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Abstract— This paper discusses the effectiveness of deep auto-
encoder neural networks in visual reinforcement learning (RL)
tasks. We propose a framework for combining deep auto-
encoder neural networks (for learning compact feature spaces)
with recently-proposed batch-mode RL algorithms (for learning
policies). An emphasis is put on the data-efficiency of this
combination and on studying the properties of the feature
spaces automatically constructed by the deep auto-encoders.
These feature spaces are empirically shown to adequately
resemble existing similarities between observations and allow to
learn useful policies. We propose several methods for improving
the topology of the feature spaces making use of task-dependent
information in order to further facilitate the policy-learning.
Finally, we present first results on successfully learning good
control policies using synthesized and real images.

I. INTRODUCTION

Recently, there have been reported several impressive suc-

cesses of appyling reinforcment learning to real-world sys-

tems [1], [2], [3]. But present algorithms are still limited to

solving tasks with state spaces of rather low dimensionality1.

Learning policies directly on visual input—e.g. raw images

as captured by a camera—is still far from being possible.

Usually, when dealing with visual sensory input, the original

learning task is split into two separate processing stages

(see fig. 1). The first is for extracting and condensing the

relevant information into a low-dimensional representation

using methods from image processing. The second stage is

for learning a policy on this particular encoding.
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Fig. 1. Classic decomposition of the visual reinforcement learning task.

In oder to increase the autonomy of a learning system,

letting it adapt to the environment and find suitable repre-

sentations by itself, it will be necessary to eliminate the need

for manual engineering in the first stage. This is exactly

the setting where we see a big opportunity for integrating

recently proposed deep auto-encoders replacing hand-crafted

preprocessing and more classical learning in the first stage.
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1over-generalizing: less than 10 intrinsic dimensions for value-function-
based methods and less than 100 for policy gradient methods

New methods for unsupervised training of very deep

architectures with up to millions of weights have opened up

completely new application areas for neural networks [4],

[5], [6]. We now propose another application area, reporting

on first results of applying Deep Learning (DL) to visual

navigation tasks in RL. Whereas most experiments conducted

so far have concentrated on distinguishing different objects,

more or less perfectly centred in small image patches, in

the task studied here, the position of one object of interest

wandering around an image has to be extracted and encoded

in a very low-dimensional feature vector that is suitable for

the later application of reinforcement learning.

We will mainly concentrate on two open topics. The

first is about how to integrate unsupervised training of

deep auto-encoders into RL in a data-efficient way, without

introducing much additional overhead. In this respect, a new

framework for integrating the deep learning approach into

recently proposed memory-based batch-RL methods [7] will

be discussed in section III. We will show the auto-encoders in

this framework to produce good reconstructions of the input

images in a simple navigation task after passing the high-

dimensional data through a bottle neck of only two neurons

in their innermost hidden layer.

Nevertheless, the question remains whether or not the

encoding implemented by these two inner-most neurons is

useful only in the original task, that is reconstructing the

input, or can also be used for learning a policy. Whereas

properties of deep neural networks have been thoroughly

studied in object classification tasks, their applicability to

unsupervised learning a useful preprocessing layer in visual

reinforcement learning tasks remains rather unclear. The

answer to this question—the second main topic—mainly

depends on whether the feature space allows for abstracting

from particular images and for generalizing what has been

learned so far, to newly seen similar observations. In section

V, we will name four evaluation criteria and do a thorough

examination of the feature space in this respect and finally

give a positive answer to this question. Moreover, we will

present some ideas on how to further optimize the topology

in the feature space using task specific information. Finally,

we present first successes of learning control policies directly

on synthesized images and—for the very first time—using a

real, noisy image formation process in section VI.

II. RELATED WORK

[8] was the first attempt of applying model-based batch-

RL directly to (synthesized) images. Ernst did a similar

experiment using model-free batch-RL algorithms [9]. The

interesting work of [10] can be seen at the verge of fully

integrating the learning of the image processing into RL.



