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Abstract—This paper proposes a direct model for conditional
probability density forecasting of residential loads, based on a
deep mixture network. Probabilistic residential load forecasting
can provide comprehensive information about future uncertain-
ties in demand. An end-to-end composite model comprising
convolution neural networks (CNNs) and gated recurrent unit
(GRU) is designed for probabilistic residential load forecasting.
Then, the designed deep model is merged into a mixture density
network (MDN) to directly predict probability density functions
(PDFs). In addition, several techniques, including adversarial
training, are presented to formulate a new loss function in the
direct probabilistic residential load forecasting (PRLF) model.
Several state-of-the-art deep and shallow forecasting models are
also presented in order to compare the results. Furthermore,
the effectiveness of the proposed deep mixture model in char-
acterizing predicted PDFs is demonstrated through comparison
with kernel density estimation, Monte Carlo dropout, a combined
probabilistic load forecasting method and the proposed MDN
without adversarial training.

Index Terms—Residential load forecasting, conditional prob-
abilistic load forecasting, deep mixture network, convolutional
neural network, gated recurrent unit

I. INTRODUCTION

A. Motivation

RESIDENTIAL customers are increasingly important

players in the deregulated distribution networks. They

form more than 40% of total energy consumption in 2015,

and is expected to grow by 25% in the next ten years,

worldwide [1]. Stability and control approaches of modern

electricity systems focused on residential loads, such as smart

homes, microgrids, and active distribution networks, should be

robust to demand variability by combining predicted informa-

tion with short/long term scheduling. The ongoing expansion

of advanced metering infrastructure (AMI) has created new

opportunities for residential customers to participate in the

operation of power systems. In this context, the nonlinearity

and volatility of the loads strongly influence the forecasting

engines [2], [3].

Residential load forecasting (point or probabilistic) is ex-

tremely challenging for a single domestic user. Each load

profile can be decomposed into three main components, i.e.

regular pattern, uncertainty pattern, and noise pattern [3]. Reg-

ular pattern is the periodic load component that can be derived
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from historical data. Uncertainty patterns are the aperiodic

component of the load profile, produced by influential factors

e.g. metrological parameters and consumer behavior. The

residual of a load profile cannot be physically explained, hence

termed the noise component. Current forecasting methods

focus on the regular pattern as it is more predictable and makes

up a significant proportion of the aggregated load profile.

However, a single residential load profile is composed of a

larger share of uncertainty, not covered by regular patterns

only. To tackle the challenge of significant uncertainty, four

different approaches have been proposed in the literature [3].

i) Cluster/classify similar customers in terms of the number of

the days/weather to reduce the variance of the uncertainty. The

performance of the cluster/classification based approaches are

highly dependent on the influential information, ii) Cancel out

uncertainties by aggregating residential load data, obtained by

multiple smart meters. This is not applicable at a disaggregated

level. iii) Using time/frequency domain signal processing,

in particular frequency domain analysis such as Fourier or

wavelet transforms, to separate uncertainty and noise patterns

from the regular patterns. In this case, however, the uncertainty

patterns with large share are ignored, iv) Deep Learning

methods that can directly learn uncertainties from the raw

form.

To the best of our knowledge, the first three approaches

tackle the problem indirectly, aiming to mitigate uncertainty by

reducing (clustering), cancelling out (aggregation) or filtering

out (spectral analysis) the uncertainty. Deep learning, on the

other hand, attempts to handle this level of uncertainty by

directly learning from the data, and fully capturing its temporal

and spatial patterns.

This significant uncertainty pose a significant challenge

in effective residential load forecasting. Thus, probabilistic

residential-level load forecasting (PRLF) is essential to provide

comprehensive information about future load consumption to

reduce operation costs and improve the reliability of the smart

grid [4]. Probability density function (PDF) can provide full

statistical information in future time slots. To directly predict

the PDF of residential consumers, a mixture density network

(MDN) is selected in this paper. While an MDN is presented

in [5] to directly approximate a PDF, the main limitation of

this approach is the requirement of a large network, which

consists of more than two hidden layers. We propose a deep

learning based approach to overcome this problem. Motivated

by the performance of deep mixture density network used for

stochastic analysis of speech signals in [6], we design a deep

mixture network to predict the PDF of residential loads that
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is capable of directly learning uncertainty and spatio-temporal

features from the raw load data.

B. Brief Literature Review

Short-term load forecasting methods can be categorized into

four main groups, namely persistence, physical, statistical, and

artificial intelligence. In persistence models, the load values in

forthcoming time intervals are fixed to those of previous time

intervals. Persistence methods are highly inaccurate when the

period of prediction is more than several hours [7]. Physical

models take into account historical data and corresponding

meteorological data based on mathematical expressions. For

instance, in [8] a physical model based on dynamic empirical

model is presented for short-term load forecasting. However,

physical models suffer from high computational burden and

require memory space [7]. Statistical methods are mostly based

on autoregressive methods such as Autoregressive moving

average (ARMA) [9] and generalized autoregressive condi-

tional heteroskedasticity (GARCH) [10]. Statistical models are

usually less complex than physical methods [11]. However,

statistical methods are based on linear models while load

forecasting is a complex and nonlinear problem. For instance,

although the GARCH model is able to capture the uncertainty

to some extent, as shown by [7], GARCH models have limited

ability to capture non-linear and non-stationary characteristics

of volatile time series. In general, the aforementioned statisti-

cal methods do not directly capture the uncertainty pattern of a

single residential load, but try to reduce this uncertainty using,

for example clustering techniques [3]. Artificial intelligence

methods have emerged recently since they can learn nonlinear

and complex models, do not need any predefined mathematical

models, and can be divided into shallow and deep structure-

based methods. For instance, artificial neural networks (ANN)

[12], support vector machine (SVM) [13], random forest [14],

wavelet neural networks [15], and extreme learning machine

[16] are shallow-based methods proposed for load forecasting,

but they perform poorly in feature mining. Therefore, these

methods need additional feature extraction and selection to

improve the accuracy. Finding an optimal feature extraction

scheme is still a challenging problem [2], [3]. Besides, we

cannot generalize these methods to different datasets mainly

because of their small hypothesis space due to the small

number of parameters [17].

