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Abstract

It has been shown that increasing model

depth improves the quality of neural ma-

chine translation. However, different

architectural variants to increase model

depth have been proposed, and so far, there

has been no thorough comparative study.

In this work, we describe and evaluate

several existing approaches to introduce

depth in neural machine translation. Ad-

ditionally, we explore novel architectural

variants, including deep transition RNNs,

and we vary how attention is used in

the deep decoder. We introduce a novel

"BiDeep" RNN architecture that combines

deep transition RNNs and stacked RNNs.

Our evaluation is carried out on the En-

glish to German WMT news translation

dataset, using a single-GPU machine for

both training and inference. We find that

several of our proposed architectures im-

prove upon existing approaches in terms

of speed and translation quality. We obtain

best improvements with a BiDeep RNN of

combined depth 8, obtaining an average

improvement of 1.5 BLEU over a strong

shallow baseline.

We release our code for ease of adoption.

1 Introduction

Neural machine translation (NMT) is a well-

established approach that yields the best results

on most language pairs (Bojar et al., 2016; Cet-

tolo et al., 2016). Most systems are based on the

sequence-to-sequence model with attention (Bah-

danau et al., 2015) which employs single-layer re-

current neural networks both in the encoder and in

the decoder.

Unlike feed-forward networks where depth is

straightforwardly defined as the number of non-

input layers, recurrent neural network architec-

tures with multiple layers allow different connec-

tion schemes (Pascanu et al., 2014) that give rise to

different, orthogonal, definitions of depth (Zhang

et al., 2016) which can affect the model perfor-

mance depending on a given task. This is fur-

ther complicated in sequence-to-sequence models

as they contain multiple sub-networks, recurrent

or feed-forward, each of which can be deep in dif-

ferent ways, giving rise to a large number of pos-

sible configurations.

In this work we focus on stacked and deep tran-

sition recurrent architectures as defined by Pas-

canu et al. (2014). Different types of stacked ar-

chitectures have been successfully used for NMT

(Zhou et al., 2016; Wu et al., 2016). However,

there is a lack of empirical comparisons of dif-

ferent deep architectures. Deep transition archi-

tectures have been successfully used for language

modeling (Zilly et al., 2016), but not for NMT

so far. We evaluate these architectures, both

alone and in combination, varying the connec-

tion scheme between the different components and

their depth over the different dimensions, measur-

ing the performance of the different configurations

on the WMT news translation task.1

Related work includes that of Britz et al. (2017),

who have performed an exploration of NMT ar-

chitectures in parallel to our work. Their ex-

periments, which are largely orthogonal to ours,

focus on embedding size, RNN cell type (GRU

vs. LSTM), network depth (defined according

to the architecture of Wu et al. (2016)), atten-

tion mechanism and beam size. Gehring et al.

(2017) recently proposed a NMT architecture

based on convolutions over fixed-sized windows

1http://www.statmt.org/wmt17/

translation-task.html

http://www.statmt.org/wmt17/translation-task.html
http://www.statmt.org/wmt17/translation-task.html


rather than RNNs, and they reported results for

different model depths and attention mechanism

configurations. A similar feedforward architec-

ture which uses multiple pervasive attention mech-

anisms rather than convolutions was proposed by

Vaswani et al. (2017), who also report results for

different model depths.

2 NMT Architectures

All the architectures that we consider in this work

are GRU (Cho et al., 2014a) sequence-to-sequence

transducers (Sutskever et al., 2014; Cho et al.,

2014b) with attention (Bahdanau et al., 2015). In

this section we describe the baseline system and

the variants that we evaluated.

2.1 Baseline Architecture

As our baseline, we use the NMT architecture im-

plemented in Nematus, which is described in more

depth by Sennrich et al. (2017b). We augment it

with layer normalization (Ba et al., 2016), which

we have found to both improve translation quality

and make training considerably faster.

For our discussion, it is relevant that the base-

line architecture already exhibits two types of

depth:

• recurrence transition depth in the decoder

RNN which consists of two GRU transitions

per output word with an attention mechanism

in between, as described in Firat and Cho

(2016).

• feed-forward depth in the attention network

that computes the alignment scores and in the

output network that predicts the target words.

Both these networks are multi-layer percep-

trons with one tanh hidden layer.

