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ABSTRACT

Recent advances in deep reinforcement learning have made significant strides in
performance on applications such as Go and Atari games. However, developing
practical methods to balance exploration and exploitation in complex domains
remains largely unsolved. Thompson Sampling and its extension to reinforcement
learning provide an elegant approach to exploration that only requires access
to posterior samples of the model. At the same time, advances in approximate
Bayesian methods have made posterior approximation for flexible neural network
models practical. Thus, it is attractive to consider approximate Bayesian neural
networks in a Thompson Sampling framework. To understand the impact of using
an approximate posterior on Thompson Sampling, we benchmark well-established
and recently developed methods for approximate posterior sampling combined
with Thompson Sampling over a series of contextual bandit problems. We found
that many approaches that have been successful in the supervised learning setting
underperformed in the sequential decision-making scenario. In particular, we
highlight the challenge of adapting slowly converging uncertainty estimates to the
online setting.

1 INTRODUCTION

Recent advances in reinforcement learning have sparked renewed interest in sequential decision
making with deep neural networks. Neural networks have proven to be powerful and flexible function
approximators, allowing one to learn mappings directly from complex states (e.g., pixels) to estimates
of expected return. While such models can be accurate on data they have been trained on, quantifying
model uncertainty on new data remains challenging. However, having an understanding of what is
not yet known or well understood is critical to some central tasks of machine intelligence, such as
effective exploration for decision making.

A fundamental aspect of sequential decision making is the exploration-exploitation dilemma: in order
to maximize cumulative reward, agents need to trade-off what is expected to be best at the moment,
(i.e., exploitation), with potentially sub-optimal exploratory actions. Solving this trade-off in an
efficient manner to maximize cumulative reward is a significant challenge as it requires uncertainty
estimates. Furthermore, exploratory actions should be coordinated throughout the entire decision
making process, known as deep exploration, rather than performed independently at each state.

Thompson Sampling (Thompson, 1933) and its extension to reinforcement learning, known as
Posterior Sampling, provide an elegant approach that tackles the exploration-exploitation dilemma
by maintaining a posterior over models and choosing actions in proportion to the probability that
they are optimal. Unfortunately, maintaining such a posterior is intractable for all but the simplest
models. As such, significant effort has been dedicated to approximate Bayesian methods for deep
neural networks. These range from variational methods (Graves, 2011; Blundell et al., 2015; Kingma
et al., 2015) to stochastic minibatch Markov Chain Monte Carlo (Neal, 1994; Welling & Teh, 2011;
Li et al., 2016; Ahn et al., 2012; Mandt et al., 2016), among others. Because the exact posterior is
intractable, evaluating these approaches is hard. Furthermore, these methods are rarely compared on
benchmarks that measure the quality of their estimates of uncertainty for downstream tasks.
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To address this challenge, we develop a benchmark for exploration methods using deep neural
networks. We compare a variety of well-established and recent Bayesian approximations under the
lens of Thompson Sampling for contextual bandits, a classical task in sequential decision making.
All code and implementations to reproduce the experiments will be available open-source, to provide
a reproducible benchmark for future development. 1

Exploration in the context of reinforcement learning is a highly active area of research. Simple
strategies such as epsilon-greedy remain extremely competitive (Mnih et al., 2015; Schaul et al.,
2016). However, a number of promising techniques have recently emerged that encourage exploration
though carefully adding random noise to the parameters (Plappert et al., 2017; Fortunato et al., 2017;
Gal & Ghahramani, 2016) or bootstrap sampling (Osband et al., 2016) before making decisions.
These methods rely explicitly or implicitly on posterior sampling for exploration.

In this paper, we investigate how different posterior approximations affect the performance of
Thompson Sampling from an empirical standpoint. For simplicity, we restrict ourselves to one of the
most basic sequential decision making scenarios: that of contextual bandits.

No single algorithm bested the others in every bandit problem, however, we observed some general
trends. We found that dropout, injecting random noise, and bootstrapping did provide a strong boost
in performance on some tasks, but was not able to solve challenging synthetic exploration tasks.
Other algorithms, like Variational Inference, Black Box α-divergence, and minibatch Markov Chain
Monte Carlo approaches, strongly couple their complex representation and uncertainty estimates.
This proves problematic when decisions are made based on partial optimization of both, as online
scenarios usually require. On the other hand, making decisions according to a Bayesian linear
regression on the representation provided by the last layer of a deep network offers a robust and
easy-to-tune approach. It would be interesting to try this approach on more complex reinforcement
learning domains.