Nevertheless, the extraction of the descriptive local fea-

tures was still implemented by hand, learning just the task-

dependent selection of the most discriminative features. All

thre [8], [9], [10] lacked realistic images, ignored noise and

just learned to memorize a finite set of observations, not

testing for generalization at all.

Instead of using Restricted Boltzman Machines during

the layer-wise pretraining of the deep auto-encoders [4]

our own implementation completely relies on regular multi-

layer perceptrons, as proposed in chapter 9 of [11]. Previous

publications have concentrated on applying deep learning

to classical image recognition tasks like face and letter

recognition [4], [5], [11]. The RL-tasks studied here also

add the complexity of tracking moving objects and encoding

their positions adequately in very low-dimensional feature

vectors.

III. DEEP FITTED Q-ITERATIONS

In this section, we will present the new deep fitted q-

iteration algorithm (DFQ) that integrates unsupervised train-

ing of deep auto-encoders into memory-based batch-RL.

A. General Framework

In the general reinforcement learning setting [12], an

agent interacts with an environment in discrete time steps

t, observing some state s ∈ S and some reward signal r

to then respond with an action a ∈ A. We’re interested in

tasks that can be modelled as markov decision processes [12]

with continous state spaces and finite action sets. The task

is to learn a strategy π : S 7→ A maximizing the expectation

of the sum Rt =
∑∞

k=0
γtrt+k+1 of future rewards rt with

discount factor γ ∈ [0, 1]. In the visual RL tasks considered

here, the present state of the system is not directly observable

by the agent. Instead, the agent receives a high-dimensional,

continuous observation o ∈ O (image) in each time step.

state

observation

feature vector

q-values

deep

encoder

function

approximator

action

selection

action

system

dynamics

image

formation

semantics unknown

semantics unknown

semantics known

reward

agent
environment

Fig. 2. Extended agent-environment loop in visual RL tasks. In the deep-
RL framework proposed here, a deep-encoder network is used to transfer
the high-dimensional observations into a lower-dimensional feature vector
which can be handled by available RL-algorithms.

We will insert the training of deep auto-encoders on the

agent’s side of the processing loop (fig. 2) in order to learn an

encoding of the images in a low-dimensional feature space.

We advocate a combination with recently proposed model-

free batch-RL algorithms, such as Fitted Q-Iteration (FQI)

[13], LSPI [14] and NFQ [15], because these methods have

been successful on real-world continuous problems and, as

these sample-based batch-algorithms [7] already store and

reuse state transitions (st, at, rr+1, st+1), the training of the

auto-encoders integrates very well (see fig. 3) into the batch-

RL-framework with episodic exploration as presented in [3].
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Fig. 3. Graphical sketch of he proposed framework for deep batch-RL
with episodic exploration.

In the outer loop, the agent uses the present approximation

of the Q-function [12] to derive a policy—e.g. by ǫ-greedy

exploration—for collecting further experience. In the inner

loop, the agent uses the present encoder to translate all

collected observations to the feature space and then applies

some batch-RL algorithm to improve an approximation of

the Q-function. From time to time, the agent may retrain a

new auto-encoder. The details of the processing steps will be

discussed in the following subsections.

B. Training Deep Auto-Encoders with RProp

Training the weights of deep auto-encoder neural networks

to encode image data has been thoroughly treated in the

literature [4], [11]. In our implementation, we use several

shallow auto-encoders for the layer-wise pre-training of the

deep network, starting with the first hidden layer, always

training on reconstructing the output of the previous layer.

After this pre-training, the whole network is unfolded and

fine-tuned for several epochs by training on reconstructing

the the inputs. Differing from other implementations, we

make no use of RBMs but use multi-layer perceptrons

(MLP) and standard gradient descent on units with sigmoidal

activations in both phases, as proposed in chapter 9 of [11].