Pre-processing techniques, such as spectral analysis, sepa-

rate regular patterns of load profile from uncertainty patterns

and noise. However, spectral analyses dramatically degrade

the accuracy due to the low proportion of regular patterns

in the meter-level loads [3]. Deep structure based methods,

known as deep neural networks (DNNs), are able to tackle the

aforementioned limitations of shallow-based methods through

multiple layer processing and hierarchically learning features

from historical raw data. Long short-term memory (LSTM)

[2], [3] and convolutional neural network (CNN) [18] are

two powerful structures in time series analysis that have

been proposed recently. Gated recurrent unit (GRU) is a less

complex implementation of LSTM to speed up time series

analysis [19], but it is weak in capturing the dependencies of

long-tailed raw time series [20]. In addition, CNN is unable

to fully exploit temporal features. In order to address these

problems, this paper aims to leverage the advantages of CNN

and GRU in a deep mixture structure. Table I summarizes the

short-term forecasting methods descriptions, with their pros

and cons.

Time series forecasting are implemented as point or prob-

abilistic forecasts. Most previous approaches [2], [3], [12]–

[16] forecasted the point value in look-ahead times without

indicating the associated uncertainty. To accommodate the risk

brought by the uncertainty of the meter-level loads, probabilis-

tic load forecasting is essential in stochastic decision making in

modern power systems [21]. Probabilistic forecasting was first

tackled via Prediction intervals (PIs) methods to construct a

set of PIs instead of point values from the future information

of time series. In PI methods, firstly, a forecasting method

such as neural networks is trained through optimization of an

error-based cost function. Then, PIs are constructed for look-

ahead times from outputs of the trained forecasting model. The

traditional PIs methods, such as delta, Bayesian, bootstrap,

bootstrap, and mean-variance are indirect and suffer from

high computational cost and poor performance [11]. To tackle

this problem, in [22], an interval of the aggregated loads

for a microgrid is forecasted based on the fuzzy model in

a direct manner. Lower-Upper Band Estimation (LUBE) and

deep learning-based simple recurrent neural network (RNN) is

used to construct PIs in look-ahead times [11]. LUBE [23] is

merged into an ANN and a composite metaheuristic algorithm

involving genetic and simulated annealing algorithm to realize

the future information about a time series. In these methods,

the confidence level is predefined without indicating how to

select the appropriate confidence level [24]. In [25], mixed-

integer linear programming attempts to fill this gap. MDN is

proposed for direct forecasting iin [26] to construct PIs of wind

powers. A hierarchical approach based on empirical copulas

combines synthesized smart meter data to forecast the upper

and lower load bands in [27]. In contrast to PIs, Quantile

forecasting methods attempt to construct a set of quantiles

instead of PIs. For instance, in [28] wavelet decomposition

is used before quantile forest regression and RF as a shallow

structure to predict a set of quantiles for network-level loads.

Hybrid network models are computationally expensive and

signal processing based feature extractors such as wavelet

transform are highly sensitive to noise. Hence, selecting the

optimal technique for feature extraction still remains unan-

swered [3]. The Q-learning dynamic based method of [29]

is deterministic and provides a set of quantiles for load

forecasting. A comparative study between several benchmarks

e.g. an autoregressive model and Holt-Winters-Taylor (HWT)

are compared in terms of point and quantile forecasting in [30].

As deep learning-based quantile forecasting, LSTM and CNN

are extended via a pinball loss function to extract the quantile

in [31] and [32], respectively. PDF forecasting provides full

statistical information about load data in look-ahead times by

constructing PDFs. PDF forecasting provides more distribution

information than a single set of PIs or quantiles [33], [34].

Other forms of probabilistic forecasting, including PIs, quan-

tiles and statistical moments, can be derived from the PDFs. A

comprehensive review of probabilistic forecasting in [35], [36]
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TABLE I
DIFFERENT METHODS FOR TIME SERIES FORECASTING OF RESIDENTIAL LOADS

Persistence Physical Statistical Artificial Intelligence

Description Load in the specific future
time intervals is the same
as the forecast time

Modeling load time series
based on mathematical expres-
sions

Modeling based on the
difference between the ac-
tual time series in immedi-
ate past and actual data

Based on learning the feature of the time
series through training on historical data
Divided into shallow and deep structures

Advantage Good performance in
forecasting for ultra-short
horizons

Use of meteorological features
and good performance in very
long horizons

Based on patterns and
easy to implement

Ability to capture non-linear and complex
models

Disadvantage Unsuitable for regular pre-
diction for long horizons

Very high computational bur-
den and poor performance in
capturing the uncertainty of
residential loads profile

Cancels out the uncer-
tainty pattern and impre-
cise to model the complex
and nonlinear time series

Shallow-based structures unable to charac-
terize full features without extra feature ex-
traction technique, which is unable to han-
dle uncertainty pattern of load profile Ex-
isting deep learning structures cannot fully
learn spatial-temporal features

indicate that, unlike the first two classes of PRLF methods,

estimating sophisticated PDF of loads, especially residential

loads, is yet to be tackled in depth in the literature. For

instance, the parametric ensemble model of extreme learning

machine based method and logistic distribution model are

presented in [34] to predict the PDF of prices. The nonpara-

metric Bayesian-based method of [33] extracts the PDF of

wind power for the next few hours. In [37], conditional kernel

density (CKD), in combination with a decay parameter, has the

ability to predict the smart-level load in density, quantile, and

PDF forms in an indirect manner. [38] tackles probabilistic

load forecasting using deep residual and Monte-Carlo drop

out technique. In [39], based on the Gaussian mixture model,

an optimization problem is formulated to construct PDFs of

the aggregated loads using continuously ranked probability

score as the objective function. These studies are performed

in an indirect manner, in which several point forecasts are

carried out at first, then a PDF is estimated for future hours.

