

But boosted trees really have depth of only 3...
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Depth of Architectures

(Bengio and Le Cun, 2007)
Depth = number of levels of composition of adaptable elements:

kernel machines: shallow

boosting: generally shallow

multi-layer neural networks:
usually shallow, can be deep?

decision trees: shallow

parametric graphical models:
human-labor intensive

Non-parametric ones can theoretically
approximate any continuous function.
But how efficiently?
(computational, statistical)



... ...
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Inefficiency of Shallow Architectures

Mathematical results from complexity theory of boolean circuits:

Functions representable compactly by a deep circuit often need
circuits of exponential size to be represented by a shallow
circuit (Hastad, 1987; Allender, 1996)



Very fat shallow circuit
⇒ many adjustable elements
⇒ many examples needed



Brain has a deep architecture
Number of levels should not be fixed but data-dependent. See
also (Utgoff and Stracuzzi, 2002; Bengio and Le Cun, 2007).
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Optimizing Deep Architectures

Until 2006, we knew no way to train a deep neural net to
obtain better results than a shallow one (1 or 2 hidden layer),
except for convolutional neural nets (Tesauro, 1992).

Training seemed to get stuck in sub-optimal solutions, local
minima or plateaus or just a too convoluted error surface.

We still do not know why deeper is ok for convolutional nets.

We still do not fully understand why it is so difficult to
optimize deep architectures by gradient-based techniques.

But DEPTH seems a necessary condition for statistical
efficiency!
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What happened in 2006?

Geoff Hinton, Simon Osindero and Yee-Wye Teh published a
Neural Computation paper on “A fast learning algorithm for deep
belief nets” (2006), that introduces these ideas:

A deep unsupervised network could be trained greedily, layer
by layer.

Each layer tries to model its inputs.

Each layer outputs a representation of its input.

This unsupervised net is a good initialization for a supervised
net.

Presumably easier to learn “locally” (within each layer) than
having to coordinate all the layers in a deep network.
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Summary for Day 2

Greedy learning of multiple levels of abstractions

Partially supervised training of DBNs

Dimensionality reduction vs Entropy minimization

Baby AI School: curriculum for training AIs

RBM are universal approximators

Global training of DBNs

Space-time hierarchy

Culture + language: humanity as optimization device
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Learning High-Level Abstractions

High-level abstraction =
a highly-varying, complex, but structured function

e.g. semantic concept of “chair” is a higher-level abstraction than
a recognizer of a particular instance of chair, which is a higher-level
abstraction than an oriented edge-detector.

Such high-level abstraction includes a very large set of possible
inputs that can be very different from each other in terms of raw
sensory patterns (e.g. “Euclidean distance” in retinal image).
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Greedy Learning of Multiple Levels of Abstractions

Learning AI ⇒ learning abstractions

General principle: Greedily learning simple things first,
higher-level abstractions on top of lower-level ones.

Implicit prior (Bengio et al., 2007): restrict to functions that
1 can be represented as a composition of simpler ones such that
2 the simpler ones can be learned first (i.e., are also good models

of the data).

Coherent with psychological literature (Piaget, 1952).
We learn baby math before arithmetic before algebra before
differential equations . . .

Also some evidence from neurobiology: (Guillery, 2005) “Is
postnatal neocortical maturation hierarchical?”.
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Experiments on Greedy Layer-Wise Initialization

(Bengio et al., 2007)
train. test.

Deep Belief Net, unsupervised pre-training 0% 1.2%

Deep net, auto-associator pre-training 0% 1.4%

Deep net, supervised pre-training 0% 2.0%

Deep net, no pre-training .004% 2.4%

Shallow net, no pre-training .004% 1.9%

Classification error on MNIST digits benchmark training,
validation, and test sets, with the best hyper-parameters according
to validation error.

Deep nets with 3 to 5 hidden layers.
Selects around 500 hidden units per layer.

Supervised greedy is too greedy.
Greedy unsupervised initialization works great.
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Is it Really an Optimization Problem?