Weights are updated using the RProp learning rule [16]. As

RProp only considers the direction of the gradient and not

its length, this update-rule is not as vulnerable to vanishing

gradients as standard back-propagation. Furthermore, results

do not depend on extensive tuning of parameters [16].



C. DFQ: Integrating deep auto-encoders into batch-RL

We combined the deep auto-encoders with Ernst’s Fitted

Q-Iteration for learning a policy. The new DFQ algorithm

consists of the following steps realizing the inner and outer

loop of figure 3:

A. Initialization Set episode counter k ← 0. Set sample counter
p ← 0. Create an initial (random) exploration strategy π0 :
z 7→ a and an inital encoder ENC : o7→W0z with (random)
weight vector W 0. Start with an empty set FO = ⊘ of
transitions (ot, at, rt+1, ot+1)

B. Episodic Exploration In each time step t calculate the
feature vector zt from the observed image ot by using
the present encoder zt = ENC(ot; W

k). Select an action

at ← πk(zt) and store the completed transition FO ←
FO∪(op, ap, rp+1, op+1) incrementing p with each observed
transition.

C. Encoder Training Train an auto-encoder (see [4]) on the p
observations in FO using Rprop during layer-wise pretraining
and finetuning. Derive the encoder ENC( · ; W k+1) (first half
of the auto-encoder). Set k ← k + 1.

D. Encoding Apply the encoder ENC(o; W k) to all transitions
(ot, at, rt+1, ot+1) ∈ FO , transfering them into the feature
space Z , constructing a set FZ = {(zt, at, rt+1, zt+1)|t =
1, . . . , p} with zt = ENC(ot; W

k).
E. Inner Loop: FQI Call FQI with FZ . Starting with an

initial approximation Q̂0(z, a) = 0 ∀(z, a) ∈ Z × A
FQI (details in [13]) iterates over a dynamic programming
(DP) step creating a training set Pi+1 = {(zt, at; q̄

i+1

t )|t =
1, ..., p} with q̄i+1

t = rt+1 + γ maxa′∈A Q̂i(zt+1, a
′) and

a supervised learning step training a function approximator

on Pi+1, obtaining the approximated Q-function Q̂i+1. After
convergence, the algorithm returns the unique fix-point Q̄k.

F. Outer loop If satisfied return approximation Q̄k, greedy
policy π and encoder ENC( · ; W k). Otherwise derive an

exploration strategy πk from Q̄k and continue with step B.

Each time a new encoder ENC( · ;W k+1) is learned in

C, thus the feature space and its semantic are changed, the

present approximation of the Q-function becomes invalid.

Whereas online-RL would have to start over completely from

scratch, in the batch-approach the stored transitions can be

used to immediately calculate a new Q-function in the new

feature space, without a single interaction with the system.

When using an averager [8] or kernel-based approximator

[7] for approximating the q-function, the series of approxi-

mations {Q̂i} produced by the FQI algorithm—under some

assumptions—is guaranteed to converge to a unique fix-point

Q̄ that is within a specific bound of the optimal q-function Q∗

[13], [7]. Since the non-linear encoding ENC : O 7→W k Z

does not change during the inner loop, these results also

cover applying the FQI algorithm to the feature vectors. The

weights of the averager can be adapted easily to include the

non-linear mapping as well, as the only restriction on the

weights are non-negativity and summing up to 1 [8], [7].

D. Variations and Optimizations

The following variations have been found useful, improv-

ing the data efficiency and speeding up the learning process.

Sparse networks: Using receptive fields in the n-

outermost layers instead of a full connection structure can

help to greatly reduce the total number of weights in the

encoder, thus significantly decreasing the number of sam-

ples and time needed for training. Furthermore, receptive

fields are an effective method of using the neighbourhood-

structure between individual image dimensions. This idea has

some motivation in biology and its usage in artificial neural

networks dates back to at least the neocognitron.