In indirect forecasting structures, the forecasting errors grow

with each iteration as the forecasting method propagates the

model error, especially when the time series has a significant

amount of uncertainty. In [2] and [40], a comprehensive com-

parison between different forecasting models demonstrated

that forecasting models for individual residential load are

imperfect and propagate the large values of error, where

MAPE exceeds 21% and 41% in [2] and [40], respectively.

To this end, indirect forecasting models can produce large

errors in PDF forecasting. Furthermore, we can conclude that

point values or even several statistical moments such as median

and expected values are not good candidates to describe the

uncertainty of residential loads. To tackle these problems, we

propose MDN as a potential solution. However, the standard

MDN is limited by: leading a loss function to NaN value,

poor performance in capturing external features, and large

network which consists of more than two hidden layers. In this

paper, a loss function is reformulated to prevent a NaN value

and is integrated into a deep structure to propose a unique

deep mixture neural network capable of directly forecasting

the conditional probability of aggregated and disaggregated

residential loads.

C. Contributions and Organization

This study aims to build a DNN model from historical

data to directly predict the PDF of residential loads based on

past time series. A deep mixture density network is selected

as a potential solution. We first develop a loss function for

the standard MDN to mitigate the possibility of NaN values

and enhance the learning ability based on several techniques.

In addition to directly learning the severe uncertainty of the

residential load, which has a large share in the consumption

profile, we propose a structure to fully capture spatio-temporal

features from raw data. In the proposed approach, the designed

deep mixture network breaks down into CNN, GRU, and

fully-connected neural (FCN) layers. CNN learns the spatial

features during training, while GRU enhances the capability of

capturing temporal characteristics. Consequently, several FCN

layers are connected to construct PDFs based on a MDN. The

key contributions of this paper are enumerated as follows:

• A deep mixture model designed to directly capture inher-

ent intermittent uncertainty of the residential load profiles

without any cancelation of uncertainty by aggregating the

loads or separating out the regular pattern based on raw

data.

• Developing a loss function in MDN to avoid NaN values

and enhance the learning capability.

• Full statistical information is obtained by predicting PDF

at each time interval in a direct procedure to prevent

errors that might be propagated by the indirect structure

and improve the computational efficiency.

The rest of the paper is organized as follows: The back-

ground and the proposed formulation of the loss function are

introduced in Section II. Section III describes the training

process of the proposed deep mixture density network. In

Section IV, the proposed deep mixture structure and the end-

to-end model are explained. Numerical results are presented

and discussed in Section V before concluding in Section VI.

II. LOSS FUNCTION REFORMULATION IN MDN FOR

CONDITIONAL LOAD FORECASTING

The loss function is an influential factor in the learning

ability of time series forecasting that must faithfully distill all

aspects of the model down to a single number in such a way
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that improvements in that number are indicative of a better

model. In order to directly predict the PDF for future informa-

tion, existing loss functions, such as continuously ranked prob-

ability score (CRPS) [41] are impractical. The standard MDN

attempts to construct PDF-based conditional probability-based

loss function also faces a number of challenges, which are

resolved in this paper with several modifications.

Let (X,Y ) = (x1, y1), ..., (xn, yn) be data, where xi ∈
R

I ∀ i =1,...,ni is the ni input data and yj ∈ R
o ∀ j =1,...,no is

the no observation space data. The key idea in point forecasting

is to construct a function that projects Y and the forecasted

values, ŷ with minimal difference.

Conditional probabilistic forecasting represents (X,Y ) as

discrete random variables to predict conditional distribution

of X given outcome of Y , p(y|x), which usually follows an

unknown distribution.

A. Standard MDN

To approximate p(y|x) an ensemble mixture or sum of the

number of Gaussian distributions can be used. In conditional

probabilistic forecasting, probability density of target yt can

be expressed as a linear combination of kernel functions in

the form of:

p(yt|x) =

N∑

n=1

πn(x, t) ϕ(yt|µn(x, t), σ
2

n(x, t))

∀t ∈ {1,...,T}

(1)

where πn(x, t) is the nth (∀n ∈ {1, ..., N}) mixing co-

efficient, which determines the non-negative kernel weights

in MDN. If the density function follows a Gaussian process,

µn(x, t) and σn(x, t) would be mean and variance. In general,

mean and variance in the PRLF problem is unknown. The

maximum likelihood method, as PDF estimator, calculates the

mean and variance through maximization of log-likelihood

function, which can be expressed as [5]:

−log(p(yt|x)) = − log (

N∑

n=1

πn(x, t)ϕ(yt|µn(x, t), σ
2

n(x, t)))

(2)

The MDN has the flexibility to completely model yt.
However, if (2) is considered as the loss function, we are faced

with two limitations:

i) to ensure the feasibility of mixture density, the mixing

coefficient should be nonnegative , and
N∑

n=1

πn(x, t) = 1 ∀n ∈

{1, ..., N}, where, N is the total number of mixture density

functions. To satisfy this constraint, the softmax activation

function for the outputs corresponding to πn(x, t) is :

αn(x, t) = softmax(πn(x, t)) =
exp(πn(x, t))

N∑

j=1

exp(πj(x, t))

(3)

ii) σn(x, t) represents scale parameters and is reformulated

as:

βn(x, t) = exp(σn(x, t)) (4)

In spite of these modifications in [5], standard MDN suffers

from some problems that may make it infeasible in probabilis-

tic time series forecasting, as follows:

• A little change in dataset or in complex forecasting

problems such as residential load forecasting (with large

share of uncertainty) can lead to NaN value of loss

function.