2.2 Deep Transition Architectures

In a deep transition RNN (DT-RNN), at each time

step the next state is computed by the sequen-

tial application of multiple transition layers, effec-

tively using a feed-forward network embedded in-

side the recurrent cell. In our experiments, these

layers are GRU transition blocks with indepen-

dently trainable parameters, connected such that

the "state" output of one of them is used as the

"state" input of the next one. Note that each of

these GRU transition is not individually recurrent,

recurrence only occurs at the level of the whole

multi-layer cell, as the "state" output of the last

. . .

. . .

. . .

Figure 1: Deep transition decoder

GRU transition for the current time step is carried

over as the "state" input of the first GRU transition

for the next time step.

Applying this architecture to NMT is a novel

contribution.

2.2.1 Deep Transition Encoder

As in a baseline shallow Nematus system, the en-

coder is a bidirectional recurrent neural network.

Let Ls be the encoder recurrence depth, then for

the i-th source word in the forward direction the

forward source word state
−→
h i ≡

−→
h i,Ls

is com-

puted as:

−→
h i,1 = GRU1

(

xi,
−→
h i−1,Ls

)

−→
h i,k = GRUk

(

0,
−→
h i,k−1

)

for 1 < k ≤ Ls

where the input to the first GRU transition is the

word embedding xi, while the other GRU transi-

tions have no external inputs. Recurrence occurs

as the previous word state
−→
h i−1,Ls

enters the com-

putation in the first GRU transition for the current

word.

The reverse source word states are computed sim-

ilarly and concatenated to the forward ones to

form the bidirectional source word states C ≡
{[−→

h i,Ls

←−
h i,Ls

]}

.

2.2.2 Deep Transition Decoder

The deep transition decoder is obtained by extend-

ing the baseline decoder in a similar way. Recall

that the baseline decoder of Nematus already has

a transition depth of two, with the first GRU tran-

sition receiving as input the embedding of the pre-

vious target word and the second GRU transition

receiving as input a context vector computed by

the attention mechanism. We extend this decoder



architecture to an arbitrary transition depth Lt as

follows:

sj,1 = GRU1 (yj−1, sj−1,Lt
)

sj,2 = GRU2 (ATT(C, sj,1), sj,1)

sj,k = GRUk (0, sj,k−1) for 2 < k ≤ Lt

where yj−1 is the embedding of the previous target

word and ATT(C, si,1) is the context vector com-

puted by the attention mechanism. GRU transi-

tions other than the first two do not have external

inputs. The target word state vector sj ≡ sj,Lt
is

then used by the feed-forward output network to

predict the current target word. A diagram of this

architecture is shown in Figure 1.

The output network can be also made deeper by

adding more feed-forward hidden layers.

2.3 Stacked architectures

A stacked RNN is obtained by having multiple

RNNs (GRUs in our experiments) run for the same

number of time steps, connected such that at each

step the bottom RNN takes "external" inputs from

the outside, while each of the higher RNN takes

as its "external" input the "state" output of the one

below it. Residual connections between states at

different depth (He et al., 2016) are also used to

improve information flow. Note that unlike deep

transition GRUs, here each GRU transition block

constitutes a cell that is individually recurrent, as it

has its own state that is carried over between time

steps.

2.3.1 Stacked Encoder

In this work we consider two types of bidirectional

stacked encoders: an architecture similar to Zhou

et al. (2016) which we denote here as alternating

encoder (Figure 2), and one similar to Wu et al.

(2016) which we denote as biunidirectional en-

coder (Figure 3).

Our contribution is the empirical comparison of

these architectures, both in isolation and in combi-

nation with the deep transition architecture.

We do not consider stacked unidirectional en-

coders (Sutskever et al., 2014) as bidirectional en-

coders have been shown to outperform them (e.g.

Britz et al. (2017)).

Alternating Stacked Encoder The forward part

of the encoder consists of a stack of GRU recurrent

neural networks, the first one processing words in

. . . . . .

. . . . . .

. . . . . .

. . .

Figure 2: Alternating stacked encoder (Zhou et al.,

2016).

the forward direction, the second one in the back-

ward direction, and so on, in alternating direc-

tions. For an encoder stack depth Ds, and a source

sentence length N , the forward source word state
−→w i ≡

−→w i,Ds
is computed as:

−→w i,1 =
−→
h i,1 = GRU1

(

xi,
−→
h i−1,1

)

−→
h i,2k = GRU2k

(

−→w i,2k−1,
−→
h i+1,2k

)

for 1 < 2k ≤ Ds

−→
h i,2k+1 = GRU2k+1

(

−→w i,2k,
−→
h i−1,2k+1

)

for 1 < 2k + 1 ≤ Ds

−→w i,j =
−→
h i,j +

−→w i,j−1

for 1 < j ≤ Ds

where we assume that
−→
h 0,k and

−→
h N+1,k are zero

vectors. Note the residual connections: at each

level above the first one, the word state of the pre-

vious level −→w i,j−1 is added to the recurrent state

of the GRU cell
−→
h i,j to compute the the word state

for the current level −→w i,j .