Why 0 train error even with deep net / no-pretraining?

Classification error on MNIST with 20 hidden units on top layer:

train. test.

Deep Belief Net, unsupervised pre-training .008% 1.5%

Deep net, autoassociator pre-training 0% 1.6%

Deep net, supervised pre-training 0% 1.9%

Deep net, no pre-training .59% 2.2%

Shallow net, no pre-training 3.6% 5.0%

Because

1 last fat hidden layer did all the work

2 using a poor representation (output of all previous layers)

Yes it is really an optimization problem
and a representation problem
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Extending RBMs to Continuous Inputs

Easy to change the energy function and range of values to obtain
different models. (Bengio et al., 2007)

Continuous range of values: get exponential (0,∞) or
truncated exponential (0, 1) density ∝ 1u∈(0,1)e

−ua.
Consider unit ui , other layer z, with energy term −uia(z).

Add diagonal quadratic term −d2
i u2

i : Gaussian
units (Welling, Rosen-Zvi and Hinton, 2005).

Warning: Gaussian and exponential units have linear expectation.

Used truncated exponential density: sigmoidal non-linearity.
E [y |z] = 1

1−exp(a(z)) + 1
a(z) .
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Deep Networks vs SVMs

From top to bottom,
samples from rectangles
and rectangles-image
(Larochelle et al., 2007)

Gradually more complex tasks:
Dataset SVMrbf SVMpoly NNet DBN-1 SAA-3 DBN-3

mnist-basic 2.2% 2.9% 3.2% 3.0% 2.45% 2.4 %
mnist-rot 10.5% 12.7% 16.5% 12.7% 11.6% 12.9%
mnist-back-rand 14.1% 16.5% 19.4% 9.2% 11.4% 5.9%
mnist-back-img 22.5% 23.6% 29.2% 16.4% 23.3% 17.5%
mnist-rot-back-img 31.0% 36.0% 40.8% 31.4% 23.1% 26.9%
rectangles 2.43% 3.2% 7.9% 6.0% 2.1% 2.6%
rectangles-img 23.5% 24.2% 31.1% 23.4% 23.9% 22.0%
convex 19.1% 19.0% 27.7% 20.3% 18.9% 17.6%
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Combining Supervised & Unsupervised

MNIST: nice clusters in the distribution
⇒ input distribution structure reveals the target class.
f1(x) = P(Y |x) related to f2(x) = P(x). Otherwise? combine
supervised & unsupervised layer-wise greedy initialization. Add the
two stochastic gradient updates (Bengio et al., 2007)
Similar to Partial Least Squares
EASY TO DO SEMI-SUPERVISED LEARNING WITH DBNs
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More experimental results

(Bengio et al., 2007)

Abalone Cotton
MSE class. error

DBN, Gauss inputs, partially sup 4.18 31.4%

DBN, Gauss inputs, unsup 4.19 35.8%

DBN, Bin inputs, partially sup 4.28 43.7%

DBN, Bin inputs, unsup 4.47 45.0%

Logistic regression · 45.0%

Deep Network, no pre-training 4.2 43.0%

MSE on Abalone task and classification error on Cotton task,
showing improvement with Gaussian vs binomial units and partial
supervision
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Representational Ability of RBMs and DBNs

We already know that MLPs are universal approximators of
functions, with enough hidden units. What about RBMs and
DBNs for distributions?

RBMs become non-parametric distribution estimators when we
allow the number of hidden units to vary.
Questions:

Can a single RBM model any distribution, with enough hidden
units?

How much additional modeling power can a DBN bring by
stacking more RBMs on top of a fixed-size RBM?

What about an infinite number of layers?
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RBMs are Universal Approximators

With enough hidden units any distribution can be represented
exactly: (paper to appear by Le Roux & Bengio)

Theorem

Any distribution over {0, 1}n can be approximated arbitrary well
with a RBM with k + 1 hidden units where k is the number of
input vectors whose probability is not 0.