• The number of external factors such as, seasonal, cal-

endar, and social habits should be realized during the

training process; however, standard MDN is unable to

directly pass through external features from the past time

(like a month or season) to the future times.

B. The Proposed MDN

In this paper, the standard MDN is modified by changing the

loss function and the training procedure. Firstly, the negative

log-likelihood function is reformulated by log-sum-exp-trick

[42]:

− log(p(yt|x)) = − log (

N∑

n=1

exp{log(πn(x, t)

−
c

2
log (2πσn(x, t))−

||y − µn(x, t)||
2

2σ2
n(x, t)

})

(5)

Maximum likelihood results in overfitting [5]. To tackle

this problem, we introduce a a regularization term in the loss

function, based on adversarial training. Adversarial training

[43] not only prevents the overfitting problem, but also reduces

computational complexity and smooths the forecasted PDFs.

Adversarial training adds perturbations to the main training

outputs of the neural networks as adversarial examples. Fast

gradient sign method (FGSM) is a fast method to generate

adversarial examples [44]. The added perturbation is propor-

tional to the sign of the gradient back-propagated from the

output to the input layer. Consequently, in this paper, the loss

function, floss is defined as:

floss = − λ(log(yt|x))+

(λ− 1) log(yt|x+ ε.sign(−∇x log(yt|x)))
(6)

where λ and ε represent the importance weight of the adver-

sarial example and constant value which bounds the max-norm

of the perturbation. λ and ε are user-defined parameters during

training, where λ indicates the influence of the adversarial

training on the loss function and ε shows the max-norm of

the perturbation.

III. TRAINING PROCESS

The training procedure is carried out based on adversarial

example. Based on FSGM, the input set is considered as x
′

=
x+ε.sign(−∇x log(yt|x). This training technique smooths the

forecasted PDF by increasing likelihood of the yt around an

ε-neighborhood of the training data. During training, the main

goal is to minimize the proposed loss function where a L− 2
regularization is added to the proposed loss function to make

the prediction consistent. However, low value of logarithm and

denominator and high value of exponential terms can lead to

NaN. It is worthwhile to note that gradient clipping is used



5

to limit the exponential term, σn(x, t) and πn(x, t) during

loss function optimization. Gradient clipping is used to retain

the small changes in residential load profile and prevent very

large gradient points by cutting the gradient off. In addition,

Adam algorithm [45] is used to minimize loss function. The

training process is summarized in Algorithm 1.

Algorithm 1 Deep mixture training process

1: Input:

2: The training set (X,Y ) as historical data

3: Output:

4: Learning weight (θ), and mixture coefficients

5: Initialization:

6: FSGM method: x′ → x+ ε.sign(∇x log(yt|x))
7: Training Process:

8: Minimization loss function by Adam:

9: floss + γ

K∑

k=1

(θk)

2

︸ ︷︷ ︸

L2− regularization

10: where θ and K is the total number of learning weights.

11: Gradient Clipping:

12: if ∇θ ≥ thershold then

13: ∇θ → ∇θ ( thershold||∇θ||
)

14: End

A. Activation Function

In this paper, several activation functions are adopted. Rec-

tified linear unit (ReLU) is selected for CNN and GRU units to

resolve vanishing gradient problems and prevents significant

saturation in pre-training [46]. In standard MDN, variance

reforms as exponential function, which causes the negative

output of neural network trends to be zero. However, negative

outputs practically grow very fast and they will never be zero.

The fast growth of variance leads to numerical instabilities

in variance. Thus, the negative values follow an exponential

function, while positive outputs do not follow the growth

rate of the exponential function. These features match the

exponential linear unit (ELU) activation function [47]. To

achieve desired results, ELU is modified as follows:

fELU (x) =

{
x+ 1 , x ≥ 0
ex , x < 0

(7)

The following section briefly describes the structure of the

designed deep mixture architecture.

IV. PROPOSED DEEP MIXTURE NETWORK ARCHITECTURE

The structure of the designed deep mixture neural network is

depicted in Fig.1. To associate the PDF forecasts to the look-

ahead times, the residential load data corresponding to the

time-lags (lag = 2 [2][11]) are selected as input dataset, xifor

the proposed PDF forecasting approach. The input set is a

dimensional tensor with (S, 1, 1, 2, 1) size. The proposed end-

to-end deep mixture approach consists of three main blocks,

including CNN, GRU, and FCN blocks, which is described in

the following subsections.

Fig. 1. Structure of designed deep mixture neural networks

A. CNN Block

In this paper, the CNN block consists of a convolution layer

and a pooling layer. The convolution operator outputs feature

maps by convolving the feature maps from the previous layer

with filter sets. Max pooling layer is utilized to strengthen

the features learned and expressed in the previous layers.