In Section 2 we discuss Thompson Sampling, and present the contextual bandit problem. The different
algorithmic approaches that approximate the posterior distribution fed to Thompson Sampling are
introduced in Section 3, while the linear case is described in Section 4. The main experimental results
are presented in Section 5, and discussed in Section 6. Finally, Section 7 concludes.

2 DECISION-MAKING VIA THOMPSON SAMPLING

The contextual bandit problem works as follows. At time t = 1, . . . , n a new context Xt ∈ R
d

arrives and is presented to algorithm A. The algorithm —based on its internal model and Xt— selects
one of the k available actions, at. Some reward rt = rt(Xt, at) is then generated and returned to the
algorithm, that may update its internal model with the new data. At the end of the process, the reward
for the algorithm is given by r =

∑n

t=1
rt, and cumulative regret is defined as RA = E[r∗ − r],

where r∗ is the cumulative reward of the optimal policy (i.e., the policy that always selects the action
with highest expected reward given the context). The goal is to minimize RA.

The main research question we address in this paper is how approximated model posteriors affect
the performance of decision making via Thompson Sampling (Algorithm 1) in contextual bandits.
We study a variety of algorithmic approaches to approximate a posterior distribution, together with
different empirical and synthetic data problems that highlight several aspects of decision making.
We consider distributions π over the space of parameters that completely define a problem instance
θ ∈ Θ. For example, θ could encode the reward distributions of a set of arms in the multi-armed
bandit scenario, or –more generally– all the parameters of an MDP in reinforcement learning.

Thompson Sampling is a classic algorithm (Thompson, 1933) which requires only that one can sample
from the posterior distribution over plausible problem instances (for example, values or rewards). At
each round, it draws a sample and takes a greedy action under the optimal policy for the sample. The
posterior distribution is then updated after the result of the action is observed. Thompson Sampling
has been shown to be extremely effective for bandit problems both in practice (Chapelle & Li, 2011;
Granmo, 2010) and theory (Agrawal & Goyal, 2012). It is especially appealing for deep neural
networks as one rarely has access to the full posterior but can often approximately sample from it.

1Available in Python and Tensorflow at https://sites.google.com/site/deepbayesianbandits/.
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Algorithm 1 Thompson Sampling

1: Input: Prior distribution over models, π0 : θ ∈ Θ → [0, 1].
2: for time t = 0, . . . , N do
3: Observe context Xt ∈ Rd.
4: Sample model θt ∼ πt.
5: Compute at = BestAction(Xt, θt).
6: Select action at and observe reward rt.
7: Update posterior distribution πt+1 with (Xt, at, rt).

In the following sections we rely on the idea that, if we had access to the actual posterior πt given
the observed data at all times t, then choosing actions using Thompson Sampling would lead to
near-optimal cumulative regret or, more informally, to good performance. It is important to remark
that in some problems this is not necessarily the case; for example, when actions that have no chance
of being optimal still convey useful information about other actions. Thompson Sampling (or UCB
approaches) would never select such actions, even if they are worth their cost (Russo & Van Roy,
2014). In addition, Thompson Sampling does not take into account the time horizon where the
process ends, and if known, exploration efforts should be tuned accordingly (Russo et al., 2017).
Nonetheless, under the assumption that very accurate posterior approximations lead to efficient
decisions, the question is: what happens when the approximations are not so accurate? In some
cases, the mismatch in posteriors may not hurt in terms of decision making, and we will still end up
with good decisions. Unfortunately, in other cases, this mismatch together with its induced feedback
loop will degenerate in a significant loss of performance. We would like to understand the main
aspects that determine which way it goes. This is an important practical question as, in large and
complex systems, computational sacrifices and statistical assumptions are made to favor simplicity
and tractability. But, what is their impact?

3 ALGORITHMS

In this section, we describe the different algorithmic design principles that we considered in our
simulations of Section 5. These algorithms include linear methods, Neural Linear and Neural Greedy,
variational inference, expectation-propagation, dropout, Monte Carlo methods, bootstrapping, direct
noise injection, and Gaussian Processes. In Figure 6 in the appendix, we visualize the posteriors of
the nonlinear algorithms on a synthetic one dimensional problem.

Linear Methods We apply well-known closed-form updates for Bayesian linear regression for exact
posterior inference in linear models (Bishop, 2006). We provide the specific formulas below, and
note that they admit a computationally-efficient online version. We consider exact linear posteriors
as a baseline; i.e., these formulas compute the posterior when the data was generated according to
Y = XTβ + ǫ where ǫ ∼ N (0, σ2), and Y represents the reward. Importantly, we model the joint
distribution of β and σ2 for each action. Sequentially estimating the noise level σ2 for each action
allows the algorithm to adaptively improve its understanding of the volume of the hyperellipsoid of
plausible β’s; in general, this leads to a more aggressive initial exploration phase (in both β and σ2).