Transfering information: If, after learning a new en-

coder ENC(o;W k) in step C of DFQ, recalculating the

approximation Q̂k from scratch by iterating over all the

available transitions is too expensive, the q-values can be

transferred from the old approximation Q̄k−1 : (zk−1, a) 7→
R in the old feature space Zk−1 to the new space Zk. The

trick is to do one DP-update by looking up the Q-values

of zt+1 in the old approximation Q̄k−1 but then storing the

resulting target value q̄ within the new feature space. We

simply prepare a training set PZk = {(zk
t , at; q̄

i+1
t )|t =

1, . . . , p} with one sample (zk
t , at; q̄

i+1
t ) for every transition

in FO = {(ot, at, rt+1, ot+1)|t = 1, . . . , p}, where zk
t =

ENC(ot;W
k). In this case q̄t is calculated using the old

feature vector zk−1

t+1 = ENC(ot+1;W
k−1) and old approxi-

mation Q̄k−1 as q̄t = rt+1+γ maxa′∈A Q̄k−1(zk−1

t+1 , a′). The

patterns are then used to train a new, initial approximation Q̂k

in the new feature space. In practice, the number of necessary

iterations until convergence of the FQI algorithm in step E is

often reduced, when starting from this initial approximation.

Re-training: For an optimal learning curve, the auto-

encoder must be re-trained whenever new data is available.

But since the expected improvement of the feature space

given just a few more observations is rather limited—as a fair

compromise between optimal feature spaces and computing

time—the re-training of the auto-encoder is only triggered

with every doubling of the number of collected observations.

IV. PROOF OF CONCEPT

In a very first proof-of-concept experiment and throughout

the evaluation of the feature spaces we will use a continuous

grid-world-like [12] problem using synthesized images, thus

having complete control on the image formation process (see

figure 4). After very careful consideration we have chosen

to use such a task with a rather simple optimal policy for

our analysis, as the focus of this paper is on handling the

complex, high-dimensional observations and not on learning

very difficult policies. At the same time, the task allows for a

thorough analysis of the proposed methods, as the decision-

boundaries and optimal costs can be derived precisely.

A. Continuous grid-world with noisy image formation

In this problem, the agent observes a rendered image

o ∈ [0, 1]n with n = 30×30 = 900 pixels and added gaussian

noise N (0, 0.1) instead of the two-dimensional system state

s = (x, y) ∈ [0, 6)2. Due to the discrete nature of the

pixels, the number of possible agent positions in the images

is limited to 900 minus 125 positions blocked by walls. Each

action moves the agent exactly 1m in one of four directions.

The task of reaching the 1m×1m goal area has been modeled

as a shortest-path problem [12], with a reward of −1 for any

transition not ending in the absorbing goal area.
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Right: an auto-encoder calculates feature vectors z from noisy observations.

B. Simplified proof-of-concept experiment

In order to make a point about neglecting noise as done

in previous publications [8], [10], the described system has

been further simplified for this very first experiment. The

synthesized images were used without adding any noise and

the agent was always starting in one of only 30 different

starting positions corresponding to the center of 1m × 1m

cells of a regular partition of the grid-world’s state space.

In this version of the task there are only 31 different

observations, thus making it comparable to rather simple

problems with a small, finite set of states.

C. Results

In analogy to the task’s internal state (x, y), we have cho-

sen to learn a two-dimensional encoding of the observations.

After several preliminary tests, the auto-encoder’s topol-

ogy was fixed to 21 layers with 900-900-484-225-121-113-

57-29-15-8-2-8-15-29-57-113-121-225-484-900-900 neurons

and 9 × 9-receptive fields between the 5 outermost lay-

ers. This auto-encoder had more than 350 000 connections

in total. The average reconstruction error (total sum of

squares / number of images) of the second generation auto-

encoder was 10.9 after 190 epochs of fine-tuning. Activations

of output-neurons representing immobile parts (walls, goal

state), have been observed to ’attach’ to the bias weights

within the very first episodes of the training. Representing

the learned Q-function with a large 2D grid approximator

(500×500 cells) that assigns a constant Q-value to all state-

action pairs residing in the same hyper-rectangle, the DFQ

algorithm found the optimal policy within 65 episodes.