Adding one hidden unit (with proper parameters) increases
log-likelihood:

Theorem

Let u be an arbitrary distribution over {0, 1}n and let P be a RBM
with marginal distribution p over the visible units such that
KL(u||p) > 0. Then there exists a RBM Q composed of P and an
additional hidden unit, with marginal distribution q over the visible
units such that KL(u||q) < KL(u||p).
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OOS NLL = E[Coding Cost]

Expected coding cost of examples = out-of-sample negative
log-likelihood

Coding cost = Ep[− log q(x)]

where p = real distribution, q used to encode and select − log q(x)
bits for pattern x .

Shannon: coding cost minimized when q = p, equal entropy.

For a fixed data set, one must transmit both the data codes and
the model with all its parameters (learned from that
data). (Zemel, 1993; Hinton and Zemel, 1994)

But one can also transmit just the learning algorithm (very small!)
and then process the data online (update the model after each
example), transmitting only the online codes:

Coding cost of xt = − log P(xt |θ(x1, . . . xt−1))
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Using Jensen

log p(x) =
∑

h

p(h|x) log p(x) =
∑

h

p(h|x) log p(x |h)p(h)+Hp(h|x)

log p(x) = log
∑

h

p(x |h)p(h) = log
∑

h

q(h|x)
p(x |h)p(h)

q(h|x)

≥
∑

h

q(h|x) log
p(x |h)p(h)

q(h|x)
=

∑

h

q(h|x) log p(x |h)p(h) + Hq

which shows that the bound is tight when q(h|x) = p(h|x) (bits
back)
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Optimizing the Variational Bound

Hinton’s (2006) variational bound justifies improvement of adding
a layer:

log P(h0) ≥
∑

h1

Q(h1|h0)
[

log P(h1) + log P(h0|h1)
]

−
∑

h1

Q(h1|h0) log Q(h1|h0)

Greedy strategy: freeze first layer P(h0|h1)
and optimize P(h1).

Proposition: Maximizing this variational
bound non-parametrically gives us:

P∗(h1) =
∑

h0

p0(h0)Q(h1|h0)

where p0 = input data. Using our first theorem,
∃ RBM achieving P∗(h1).
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Assuming Memory-Based Top Layer

pk = distribution over xk after k Gibbs up-down steps.
p0 = data distribution, p∞ = model distribution.

Proposition

In 2-layer DBN, using a 2nd layer RBM achieving P∗(h1),
KL(data = p0||model = p∞) = KL(p0||p1).

The best we can hope when maximizing the bound, when adding a
second RBM, is KL(p0||p1) of the 1st RBM.

⇒ To get KL(p0||p1) = 0 need p0 = p1. Obtained when the first
RBM perfectly fits the data, so that the second layer h2 seems
useless. It can also be achieved when the first RBM has infinite
weights (deterministic) and just codes x in h perfectly.
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Memory-Based Top Layer: Discussion

Puzzle: the best that can be achieved by adding a second layer
(wrt variational bound) only depends on the first layer’s
KL(p0||p1), which decreases with increasing capacity of the first
layer. This is generally an improvement over having only the first
layer (KL(p0||p∞) ≥ KL(p0||p1)). But if the first layer becomes
large, we do not need the second layer!

Does that mean that adding layers is useless? We believe not.

• We maximized the variational bound rather than likelihood.
• Even if adding layers does not allow us to perfectly fit the data, the
distribution of our model is closer to the empirical distribution than a
single lean RBM.
• Extra layers regularize and hopefully learn better representations.

This also suggests using alternative criteria to train DBNs, that

approximate KL(p0||p1), and which can be computed before h2 is added,

but that unlike Contrastive Divergence, take into account the fact that

more layers will be added later.
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Minimizing KL(p0||p1)

Minimize
KL(p0||p1) = − log n − 1

n

∑n
i=1 log 1

n

∑n
j=1

∑

h P(xi |h)P(h|xj)
on 1-D ball data.