This layer usually takes the maximum of the input value to

create its own feature maps and is applied to each feature

map independently. Max pooling layer reduces information

redundancy and size to enhance computational efficiency and

numerical stability. As can be seen in Fig.1, the raw input set

of the convolution layer converts to (S, 1, 1, 2, 50) vectors (S
stands for sample). Max pooling pools the maximum over each

time interval as its output feature map and forms the features

as vectors with dimension (S, 1, 1, 2, 50).
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B. GRU Block

The GRU block learns short and long-term dependencies

and captures temporal features. The GRU block comprises two

GRU layers to allow the proposed deep mixture network to

freely determine the amount of information to use in each

time interval. Each GRU layer is characterized by the update

gate u(m,L, t), and reset gate r(m,L, t), as follows:

u(m,L, t) = f [ωuy(m,L, t)+Ruh(L, t−1)+bu(m,L)] (8)

r(m,L, t) = f [ωry(m,L, t)+Rrh(L, t−1)+br(m,L)] (9)

h(L, t) = (1−u(m,L, t))⊙h(L, t−1)+u(m,L, t)⊙
∼

h (L, t)
(10)

∼

h (L, t) = f [ωhy(m,L, t) +Ru(r(m,L, t)⊙ h(L, t− 1))]
(11)

where GRU parameters including all ω ∈ R
d×k, R ∈ R

d×k,

and b ∈ R
d are learning weights, recurrent parameters, and

biases, respectively, shared by all time intervals and learned

during training. Furthermore, k is a hyper-parameter and

⊙ denotes the element-wise product. The ReLU activation

function is adopted for GRU gates, and hidden and candidate

states. The update gate controls how many hidden states h(.)
must be updated, and the reset gate controls the impression

of the hidden state h(.) at previous time step t − 1 on the

candidate state
∼

h .

The outputs of the CNN block are flattened and the

first GRU layer is initialized with (S, 1, 100). When passing

through GRU layers, the input of these recurrent-based layers

convert to (S, 1, 128) and (S, 128) in the output of first

and second GRU layers, respectively. Theoretically, two GRU

layers are sufficient to handle highly fluctuating time series,

such as small-scale solar generation [19]. Furthermore, after

experimenting with more layers, we concluded that increasing

the number of GRU layer does not bring any performance

improvement. Afterwards, the output of these two layers are

regularized via dropout with 50% probability. Dropout is

carried out to prevent overfitting and reduces the information

required for training of the deep mixture network [48].

C. FCN Block

The deep mixture network ends with several FCN layers,

making up the FCN block. Selecting the FCN layers is highly

sensitive, since striking a balance between maximum usage

capability in the learning process and preventing overfitting,

degradation, and gradient vanishing are challenging and re-

quire comprehensive trial and error. In the end, we selected

four FCN layers. In addition, to control the dimension of the

GRU, the first four FCNs are trained end-to-end to enhance

the performance without further machinery [49], while to

prevent overfitting two FCN layers are dropped out with 25%

probability. The next three FCNs construct the coefficient of

the modified MDN. FCN-alpha, FCN-sigma, and FCN-mu

approximate αn(x, t), σn(x, t), and µn(x, t) in a parallelized

manner. In the final step, the approximated parameters to

forecast PDF based on (1) are concatenated.

V. RESULTS AND DISCUSSION

For our experiments, we used real smart meter household

load data of London city, collected between 1 February 2012

to 1 February 2013 , for 5567 houses sampled at 30-minute

resolution [50]. The input data is load power consumption of

the residential loads and corresponding meteorological data

i.e. temperature, humidity, solar irradiance, and wind speed.

Furthermore, to validate the proposed method structure, we

consider a single residential load dataset within 1-min resolu-

tion (available online at [51]) as an extreme PRLF problem.

This dataset comprises a household with five family members

over the period of 1 June 2012 to 30 June 2012. To eval-

uate different methods, we implemented the proposed PRLF

methods and other methods in a rolling approach and used

fixed windows of data to train parameters and tested based

on the out-of-sample data. 70% of the dataset is dedicated to

training, and 30% for testing. To address the applicability of

the proposed methodology for load forecasting, three different

cases are discussed, i) A single residential customer targeting

smart house scheduling, ii) 121 residential customers targeting

residential microgrids, and iii) 3516 household load data are

aggregated, targeting distribution system operators decision

making. All the forecasting methods are implemented in the

TensorFlow package in a PC with Intel Core i7-5960X CPU@

3.00 GHz, 32-GB RAM memory.

Mean absolute percentage error (MAPE) and root mean

square error (RMSE), as used in [40] for load forecasting using

deep learning networks, are used as performance metrics:

RMSE =

√
√
√
√
√

N∑

t=1

(yre − yf )2

N
(12)

MAPE =

N∑

t=1

|
yre−yf

yre
|

N
(13)

where yre is the real value, yf is the forecast value, and

N is the number of yf . Furthermore, to evaluate the PDF

forecasting comprehensively, two additional metrics are used.

The continuous ranked probability score (CRPS) assesses the

calibration and sharpness of the forecasted PDF simultane-

ously, as [52] :

CPRSt =
1

N

N∑

i=1

1∫

0

CDF (yf (t))− CDF (yre(t)) dy (14)

where CDF (yf (t))/CDF (yre(t))is the predictive/real cu-

mulative distribution function [31]. Cross-entropy (CE) is an-

other metric that is utilized in this paper for PRLF assessment,

which is defined as:

CE = −

N∑

i=1

p(Y |X) log (p(Y |X)) (15)

CE is more sensitive to rare events than CRPS. If the mea-

sured load values are very different to the mean value of load,

with CRPS, PRLF method results are very good. However,

with CE, if this perturbation is out of the distribution, CE

shows that the PRLF method has infinite error. The general
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framework of the proposed deep mixture density network with

CNN, GRU, and fully-connected layers is given in Table II.