The backward part of the encoder has the same

structure, except that the first level of the stack

processes the words in the backward direction and

the subsequent levels alternate directions.

The forward and backward word states are then

concatenated to form bidirectional word states

C ≡ {[−→w i,Ds

←−w i,Ds
]}. A diagram of this archi-

tecture is shown in Figure 2.

Biunidirectional Stacked Encoder In this en-

coder the forward and backward parts are shal-

low, as in the baseline architecture. Their word

states are concatenated to form shallow bidirec-

tional word states wi ≡ [−→w i,1
←−w i,1] that are then

used as inputs for subsequent stacked GRUs which

operate only in the forward sentence direction,

hence the name "biunidirectional". Since resid-

ual connections are also present, the higher depth



. . . . . .

. . .

. . .

. . .

Figure 3: Biunidirectional stacked encoder (Wu

et al., 2016).

. . .

. . .

. . .

Figure 4: Stacked RNN decoder

GRUs have a state size twice that of the base

ones. This architecture has shorter maximum in-

formation propagation paths than the alternating

encoder, suggesting that it may be less expressive,

but it has the advantage of enabling implementa-

tions with higher model parallelism. A diagram of

this architecture is shown in Figure 3.

In principle, alternating and biunidirectional

stacked encoders can be combined by having Dsa

alternating layers followed by Dsb unidirectional

layers.

2.3.2 Stacked Decoder

A stacked decoder can be obtained by stacking

RNNs which operate in the forward sentence di-

rection. A diagram of this architecture is shown in

Figure 4.

Note that the base RNN is always a conditional

GRU (cGRU, Firat and Cho, 2016) which has tran-

sition depth at least two due to the way that the

context vectors generated by the attention mecha-

nism are used in Nematus. This opens up the pos-

sibility of several architectural variants which we

evaluated in this work:

Stacked GRU The higher RNNs are simple

GRUs which receive as input the state from the

previous level of the stack, with residual connec-

tions between the levels.

sj,1,1 = GRU1,1 (yj−1, sj−1,1,2)

cj,1 = ATT(C, sj,1,1)

sj,1,2 = GRU1,2 (cj,1, sj,1,1)

rj,1 = sj,1,2

sj,k,1 = GRUk (rj,k−1, sj−1,k,1)

rj,k = sj,k,1 + rj,k−1

for 1 < k ≤ Dt

Note that the higher levels have transition depth

one, unlike the base level which has two.

Stacked rGRU The higher RNNs are GRUs

whose "external" input is the concatenation of the

state below and the context vector from the base

RNN. Formally, the states sj,k,1 of the higher

RNNs are computed as:

sj,k,1 = GRUk ([rj,k−1, cj,1] , sj−1,k,1)

for 1 < k ≤ Dt

This is similar to the deep decoder by Wu et al.

(2016).

Stacked cGRU The higher RNNs are condi-

tional GRUs, each with an independent attention

mechanism. Each level has two GRU transitions

per step j, with a new context vector cj,k computed

in between:

sj,k,1 = GRUk,1 (rj,k−1, sj−1,k,1)

cj,k = ATT(C, sj,k,1)

sj,k,2 = GRUk,2 (cj,k, sj,1,1)

for 1 < k ≤ Dt

Note that unlike the stacked GRU and rGRU, the

higher levels have transition depth two.

Stacked crGRU The higher RNNs are condi-

tional GRUs but they reuse the context vectors

from the base RNN. Like the cGRU there are two

GRU transition per step, but they reuse the context

vector cj,1 computed at the first level of the stack:

sj,k,1 = GRUk,1 (rj,k−1, sj−1,k,1)

sj,k,2 = GRUk,2 (cj,1, sj,1,1)

for 1 < k ≤ Dt



2.4 BiDeep architectures

We introduce the BiDeep RNN, a novel architec-

ture obtained by combining deep transitions with

stacking.