 0.1

 1

 10

 0  50  100  150  200  250  300  350  400  450  500

K
L 

di
v.

 to
 p

0

epoch

CD-trained DBN
KLp0p1-trained DBN

RBM1-p1

KL divergence w.r.t. epochs, b/w empirical p0 and (top) DBN
trained greedily with CD, (middle) DBN trained greedily with
KL(p0||p1) on the 1st layer, and CD on 2nd, (bottom) distribution
p1 of 1st RBM, which should bound the other two curves.

Is there a good tractable approximation/gradient?
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Global Unsupervised Optimization of Deep Architectures

1 Wake-sleep (Geoff will talk about it): train P(x |h) from
samples of Q(h|x)p0(x), and train Q(h|x) from samples of
P(h, x).

2 Full auto-associator (Russ talked about it): minimize
reconstruction error of the big auto-associator (unfolding at
top layer).

3 All auto-associators: minimize reconstruction error of all the
intermediate auto-associators reconstructing hi(x) using k
layers above, for all values of k and i .

4 Single-Term Bound: Look for transformation h(x) of the data
that preserves all the interesting information in x while
making distribution h(x) easy to model (low entropy).

5 Variational Bound: newly discovered by Geoff...
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Optimizing a Transformation

Consider a model with two blocks P2(h) and P1(x |h) (each could
have layers). If h is discrete,

log P(x) ≥ B(x) = log P1(x |h = f (x))P2(h = f (x))

There are 3 “parameters”: P1, P2, and f .

Transform x into easier to model h without throwing away
information

P2 optimized as in DBN, but we propagate gradient on f (x)

P1 optimized easily because trained with (h = f (x), x)
supervised pairs.

Gradient on f is obtained by propagating gradients from
log P1(x |h = f (x)) and log P2(h = f (x)).

Magically, ∂ log P2(h=f (x))
∂f (x) = ∂ log G2(h=f (x))

∂f (x) where

G2(h) = −FE2(h) = log P2(h) + log Z2, computed easily.
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Optimizing a Coding Cost

Optimizing a transformation = optimizing coding cost

We start with the coding cost of the raw data using some model P
(say an RBM). Cost of xt = −logPx(xt |θ(xt−1, xt−2, . . .)).

We look for a transformation f (.) such that the coding cost =
entropy is reduced.

Pay for the loss of bits from x to f (x), via
log Px |h(xt |f (xt), θ(xt−1, xt−2, . . .)).

Pay for encoding f (xt): − log Ph(f (xt)|θ(xt−1, xt−2, . . .)).

Note 1: 2 cases, f is invertible or not.

Note 2: f (xt) can be pseudo-random without encurring a penalty,
even if f (x) 6= P(h|x).
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Results of Single-Term Bound on Toy Task

Toy task:
1-dimensional ball on
a 10-bit screen with
size 1,2 or 3, and
color black or white.

10 inputs, 5
penultimate hidden,
10 top hidden

Can measure true
likelihood exactly

Compare greedy
training (CD only on
each layer) with
optimizing the
1-term Bound.
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The Bound Becomes Tighter

As B(x) is increased the bound becomes tighter!

This is true even when we only train with CD!
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Unbiased Gradient Estimator of the Variational Bound

Geoff’s new bound: maximizing variational bound globally!

log P(x) ≥ G(x) = G1(x) +
∑

h1,...,hL
Q(h|x)∆G (h)− log ZL+1

where ∆G (h) =
∑L

i=1 Gi+1(hi )− Gi(hi ), with Gi+1(hi ) = marginal
goodness of input (hi ) of RBM i + 1, Gi(hi ) = marginal goodness
of output (hi ) of RBM i , and Q(h|x) =

∏L
i=1 Pi (hi |hi−1).