D. Discussion

Although the agent learned the optimal policy, the rele-

vance of this result as well as the earlier results of Jodogne

and Ernst [9], [10] is rather limited, when it comes to answer-

ing the central question of whether or not the automatically

constructed feature spaces will be useful for learning policies

on real images. The simplified image-formation process in

this experiment being completely deterministic, without any

noise, each of the non-observable states is represented by

exactly one observation. Even a random-initialized encoder

would produce different outputs for all of them, thereby

identifying the 31 system states uniqely. Q-values for that

few observations can easily be learned by heart storing them

in a hash-table, without the need for ever generalizing to

previously unseen observations. Hence, we will examine the

feature spaces under more realistic conditions in the next

section.

V. EVALUATING THE FEATURE SPACE

When targeting a realistic image-formation process that

involves noise and many different observations, learning

Q-values by heart is not possible (see fig. 6 column c).

Abstraction from the pure-pixel values and generalization

among similar observations in this case is a necessity for

learning good policies and at the same time being data-

efficient, needing as few interactions as possible. Robustness

to noise and not confusing the underlying, non-observable

system states is another challenge. In this respect, there are 4

different criteria for evaluating the feature spaces constructed

by the deep auto-encoders.

a) Identification: There should be a clear correspondence

between feature vectors and underlying system states,

allowing a reliable identification and introducing as

little performance-limiting state-aliasing as possible.

b) Robustness: Encodings of several noisy images of the

agent at the exact same position should be close to each

other, forming narrow clusters in the feature space.

c) Generalization: Two images of the agent at only

slightly differing positions should not result in vastly

differing feature vectors but should have a tendency of

being close to each other.

d) Topology: Somehow preserving the general rela-

tion among the underlying system states (e.g. x-y-

coordinates) would provide additional benefit for ap-

proximators being able to generalize globally.

Whereas the second and third properties would allow to re-

late new observations to what has been learned before, thus—

as the first criterion—are a prerequisit for any succesful
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Fig. 5. Evolution of the the feature space during finetuning the deep auto-encoder. Feature vectors of testing images depicting the agent in the same tile
of an arbitrarily 6×6 tiling of the grid world are marked using the same color and symbol (used only for visualization-purposes). During the unsupervised
training, the feature space is ’unfolded’, gradually improving the ordering of neighboring observations towards a near-perfect result after 400 epochs.

learning, the fourth property is not an absolute requirement

but could facilitate the learning process.

A. Training of the auto-encoder

Before letting the agent explore the world on its own, we

examined the resulting feature spaces in several experiments

under controlled, perfect sampling conditions. We sampled

a total of 6200 noisy images, the agent’s position evenly

distributed throughout the maze (3100 images for training,

3100 for testing). An auto-encoder of the same topology as in

section IV-C achieved an average reconstruction error (RE)

of 7.3 per testing image (down from 17 after pre-training).

Some exemplary observations and their reconstructions can

be seen in figure 6 columns a and b.

More interesting than the reconstruction error is the quality

of the learned feature space. Within DL, there seem to be

two established methods for assessing feature spaces; first, a

visual analysis and second, training classifiers on the feature

vectors [4], [11]. We used both methods keeping the four

criteria mentioned above in mind.

B. Visual analysis of the feature space

The encoder-part of the auto-encoders has been used to

map all testing images from the observation space to the two-

dimensional feature space spanned by the encoder network’s

output neurons (fig. 5). We have used the same color and

symbol to mark feature vectors residing in the same tile,

arbitrarily superimposing a 6 × 6 tiling on the grid-world.

Of course, these labels are not available during training but

added later for visualization purposes only. As can be seen

in the first plot, the pre-training realized a good spreading

of the data in the feature-space but did not achieve a good

separation. With the progress of the finetuning, structure

becomes more and more visible. After 400 epochs, images

that show the agent in the same cell of the maze form clearly

visible clusters in the feature space (criteria b, c).