A BiDeep encoder is obtained by replacing the

Ds individually recurrent GRU cells of a stacked

encoder with multi-layer deep transition cells each

composed by Ls GRU transition blocks.

For instance, the BiDeep alternating encoder is

defined as follows:

−→w i,1 =
−→
h i,1 = DTGRU1

(

xi,
−→
h i−1,1

)

−→
h i,2k = DTGRU2k

(

−→w i,2k−1,
−→
h i+1,2k

)

for 1 < 2k ≤ Ds

−→
h i,2k+1 = DTGRU2k+1

(

−→w i,2k,
−→
h i−1,2k+1

)

for 1 < 2k + 1 ≤ Ds

−→w i,j =
−→
h i,j +

−→w i,j−1

for 1 < j ≤ Ds

where each multi-layer cell DTGRUk is defined

as:

vk,1 = GRUk,1 (ink, statek)

vk,t = GRUk,t (0, vkt−1) for 1 < k ≤ Ls

DTGRUk (ink, statek) = vk,Ls

It is also possible to have different transition

depths at each stacking level.

BiDeep decoders are similarly defined, replac-

ing the recurrent cells (GRU, rGRU, cGRU or cr-

GRU) with deep transition multi-layer cells.

3 Experiments

All experiments were performed with Nematus

(Sennrich et al., 2017b), following Sennrich et al.

(2017a) in their choice of preprocessing and hy-

perparameters. For experiments with deep mod-

els, we increase the depth by a factor of 4 com-

pared to the baseline for most experiments; in pre-

liminary experiments, we observed diminishing

returns for deeper models.

We trained on the parallel English–German

training data of WMT-2017 news translation task,

using newstest2013 as validation set. We used

early-stopping on the validation cross-entropy and

selected the best model based on validation BLEU.

We report cross-entropy (CE) on newstest2013,

training speed (on a single Titan X (Pascal) GPU),

and the number of parameters. For transla-

tion quality, we report case-sensitive, detokenized

BLEU, measured with mteval-v13a.pl, on new-

stest2014, newstest2015, and newstest2016.

We release the code under an open source li-

cense, including it in the official Nematus reposi-

tory.2 The configuration files needed to replicate

our experiments are available in a separate reposi-

tory.3

3.1 Layer Normalization

Our first experiment is concerned with layer nor-

malization. We are interested to see how essen-

tial layer normalization is for our deep architec-

tures, and compare the effect of layer normaliza-

tion on a baseline system, and a system with an

alternating encoder with stacked depth 4. Results

are shown in Table 1. We find that layer normal-

ization is similarly effective for both the shallow

baseline model and the deep encoder, yielding an

average improvement of 0.8–1 BLEU, and reduc-

ing training time substantially. Therefore we use

it for all the subsequent experiments.

3.2 Deep Encoders

In Table 2 we report experimental results for dif-

ferent architectures of deep encoders, while the

decoder is kept shallow.

We find that all the deep encoders perform sub-

stantially better than baseline (+0.5–+1.2 BLEU),

with no consistent quality differences between

each other. In terms of number of parameters and

training speed, the deep transition encoder per-

forms best, followed by the alternating stacked

encoder and finally the biunidirectional encoder

(note that we trained on a single GPU, the biu-

nidirectional encoder may be comparatively faster

on multiple GPUs due to its higher model paral-

lelism).

3.3 Deep Decoders

Table 3 shows results for different decoder archi-

tectures, while the encoder is shallow. We find that

the deep decoders all improve the cross-entropy,

but the BLEU results are more varied: deep output4

decreases BLEU scores (but note that the baseline

2https://github.com/EdinburghNLP/

nematus
3https://github.com/Avmb/

deep-nmt-architectures
4deep feed-forward output with shallow RNNs in both the

encoder and decoder

https://github.com/EdinburghNLP/nematus
https://github.com/EdinburghNLP/nematus
https://github.com/Avmb/deep-nmt-architectures
https://github.com/Avmb/deep-nmt-architectures


encoder CE BLEU parameters (M) training speed early stop

2014 2015 2016 (words/s) (104 minibatches)

baseline 49.98 21.2 23.8 28.4 98.0 3350 44
+layer normalization 47.53 21.9 24.7 29.3 98.1 2900 29

alternating (depth 4) 49.25 21.8 24.6 28.9 135.8 2150 46
+layer normalization 46.29 22.6 25.2 30.5 135.9 1600 29

Table 1: Layer normalization results. English→German WMT17 data.