The proposed deep mixture density network involves the 2D-

CNN with 950 epochs and two GRUs with 128 units. Note

that m shows the number of the distribution, which is used in

the proposed deep mixture density network.

TABLE II
PARAMETERS OF THE PROPOSED DEEP MIXTURE DENSITY

NETWORK

Layer Filter #cell Activation Function Optimizer

Convolution 2D (2,2)50 ReLU

ADAM

Max-pooling (2,2) -

GRU #128+0.5 drop out ReLU

GRU #128+0.5 drop out ReLU

FCN #500+0.25 drop out ReLU

FCN #500+0.25 drop out ReLU

FCN #500 ReLU

FCN #500 ReLU

FCN-alpha #500 with m=25 Softmax

(Number of distribution

(using in the proposed MDN)

FCN-mu #m Modified ELU

FCN-sigma #m Modified ELU

For the sake of comparison, some state-of-the-art PRLF

models are applied to construct PDF with the same dataset

including 2D-CNN, GRU, and LSTM as deep structure-based

forecasting models, and random forest (RF) and feedforward

neural network (FFNN) as shallow based forecasting models

to verify the CNN-GRU performance. Firstly, state-of-the-art

structures, which are integrated into the proposed MDN are:

• 2D-CNN with 950 epochs, (2,2)50 (filter), including two

convolutional layers and four FCN layers with ReLU

activation function.

• GRU is utilized with 1000 epochs, 128 units, two GRU

and four FCN layers, and the ReLU activation function.

• LSTM is implemented with ReLU activation function,

1000 epochs and 128 units, with two LSTM and four

FCN layers.

• RF is merged into the proposed MDN with 350 trees.

• FFNN integrated into the proposed MDN with 1024

epochs, one input layer, two hidden layers, one output

layers and 500 cells.

Furthermore, the proposed deep mixture method is com-

pared with the Monte-Carlo dropout technique and kernel

density estimator (KDE) to demonstrate the superiority of

the proposed method in reconstructing PDF. Furthermore, the

combined probabilistic load forecasting method CPRLF of

[39] is also considered for benchmarking. CRPLF comprises

of three Gaussian process regression (GPR) and four neural

network layers, using CRPS as loss function and optimized as

a quadratic problem. The detailed parameters of the CRPLF

are given in [39].

A. Case I

In this subsection, the performance of the proposed deep

mixture for the PDF prediction of a single household load, as

the most fluctuating load, is examined.

Fig. 2. CNN-GRU mixture predictive distribution and actual values at a
sample day (a) 00:00, (b) 8:30, (c) 13:00, (d) 20:30 in Case I

Fig. 3. PIs with different confidence intervals obtained by proposed deep
mixture model in Case I

Predicted PDF for various hours of a day and the as-

sociated real values obtained by the designed CNN-GRU

mixture network are shown in Fig.2. Figs 2(a) and 2(c) shows

individual PDFs for off-peak (00:00) and mid-peak (08:30)

hours, respectively. In addition, peak hours individual PDFs

are shown in Figs 2(b) and 2(d). The real recorded residential

load values are also depicted in Fig.2, in order to verify the

closeness of the PDFs predicted by the proposed deep mixture.

Furthermore, the sharpness of predicted PDF is clear in Fig.2.

To explicitly demonstrate the performance, the prediction

intervals with look-ahead time up to 48-time intervals obtained

by the proposed CNN-GRU mixture network approach and

actual observations in a sample day (January 29, 2012), are

depicted in Fig.3, where the confidence covers the range of

10%-80%. Fig.3 shows that the designed CNN-GRU mixture

network can cover the observation in constructed PIs. The
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sophisticated PIs are highly variable with time, unlike the

consistency of the proposed deep mixture model with highly

variable household load behavior.

Table III compares different data-driven methods, and we

can observe that the proposed CNN-GRU mixture network

significantly outperforms 2D-CNN, GRU, LSTM, RF, and

FFNN. For instance, RMSE of CNN-GRU is 0.1592, while

RMSE of the GRU and LSTM are 0.22541 and 0.22611,

respectively. The mixture CNN-GRU improves the accuracy

of GRU by more than 29.23% and enhances the LSTM

mixture network median accuracy by more than 29.58%. In

addition, the RMSE and MAPE values of RF and FFNN

show that the CNN-GRU improves the accuracy of median

prediction by more than 56.02 % and 58.28% in terms

of MAPE, respectively and the proposed CNN-GRU MDN

enhances the accuracy of RF and FFNN close to 47.55%

and 58.15% in terms of RMSE. From the results in Table

I, the CRPS values show the superiority of the CNN-GRU

mixture in predicting the whole distribution. The CRPS values

obtained by different deep mixture load forecasting methods

designed in this paper indicate that CNN-GRU improves the

accuracy of predicted PDFs by more than 18.63%, 24.13%,

34.25% for 2D-CNN, GRU, and LSTM, respectively. Besides,

the CE metrics confirms the previous analyses based on

RMSE, MAPE, and CRPS metrics. The comparative results

in terms of all four metrics values indicate that among all

short-term forecasting models based MDN structures, FFNN

mixture networks performs worst due to its shallow nature.

The proposed deep mixture network significantly improves

the predictive performance over the presented shallow mixture

network by 47.77% based on CRPS. Furthermore, Table IV

compares three state-of-the-art and the CPRLF method of

[39]. In the state-of-the-art methods CNN-GRU is integrated

into the proposed MDN without adversarial training, Monte

Carlo drop out, and KDE. The CNN-GRU method exhibits the

highest overall accuracy, whereas the proposed MDN without

adversarial training is slightly inferior to the Monte- Carlo

drop out and KDE. In addition, the proposed deep mixture

structure has improved the accuracy of the CRPLF by more

than 63.95% and 49.78% in terms of MAPE and CRPS values,

respectively.