C. Classification of feature vectors

In order to further test the usefulness of the derived feature

space, we did a supervised-learning experiment. A second

neural net (“task net”) with two hidden layers was trained

on class labels corresponding to the previously introduced

6 × 6 tiling using the feature vectors produced by the deep

encoder as inputs. The optimal network size was determined

in a series of preliminary experiments.

A reasonable number of hidden-layer neurons was needed,

to achieve good results. Using 2-25-25-2 neurons in the task

net, and training the output layer on the coordinates of the

center of the corresponding tile the trained net classified

80.10% of them correctly, whereas a classification is counted

as correct, when the output of the task net is closer to the

center of the correct tile than to the center of any other tile.

As can be seen in table I (column CR Fixed) the quality

of the feature space depends heavily on the number and

distribution of samples. Experiments with 1550 and 3100

samples did use ’perfect sampling’, evenly distributing the

observations among the possible agent-positions, experi-

ments with less samples did select samples by random.

TABLE I

AVERAGE SQUARED RECONSTRUCTION ERROR (REC) AND

CLASSIFICATION RATES (CR) ON TRAINING SETS OF DIFFERENT SIZE.

SPACE SAMLES REC CR FIXED CR ADAPTIV

465 18.9 27.31% 40.86%
DL 775 12.0 59.61% 80.87%

1550 9.4 61.42% 91.59%
3100 7.3 80.10% 99.46%

PCA 02 3100 15.8 39.58% –
PCA 04 3100 14.9 70.80% –
PCA 10 3100 12.6 88.29% –

D. Comparison with Principle Component Analysis (PCA)

For comparison reasons, we did the same experiments

using a PCA on the exact same set of images. The first n

principal components (PC) and a scatter plot of the first two

components are depicted in fig 7. Basic PCA clearly fails

to construct a useful, compact representation, as the first

two principle components only explain 6% of the overall

variance. Training a classifier on supervised learning task



using the first 2 (PCA 2) and 4 (PCA 4) principal components

led to unsatisfying results (see tab. 1). Even more PCs are

needed to allow for a better classification than the two

dimensions found by DL (PCA 10).
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Fig. 7. Eigenimages of some of the principal components found by a PCA
(top row) and reconstruction of the original (orig) image when using the n
first PCs. DL needs only 2 dimensions for producing a reconstruction that
is clearly more accurate than those produced by the first 10 PCs.

E. Backpropagating error terms

In order to test whether the feature space constructed by

the auto-encoders could be further improved by letting the

encoding adapt to a specific task, we attached a small ’task-

network’ with only three hidden layer neurons directly to the

output-neurons of the original encoder, as can be seen in the

top row of figure 9. The key was to use only three hidden-

layer neurons, giving the task-net some expressive power, but

by far not enough to learn a good mapping from the initial

feature space. During supervised training, the error was back-

propagated through the whole net, including the encoder, and

was used to also slowly adapt the weights of the encoder, thus

adapting the ’preprocessing’ itself in respect to the needs of

the classification task at hand. This combined net achieved

an impressive classification rate of 99.46% on the testing

images (left column of fig. 9).
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Fig. 8. Improvement of an encoder that has been derived from an im-
perfectly trained auto-encoder, after training the supervised x-y-coordinates
task. Distribution in the feature space at the beginning of the training (left)
and after training (middle). Topology after training (right).