encoder depth CE BLEU parameters (M) training speed
s. bidir. s. forw. trans. 2014 2015 2016 (words/s)

shallow 1 - 1 47.53 21.9 24.7 29.3 98.1 2900

alternating 4 - 1 46.29 22.6 25.2 30.5 135.9 1600
biunidirectional 1 3 1 46.79 22.4 25.4 30.0 173.7 1500
deep transition 1 - 4 46.54 22.9 25.4 30.2 117.0 1900

Table 2: Deep encoder results. English→German WMT17 data. Parameters and speed are highlighted

for the deep recurrent models.

has already some depth), stacked GRU performs

similarly to the baseline (-0.1–+0.2 BLEU) and

stacked rGRU possibly slightly better (+0.1–+0.2

BLEU).

Other deep RNN decoders achieve higher gains.

The best results (+0.6 BLEU on average) are

achieved by the stacked conditional GRU with in-

dependent multi-step attention (cGRU). This de-

coder, however, is the slowest one and has the most

parameters.

The deep transition decoder performs well (+0.5

BLEU on average) in terms of quality and is the

fastest and smallest of all the deep decoders that

have shown quality improvements.

The stacked conditional GRU with reused at-

tention (crGRU) achieves smaller improvements

(+0.3 BLEU on average) and has speed and

size intermediate between the deep transition and

stacked cGRU decoders.

3.4 Deep Encoders and Decoders

Table 4 shows results for models where both the

encoder and the decoder are deep, in addition to

the results of the best deep encoder (the deep tran-

sition encoder) + shallow decoder reported here

for ease of comparison.

Compared to deep transition encoder alone, we

generally see improvements in cross-entropy, but

not in BLEU. We evaluate architectures similar to

Zhou et al. (2016) (alternating encoder + stacked

GRU decoder) and (Wu et al., 2016) (biunidirec-

tional encoder + stacked rGRU decoder), though

they are not straight replications since we used

GRU cells rather than LSTMs and the implemen-

tation details are different. We find that the for-

mer architecture performs better in terms of BLEU

scores, model size and training speed.

The other variants of alternating encoder +

stacked or deep transition decoder perform simi-

larly to alternating encoder + stacked rGRU de-

coder, but do not improve BLEU scores over the

best deep encoder with shallow decoder. Ap-

plying the BiDeep architecture while keeping the

total depth the same yields small improvements

over the best deep encoder (+0.2 BLEU on aver-

age), while the improvement in cross-entropy is

stronger. We conjecture that deep decoders may be

better at handling subtle target-side linguistic phe-

nomena that are not well captured by the 4-gram

precision-based BLEU evaluation.

Finally, we evaluate a subset of architectures

with a combined depth that is 8 times that of the

baseline. Among the large models, the BiDeep

model yields substantial improvements (average

+0.6 BLEU over the best deep encoder, +1.5

BLEU over the shallow baseline), in addition to

cross-entropy improvements. The stacked-only

model, on the other hand, performs similarly to the

smaller models, despite having even more param-

eters than the BiDeep model. This shows that it is

useful to combine deep transitions with stacking,

as they provide two orthogonal kinds of depth that

are both beneficial for neural machine translation.

3.5 Error Analysis

One theoretical difference between a stacked RNN

and a deep transition RNN is that the distance in

the computation graph between timesteps is in-

creased for deep transition RNNs. While this al-

lows for arguably more expressive computations

to be represented, in principle it could reduce the

ability to remember information over long dis-



decoder high RNN decoder RNN depth output CE BLEU params. training speed
stacked trans. type depth 2014 2015 2016 (M) (words/s)

shallow - 1 1 1 47.53 21.9 24.7 29.3 98.1 2900

stacked GRU 4 1 1 46.73 21.8 24.6 29.5 117.0 2250
stacked rGRU 4 1 1 46.72 22.1 25.0 29.4 135.9 2150
stacked cGRU 4 1 1 44.76 22.8 25.5 29.6 164.3 1300
stacked crGRU 4 1 1 45.88 22.5 24.7 29.7 145.4 1750
deep transition - 1 8 1 45.98 22.4 24.9 30.0 117.0 2200

deep output - 1 1 4 47.21 21.5 24.2 28.7 98.9 2850

Table 3: Deep decoder results. English→German WMT17 data. Parameters and speed are highlighted

for the deep recurrent models.

encoder decoder decoder high encoder depth decoder depth CE BLEU params. training speed