Sketch of proof: Jensen + cancellation of log Zi ’s, e.g. for 2 RBMs

log P(x) ≥ HQ +
∑

h P1(h|x)(log P2(h) + log P1(x |h))

and use log P1(x) = HQ +
∑

h P1(h|x)(log P1(h) + log P1(x |h)) to
substitute

∑

h P1(h|x) log P1(x |h) above:

log P(x) ≥ HQ +
∑

h P1(h|x)(log P2(h) + log P1(x)− HQ − log P1(h))

= log P1(x) +
∑

h P1(h|x)(log P2(h)− log P1(h))

= G1(x) + (
∑

h P1(h|x)(G2(h)− G1(h))) − log Z2
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Unbiased Gradient Estimator of the Variational Bound

⇒ can obtain unbiased gradient of G (x) wrt lower RBMs
parameters (top RBM can be trained by CD), sampling from
Q(h|x), using straightforward differentiation:

∂G(x)

∂W l
ij

= EQ [Pl (hli = 1|hl−1)hl−1,j − Pl(hl−1,j = 1|hl )hli

+(hli − Pl (hli = 1|hl−1))hl−1,j∆G (h)]

Note sampling from Q is straightforward (stochastic feedforward
path).

Problem noted by Tim: information about good value of samples h
for higher RBMs is propagated through a single global scalar
∆G (h).

Solution: Geoff’s intuitive mean-field version...
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Dream Data As Negative Examples

Examples generated by the model can serve as negative examples,
and a classifier that helps separate positive (real) from negative
(dream) examples can be used to improve the total free energy.

pn(x) =
1

Zn
qn(x) =

1

Zn
eGn(x) =

1

Zn
e

Pn
i=1 wigi (x)

∂ log p(x)

∂wn
= 0

⇒ wn = σ−1(Edata[gn(x)])− log Epn−1 [gn(x)] + log Epn−1 [1− gn(x)]
i.e. only doing averages over real and fantasy data (generated
before adding n-th term wngn(x)) obtain wn, given gn.

Separating positive examples from the rest ⇒ good likelihood.
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Dream Data As Negative Examples

See also (Welling, Zemel and Hinton, 2003) (self-supervised
boosting)

Goodness Gn(x) is a classifier of fantasy vs real examples.

Taking wn → 0, one can show that the optimal maximum
likelihood gn separates real examples from fantasy generated by
previous model pn−1.

⇒ can apply classifier technology (e.g. back-prop) to improve an
energy-based model.

In general, not clear how to sample efficiently from energy-based
models. Special case of RBM works if we take units in pairs with
the opposite weights and bias. Gives a recipe for incrementally
adding hidden units to an RBM.
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Why Dimensionality Reduction May Be Wrong

Usual story for dimensionality reduction: unsupervised
transformation into more relevant space which captures the
main factors of variation = manifold. Throw noise out.

Manifold near which the data concentrates = set of
constraints

violations of these constraints can be very important

Dimensionality reduction forces EVERY input example
to be compressed into the same nb bits

Better: want small AVERAGE nb of bits per example:
want small entropy

Imagine animal with mostly boring useless images (take few
bits) and few important and complicated images (prey,
predator)... who will survive?
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A Curriculum for Training AIs?

Learning high-level abstractions is fundamentally difficult
(NP-hard in the worst case).

Experiments suggest that while trying to optimize directly a
deep architecture is difficult, one can first teach it the
lower-level concepts and once they are mastered show it
more advanced concepts based on previously learned ones.

Humans do not learn very abstract concepts early on! It takes
20 years of guided learning to obtain a math major!

Why should we expect computers to need less help?

Future AI research may require help from educators to design
an appropriate sequence of learning tasks for AIs.
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Critical Mass Hypotheses

Two forms:

As we train with more and richer data, using models with
more and more capacity (but maybe not much more
sophisticated than current DBN technology), abstractions
that were apparently difficult to learn will be learned more
easily (because of the reinforcing signals from many sources
about the usefulness of these abstractions).

As we build better models, there will come a time when the
learning systems can take much better advantage of the
massive amount of image/video/text data available from
human culture (e.g. through the web).
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Nailing the Semantics

What is missing from today’s AI and ML research? Nailing the
semantics.

What would be more impressive in terms of AI?

1 Beating all other language models by ǫ in perplexity? or

2 Demonstrating a learning algorithm that can nail the
semantics of a “baby” virtual world (where current
state-of-the-art still fails miserably).