Even more astonnishing is the quality of the improve-

ment of the topology in the encoder-part of the combined

net. Whereas with the fixed weights we got mixed results

regarding the preservation of the topology—there is some

preservation of the neighborhood-relations between the cells

of the maze, but there are several foldings and deformations

in the feature space—letting adapt the encoder’s weights to

the task at hand, helped to significantly improve the overal

organization of the feature space. The right column of 9

depicts the gradual improvements of the topology in the

third layer counted from the back of the combined network

that is the encoder’s output layer. The final result is a near-

perfect preservation of the original topology with only few

distortions and no crossings. Moreover, this technique could

be used to improve a really weak initial encoding to be useful

in the RL-task. For example, an encoder that was only shortly

trained on 775 non-evenly distributed samples (RE: 12.0)

could be improved from a classification rate (CR) of 59.61%
with fixed-encoder weights to a CR of 80.87% (fig. 8).
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Fig. 9. Improvement of the topology during supervised learning. Top:
Arbitrary grid structure and its initial mapping to the feature space. Middle:
Topology of the feature space (right column) and absolute differences
between targets and outputs on the testing patterns (left column). The gray
rectangular region marks the error that would not lead to a misclassifcation.
Bottom: Errors on the training images (left) and the final distribution of the
testing images in the feature space (right).

F. Training on the optimal value function.

In analogy to what the encoder will be used within DFQ,

we trained a combined encoder-task-net on the optimal

state-value function (easily derived by hand) of the maze-

task.With fixed encoder weights, the best classification rate

we could achieve on the testing set was only 78.65% with

a relatively large net of two hidden layers with 17 neurons

each. Letting adapt the encoder weights, the classification

rate was improved to 99.45% for a task-net with 12 neurons

in a single hidden-layer. In this case, the topology of the

feature space completely adapted to the new task, contracting

to a narrow band in the feature space, having at one end all

the observations with a state value of 0, at the same time

having those with a value of −10 at the other end. For



example, the positions (3.5,0.5) and (1.5,0.5) that are close to

each other in the original state-space but due to the wall have

largely differing optimal state-values (-1 and -9), have been

moved towards opposite ends of the band, grouped together

with other observations with the same state value (fig. 10).
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Fig. 10. Position of the agent in two observations (left), original feature
space (middle) and after training on the optimal state-value function.

VI. LEARNING POLICIES

We did two RL-experiments using synthesized and real

images. First, DFQ was used to learn a policy in the grid-

world, directly on basis of the synthesized images (σ = 0.1).

The agent was started in random positions outside the goal

room. An episode was ended either when the agent reached

the 1m × 1m goal area or didn’t arrive within 20 steps.

After every episode the greedy policy was derived from the

present approximation of the Q-function and was evaluated,

starting from 30 fixed, evenly distributed states. The optimal

policy would collect an average reward of −5.1 from these

states. The DFQ algorithm was used with a constant regular

grid approximator partitioning the feature space into 20×20
cells. This resolution turned out to produce the best results

in a preliminary evaluation of different quadratic grid sizes.

The agent began with a random encoder using ǫ-greedy to

direct the exploration. The first auto-encoder was trained

after collecting 100 observations, triggering re-training after

every doubling of the number of observations from there on.
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Fig. 11. Performance of DFQ in the continuous grid-world task with syn-
thesized images. Average of five independent runs, with standard deviation.

In this experiment, the policy constantly improves from the

random policy (average reward of −17.3) until collecting an

average reward of −5.60 after 732 episodes, not improving

thereafter. This policy is within half a step of the optimal

policy. The final, 7th generation feature space and the learned

value function are shown in figure 12. The averaged results

of five independent repetitions of the whole experiment are

depicted in figure 11. The best final policy achieved an

average reward of −5.4, the worst still collecting −5.97.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Fig. 12. Learned feature space (left) and state-value function (right).
Brightness is proportional to expected rewards; completely black cells (upper
right and lower right corner) haven’t been hit by any transition.

Finally, we repeated the same experiment, but this time

capturing observations of the grid-world from a computer

screen using a digital video camera instead of synthesizing

them (see fig. 13 with some example images on the left). The

agent received a timing signal whenever the labyrinth server

had drawn the new state on screen and expected an action

to be chosen. During each trial, the agent had to operate

in near-realtime, passing 15 images per second through the

deep encoder and evaluating the feature vectors.
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Fig. 13. Grid-world experiment with real image formation. Experimental
setup (left) and value-function learned by DFQ using an irregular grid
approximator. The brightness of the cells is proportional to expected rewards.