A single residential load with high level of accuracy and

extremely small time resolution case can be considered as

one of the most challenging time series forecasting problem

in the power system. Therefore, the results obtained by the

proposed deep mixture network in 1-min time resolution is

also discussed. Figs. 4(a) and 4(b) show the forecasted PDF for

two different time intervals at 14:06 and 15:42, respectively,

indicating that the real-value appears in the forecasted PDFs

with high probability. Fig. 5 illustrates PIs derived from the

forecasted PDFs of a single residential load within 1-min

time resolution for 60 time intervals between 14:00 and 15:00

in the sample day, with confidence in the range 80%-10%,

showing that the forecasted intervals can properly cover the

observations. Fig. 5 shows how the proposed deep mixture

density network reacts to the high intermittency in a single

residential load with 1-min time resolution.

The results obtained by different mixture density networks

including deep and shallow based models are given in Table V.

The superiority of the proposed deep mixture density network

is significant. As an example, in terms of CRPS, the CNN-

GRU mixture network improves the accuracy of the other

state-of-the-art deep mixture networks including 2D-CNN,

GRU, and LSTM based mixture density networks by about

27.14%, 55.91%, and 64.96%, respectively. In comparison

with shallow-based mixture density networks, the proposed

method improves the accuracy of RF-based network by over

79.35% and 80.03% in terms of CRPS and CE, respectively.

Also, the proposed deep mixture architecture shows more than

82% improvement in comparison with FFNN in terms of all

four metrics.

Furthermore, the comparison between the proposed deep

mixture density network and Monte-Carlo drop out, KDE,

and CRPL is given in Table VI. The results obtained by

the proposed probabilistic deep network show more than

63.05% and 74.50% in comparison with the state-of-the-art

methods and Monte-Carlo drop out and the KDE, respectively.

In addition, the proposed method outperforms CPRLF with

80.93% and 80.55% in terms of CE and CRPS, respectively.

TABLE III
PERFORMANCE OF FORECASTING METHODS FOR A SINGLE HOUSEHOLD

LOAD

Forecasting methods
Median

CRPS% CE
RMSE MAPE%

The proposed deep mixture architecture 0.15952 10.024 0.08490 5.257

2D-CNN+The proposed MDN 0.16153 10.124 0.10435 5.952

GRU+The proposed MDN 0.22541 18.591 0.11191 6.089

LSTM+The proposed MDN 0.22611 18.8534 0.12913 6.447

RF+The proposed MDN 0.30357 22.7922 0.11592 8.655

FFNN+The proposed MDN 0.3812 24.032 0.16258 9.306

TABLE IV
PERFORMANCE OF PDF METHODS FOR A SINGLE HOUSEHOLD LOAD

Forecasting methods
Median

CRPS% CE
RMSE MAPE%

The proposed deep mixture architecture 0.15952 10.024 0.08490 5.257

CNN-GRU+Monte Carlo drop out 0.21153 16.124 0.11435 6.952

CNN-GRU+KDE 0.25541 18.591 0.12191 7.089

CNN-GRU+the proposed MDN
0.17715 12.136 0.09120 5.9851

without adversarial training

CPRLF [39] 0.39913 27.814 0.16905 9.627

(a) (b)

Fig. 4. CNN-GRU mixture predictive distribution and actual values at a
sample day with 1-min time resolution (a) 14:06, (b) 15:42 in Case I
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Fig. 5. PIs with different confidence intervals obtained by proposed deep
mixture model with 1-min time resolution in Case I

TABLE V
PERFORMANCE OF FORECASTING METHODS FOR A SINGLE

HOUSEHOLD LOAD WITHIN 1-MIN RESOLUTION

Forecasting methods
Median

CRPS% CE
RMSE MAPE%

The proposed deep mixture architecture 0.02503 12.8147 0.021516 1.1338

2D-CNN+The proposed MDN 0.02914 13.1270 0.029531 1.1495

GRU+The proposed MDN 0.07215 19.9134 0.048803 2.0598

LSTM+The proposed MDN 0.07392 21.6324 0.061419 2.3357

RF+The proposed MDN 0.11176 28.0975 0.104218 5.6787

FFNN+The proposed MDN 0.15318 32.2785 0.384916 6.9058

B. Case II

In this case, PRLF is carried out for a typical low voltage

microgrid that consists of 121 residential loads. Fig. 6 depicts

the predicted PDFs by designed deep mixture network and

corresponding real values. These figures provide a sample set

of forecasting PDFs, with full probability description of a

set of small-scale aggregative loads. Almost all real values

placed in the middle of PDF curves demonstrate the high

accuracy of the proposed network and its practical applications

in short/long term planning of residential microgrids.

To show the performance of the proposed neural network

in capturing the inherent uncertainty and nonstationarity asso-

ciated with household loads, Fig.7 shows the forecasted PIs

with different confidence intervals for 48 hours. In the Fig.7,

real residential load values are always placed in the PIs and

actual values trajectories are tracked using the constructed PIs.

Table VII is intended to demonstrate the superiority of

the designed CNN-GRU mixture with respect to the other

designed mixture networks. This table shows that the disaggre-

gated loads are more fluctuating than aggregated loads, even

with aggregated loads with small-scale level. Secondly, CNN-

GRU mixture outperforms the rest of the designed mixture

neural networks. As an example, CNN-GRU mixture has

improved the 2D-CNN, GRU, LSTM, RF and FFNN mixture

accuracy by more than 17.09%, 43.54%, 49.88%, 59.78% and

64.23%, respectively, based on the CE metric.