RNN type bidir. forw. trans. stacked trans. 2014 2015 2016 (M) (words/s)

shallow shallow - 1 - 1 1 1 47.53 21.9 24.7 29.3 98.1 2900

deep tran. shallow - 1 - 4 1 1 46.54 22.9 25.4 30.2 117.0 1900

(Zhou et al., 2016) (ours)

alternating stacked GRU 4 - 1 4 1 45.89 22.9 25.3 30.1 154.9 1480

(Wu et al., 2016) (ours)

biunidir. stacked rGRU 1 3 1 4 1 46.15 22.4 24.7 29.6 211.5 1280

alternating stacked rGRU 4 - 1 4 1 46.00 23.0 25.7 30.5 173.7 1400

alternating stacked cGRU 4 - 1 4 1 44.32 22.9 25.7 29.8 202.1 970

deep tran. deep tran. - 1 - 4 1 8 45.52 22.7 25.7 30.1 136.0 1570

BiDeep altern. BiDeep rGRU 2 - 2 2 4/2 43.52 23.1 25.5 30.6 145.4 1480

BiDeep altern. BiDeep rGRU 4 - 2 4 4/2 43.26 23.4 26.0 31.0 214.7 980

alternating stacked rGRU 8 - 1 8 1 44.32 22.9 25.5 30.5 274.6 880

Table 4: Deep encoder–decoder results. English→German WMT17 data. Transition depth 4/2 means 4

in the base RNN of the stack and 2 in the higher RNNs. The last two models are large and their results

are highlighted separately.

tances, since each layer may lose information dur-

ing forward computation or backpropagation. This

may not be a significant issue in the encoder,

as the attention mechanism provides short paths

from any source word state to the decoder, but

the decoder contains no such shortcuts between its

states, therefore it might be possible that this nega-

tively affects its ability to model long-distance re-

lationships in the target text, such as subject–verb

agreement.

Here, we seek to answer this question by test-

ing our models on Lingeval97 (Sennrich, 2017),

a test set which provides contrastive translation

pairs for different types of errors. For the exam-

ple of subject-verb agreement, contrastive transla-

tions are created from a reference translation by

changing the grammatical number of the verb, and

we can measure how often the NMT model prefers

the correct reference over the contrastive variant.

In Figure 5, we show accuracy as a function of

the distance between subject and verb. We find

that information is successfully passed over long

distances by the deep recurrent transition network.

Even for decisions that require information to be

carried over 16 or more words, or at least 128 GRU

transitions5, the deep recurrent transition network

5some decisions may not require the information to be
passed on the target side because the decisions may be possi-
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Figure 5: Subject-verb agreement accuracy as a

function of distance between subject and verb.

achieves an accuracy of over 92.5% (N = 560),

higher than the shallow decoder (91.6%), and sim-

ilar to the stacked GRU (92.7%). The highest ac-

curacy (94.3%) is achieved by the BiDeep net-

work.

4 Conclusions

In this work we presented and evaluated multiple

architectures to increase the model depth of neural

machine translation systems.

We showed that alternating stacked encoders

(Zhou et al., 2016) outperform biunidirectional

ble based on source-side information.



stacked encoders (Wu et al., 2016), both in ac-

curacy and (single-GPU) speed. We showed that

deep transition architectures, which we first ap-

plied to NMT, perform comparably to the stacked

ones in terms of accuracy (BLEU, cross-entropy

and long-distance syntactic agreement), and better

in terms of speed and number of parameters.

We found that depth improves BLEU scores es-

pecially in the encoder. Decoder depth, however,

still improves cross-entropy if not strongly BLEU

scores.

The best results are obtained by our BiDeep

architecture which combines both stacked depth

and transition depth in both the (alternating) en-

coder and the decoder, yielding better accuracy for

the same number of parameters than systems with

only one kind of depth.

We recommend to use combined architectures

when maximum accuracy is the goal, or use deep

transition architectures when speed or model size

are a concern, as deep transition performs very

positively in the quality/speed and quality/size

trade-off.

While this paper only reports results for one

translation direction, the effectiveness of the pre-

sented architectures across different data condi-

tions and language pairs was confirmed in follow-

up work. For the shared news translation task

of this year’s Conference on Machine Translation

(WMT17), we built deep models for 12 transla-

tion directions, using a deep transition architecture

or a stacked architecture (alternating encoder and

rGRU decoder), and observe improvements for the

majority of translation directions (Sennrich et al.,

2017a).
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