In this experiment, we used an irregular grid appoximator

within DFQ. This type of approximator is capable of adapting

its grid to the structure of the automatically constructed

feature space using clustering techniques. Thus, it is not

that dependent on selecting the optimal resolution as are

the regular grid approximators. Dealing with a slight bar-

rel distortion, pixel-aliasing, real image noise, non-uniform

lighting conditions and an increased size of the real images

(80×60 pixels), the DFQ-agent still managed to learn a good

policy collecting an average reward of −6.13 after only 635

episodes.

VII. DISCUSSION

The empirical results presented in section V give rise

to positive answers to the four evaluation criteria. First,



the feature vectors allow to identify the underlying system

states and to learn good classifications, second, the feature

representation is robust under image noise, third feature-

vectors of observations of similar agent-positions also tend to

be close together in the feature-space, forming clearly visible

clusters, and fourth, the topology is preserved to a certain

degree during unsupervised training.

Back-propagating error-terms, thus letting the encoder

adapt its encoding to a specific task after initial unsuper-

vised training on the reconstructions, can further improve

the results regarding a classification or regression. At the

same time the topology of the feature-space can be further

improved and adapted to a specific task. If labelled data is

available, using multi-task-learning [17], would be an option

for benefitting from domain-specific knowledge.

The quality of the feature spaces was found to depend

on the number of samples used during training (see tab. 1).

One problem with too few samples is a bad covering of

the receptive fields. Fields that were not presented an agent

at least once during the training, will not be trained on its

detection at all and thus will fail to detect it during the testing

phase. Hence, collecting enough observations and using an

appropriate exploration strategy is crucial to the success of

a reinforcement learner relying on the automatically con-

structed feature spaces. Adapting from convolutionary neural

networks [18] the shared weights between the receptive fields

could help reduce this dependence in the future.

In section 3 we have presented a framework for efficiently

integrating deep learning with RL. Data-efficiency comes

with the usage of recently introduced memory based batch-

RL-methods and with storing the transitions in observation

space. Changing the semantics of the feature space is not

a problem anymore as a new Q-function can be easily

calculated using the stored transitions, whereas traditional

online-RL would have to start from scratch.

Concerning the original motivation of replacing other

methods in the pre-processing stage of visual RL, we can

give several arguments in favor of the deep auto-encoders.

First, Deep Learning was found to really be able to produce

a very condensed, useful and robust representation in the

navigation experiment. We have been able to learn near-

optimal policies on synthesized and real images using the

learned feature vectors. Second, the compact representation

is much better than representations that can be found using

more traditional techniques. Due to the similarity of images

being based on the implicit proximity of orthogonal dimen-

sions of the observation, linear PCA did fail to construct as

useful compact representations. This result is completely in

line with similar results of Hinton, who has given further

examples of DL beating classic techniques like PCA and

Locally Linear Embedding in image recognition tasks [4].

VIII. SUMMARY AND OUTLOOK

In this paper, we have proposed a new approach for closing

the existing gap between the high dimensionality of visual

observations and the low dimensionality of state spaces that

can be handled by existing batch-RL methods. With DFQ

we have introduced an efficient method for integrating the

unsupervised training of deep auto-encoder networks into

batch-RL. The autonomously learned feature spaces have

been demonstrated to be useful for learning near-optimal

policies in a grid-world like task. To our knowledge, this

was the first time RL was successfully applied to real images

without hand-crafted preprocessing or supervision. The next

step will be to apply DFQ to real-world systems needing

more complex policies like e.g. dribbling a ball with a soccer

robot [3] or driving a slot car [19] just on basis of the visual

feedback. An open problem that has not yet been discussed

is how to handle the dynamics of systems like these, in

which velocity—that can not be captured in a single image—

is important. A promising idea we plan to examine next is

to enrich the state representation by the difference to the

previous feature vector.
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