I vote for the 2nd: work with a small vocabulary, language data
associated with meaning (e.g., images).

+ no guarantee that low perplexity ⇒ language understanding!
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The Baby AI Project

Learning multiple levels of representation / abstraction from
multiple modalities: language + video

Huge amounts of data → online learning
Deep architectures = multiple levels of abstractions (both
context and input)
necessary to avoid curse of dimensionality
Learn more abstract concepts on top of / after simpler ones
e.g. first simple static shapes, then video + naming actions &
movement
Teach the Baby AI with a sequence of tasks = curriculum
Use mostly unlabeled data, exploit the little labeled data as
hints
AI should understand semantics of language + images:
multi-modal architectures

We already have a data generator for a simple “block world” (at
different degrees of complexity) with images and natural language.
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Baby AI Datasets

We created programs that gener-
ate artificial images and accompa-
nying text.
Images contain 1, 2, 3 or 4 objects
(2-D shapes).
Factors of variation: size, posi-
tion, rotation, shape, color, com-
binatorics over multiple objects.

As many examples as wanted can be generated.

Tasks are already very challenging for current learning algorithms.
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Baby AI Datasets

Text is “natural language”-like. One or few sentences about the
image. Statement or question + answer pair.

Statement + image pairs can be used to set up match/nomatch
classification tests.

Question/answer pairs can be used to set up more standard
classification problems (question + image ⇒ answer) for
comparisons with state-of-the-art classifiers.

Topic Question given to the computer Answer

Color There is a small triangle. What color is it? Green

Shape What is the shape of the green object? Triangle

Location Is the blue square at the top or at the bottom? At the top

Size There is a triangle on the right.

Is it rather small or bigger? Small

Size (relative) Is the square smaller or bigger than the triangle? Bigger

Datasets and python scripts will soon be released on our web page.
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Space-Time Hierarchy

Efficient information propagation ⇒ Space-Time Hierarchy

Unsupervised learning / discovering the dependencies between N
(large) variables organized topologically in 1D (long sequence) or
2D (big image).

Fully connected graphical model with latent variable (e.g.
huge RBM): no depth, too many parameters. Every variable 2
hops away from every other one.

Locally connected (dynamical Bayes net, recurrent net, MRF):
most variable pairs are O(N) or O(

√
N) hops from each other.

Hierarchical structure: all variables are no more than
O(log N) hops from each other.
Gradient needs only to propagate through O(log N) levels.

Hierarchical structure useful EVEN IF THE DATA DO NOT HAVE
AN INHERENT HIERARCHICAL STRUCTURE.

Yoshua Bengio CIAR 2007 Summer School



Culture and Language as Optimization Techniques

Since optimizing brains is NP-hard and frought with local minima,
nature may well have used culture and language to make the whole
human species a large optimization machine for the space of
abstractions (= ideas) helpful to humans:

Abstractions that have worked in the past are taught to us
through language.

Human society (over generations) performs a random search
in the space of neurally implementable abstractions.

Language is a low-capacity discrete channel to hint at the
good abstractions previously discovered. Only high-level and
discrete abstractions can be verbalized.

We propagate what we believe are good ideas as well as our
new ideas (even more important).

We can only verify the utility of some of them...

Previous work in this direction: (Hutchins and Hazlehurst, 1995)
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Conclusions

For AI ⇒ must learn high level abstractions efficiently
⇒ deep architectures (statistical efficiency)

Local or shallow learning algorithms (kernels, trees, local
non-parametric) are hit by the curse of dimensionality
Deep architectures not trainable? computational efficiency?
new methods appear to break through the obstacle
Basic principle: greedy layer-wise unsupervised
RBMs as building blocks. Are universal approximators for
discrete distributions. CD works well.
Deep neural networks can learn high-level abstractions by first
learning simpler concepts and then composing them ⇒
curriculum
Interesting open questions remain about global training of
DBNs.
Training a deep net is hard: higher-level abstractions may
require parallel search, analog to human society as learning
device.
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