In addition, the proposed approach is compared with CNN-

GRU + the proposed MDN without adversarial training, CNN-

GRU+ Monte-Carlo drop out, CNN-GRU+KDE, and CRPLF

in Table VIII. The proposed PRLF method is more accurate

TABLE VI
PERFORMANCE OF PDF METHODS FOR A SINGLE HOUSEHOLD

LOAD WITHIN 1-MIN RESOLUTION

Forecasting methods
Median

CRPS% CE
RMSE MAPE%

The proposed deep mixture architecture 0.02503 12.8147 0.021516 1.1338

CNN-GRU+Monte Carlo drop out 0.09951 19.2769 0.058235 2.0057

CNN-GRU+KDE 0.15623 23.0462 0.084387 4.7655

CNN-GRU+the proposed MDN
0.03604 15.2547 0.036425 1.8942

without adversarial training

CPRLF [39] 0.18479 28.6278 0.110656 5.9463

Fig. 6. CNN-GRU mixture predictive distribution and actual values at a
sample day for (a) 00:00, (b) 8:30, (c) 13:00, (d) 20:30 in Case II

than the proposed MDN without adversarial training, Monte-

Carlo drop out, KDE, and CPRLF methods and improves the

accuracy of the proposed MDN without adversarial training,

Monte-Carlo drop out, and KDE by more than 39.53%,

53.35%, 60.56%, and 66.94%, respectively, in terms of CE.

C. Case III

3516 residential loads are aggregated to form set of large-

scale residential loads. The predicted PDFs for several hours-

ahead of a sample day is depicted in Fig.8. In peak (Figs

8 (c) and (d)) mid-peak (Fig.8 (b)), and off-peak hours (Fig

8(a)) the results display great accuracy in aggregated loads

at megawatt level. The predicted PDF for look-ahead hours

can provide full statistical information for retail and wholesale

market participants and distribution or transmission system

operators with a high level of accuracy, which is demonstrated

by inserting real values in the middle of the PDF. Furthermore,

anticipated PIs in this case are shown in Fig.9, which we see

that real values lie in middle of PDFs. The superiority of the

proposed deep mixture network in comparison with state-of-

the-art and previous presented method is verified by results in

Tables IX & X.
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Fig. 7. PIs with different confidence intervals obtained by proposed deep
mixture model in Case II

TABLE VII
PERFORMANCE OF FORECASTING METHODS FOR A SET OF

SMALL-SCALE AGGREGATIVE RESIDENTIAL LOAD

Forecasting methods
Median

CRPS% CE
RMSE MAPE%

The proposed deep mixture architecture 0.003001 6.6945 0.003033 2.4031

2D-CNN+The proposed MDN 0.003077 6.7697 0.005160 2.8985

GRU+The proposed MDN 0.004480 11.9473 0.006562 4.2563

LSTM+The proposed MDN 0.004547 11.9823 0.007001 4.7952

RF+The proposed MDN 0.127431 18.8491 0.014193 5.9757

FFNN+The proposed MDN 0.290020 20.0456 0.026876 6.1654

VI. CONCLUSION

In this paper, a direct PRLF model based on deep mixture

networks was proposed. The proposed model is capable of

capturing the uncertainty of a single household load as well

as small/large scale aggregated loads. First, the mixture density

network is reformulated to mitigate the limitations of its stan-

dard form in terms of NaN values of variance by integrating

the log-sum-exp trick and adversarial training. Then, an end-

to-end deep mixture network exploits the strengths of CNN to

extract feature maps, GRU to capture temporal features, and

concatenated FCN to construct proposed MDN coefficients

to forecast PDF. To verify the performance of the proposed

method, three cases based on the aggregated/disaggregated

loads with 1-min (as an extreme PRLF problem) and 30-

min time resolutions are studied in this paper. The state-of-

the-art deep- and shallow-based models are designed for the

sake of comparison with the proposed neural network model.

The obtained results show more than 20% improvement in

accuracy compared to deep structure-based methods and more

than 60% accuracy improvement in comparison with RF and

FFNN mixture network. Furthermore, the designed CNN-GRU

method is merged into the proposed MDN without adversarial

training and Monte-Carlo dropout methods to address the

superiority of the proposed predictive PDF estimators. The

results shows more than 25% accuracy improvement. In addi-

tion, the results obtained by the proposed deep mixture density

network is also compared with the CRPLF method and shows

at least 47% improvement in terms of all accuracy metrics. The

obtained results show the great achievement of the proposed

method in probabilistic forecasting of the residential loads

TABLE VIII
PERFORMANCE OF PDF METHODS FOR A SET OF SMALL-SCALE

AGGREGATIVE RESIDENTIAL LOAD

Forecasting methods
Median

CRPS% CE
RMSE MAPE%

The proposed deep mixture architecture 0.003001 6.6945 0.00303 2.4031

CNN-GRU+Monte Carlo drop out 0.01506 10.368 0.01543 5.152

CNN-GRU+KDE 0.02980 12.254 0.02119 6.094

CNN-GRU+the proposed MDN
0.005740 9.2547 0.00569 3.9746

without adversarial training

CPRLF [39] 0.11576 21.632 0.02797 7.268

Fig. 8. CNN-GRU mixture predictive distribution and actual values at a
sample day for (a) 00:00, (b) 8:30, (c) 13:00, (d) 20:30 in Case III

from a single customer to large-scale aggregated loads, which

can be implemented as separate modules to be embedded

smart buildings/ microgrid control centers/ distribution system

control centers.
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