The posterior at time t for action i, after observing X,Y , is πt(β, σ
2) = πt(β | σ2) πt(σ

2), where we
assume σ2 ∼ IG(at, bt), and β | σ2 ∼ N (µt, σ

2 Σt), an Inverse Gamma and Gaussian distribution,
respectively. Their parameters are given by

Σt =
(

XTX + Λ0

)−1
, µt = Σt

(

Λ0µ0 +XTY
)

, (1)

at = a0 + t/2, bt = b0 +
1

2

(

Y TY + µT
0 Σ0µ0 − µT

t Σ
−1
t µt

)

. (2)

We set the prior hyperparameters to µ0 = 0, and Λ0 = λ Id, while a0 = b0 = η > 1. It follows that
initially, for σ2

0 ∼ IG(η, η), we have the prior β | σ2
0 ∼ N (0, σ2

0/λ Id), where E[σ2
0 ] = η/(η − 1).

Note that we independently model and regress each action’s parameters, βi, σ
2
i for i = 1, . . . , k.

We consider two approximations to (1) motivated by function approximators where d is large. While
posterior distributions or confidence ellipsoids should capture dependencies across parameters as
shown above (say, a dense Σt), in practice, computing the correlations across all pairs of parameters is

3



Published as a conference paper at ICLR 2018

too expensive, and diagonal covariance approximations are common. For linear models it may still be
feasible to exactly compute (1), whereas in the case of Bayesian neural networks, unfortunately, this
may no longer be possible. Accordingly, we study two linear approximations where Σt is diagonal.
Our goal is to understand the impact of such approximations in the simplest case, to properly set our
expectations for the loss in performance of equivalent approximations in more complex approaches,
like mean-field variational inference or Stochastic Gradient Langevin Dynamics.

Assume for simplicity the noise standard deviation is known. In Figure 2a, for d = 2, we see the
posterior distribution βt ∼ N (µt,Σt) of a linear model based on (1), in green, together with two
diagonal approximations. Each approximation tries to minimize a different objective. In blue, the

PrecisionDiag posterior approximation finds the diagonal Σ̂ ∈ R
d×d minimizing KL(N (µt, Σ̂) ||

N (µt,Σt)), like in mean-field variational inference. In particular, Σ̂ = Diag(Σ−1
t )−1. On the

other hand, in orange, the Diag posterior approximation finds the diagonal matrix Σ̄ minimizing
KL(N (µt,Σt) || N (µt, Σ̄)) instead. In this case, the solution is simply Σ̄ = Diag(Σt).

We add linear baselines that do not model the uncertainty in the action noise σ2. In addition, we also
consider simple greedy and epsilon greedy linear baselines (i.e., not based on Thompson Sampling).

Neural Linear The main problem linear algorithms face is their lack of representational power,
which they complement with accurate uncertainty estimates. A natural attempt at getting the best
of both worlds consists in performing a Bayesian linear regression on top of the representation of
the last layer of a neural network, similarly to Snoek et al. (2015). The predicted value vi for each
action ai is given by vi = βT

i zx, where zx is the output of the last hidden layer of the network for
context x. While linear methods directly try to regress values v on x, we can independently train
a deep net to learn a representation z, and then use a Bayesian linear regression to regress v on z,
obtain uncertainty estimates on the β’s, and make decisions accordingly via Thompson Sampling.
Note that we do not explicitly consider the weights of the linear output layer of the network to make
decisions; further, the network is only used to find good representations z. In addition, we can update
the network and the linear regression at different time-scales. It makes sense to keep an exact linear
regression (as in (1) and (2)) at all times, adding each new data point as soon as it arrives. However,
we only update the network after a number of points have been collected. In our experiments, after
updating the network, we perform a forward pass on all the training data to obtain zx, which is
then fed to the Bayesian regression. In practice this may be too expensive, and z could be updated
periodically with online updates on the regression. We call this algorithm Neural Linear.

Neural Greedy We refer to the algorithm that simply trains a neural network and acts greedily (i.e.,
takes the action whose predicted score for the current context is highest) as RMS, as we train it using
the RMSProp optimizer. This is our non-linear baseline, and we tested several versions of it (based
on whether the training step was decayed, reset to its initial value for each re-training or not, and
how long the network was trained for). We also tried the ǫ-greedy version of the algorithm, where a
random action was selected with probability ǫ for some decaying schedule of ǫ.

Variational Inference Variational approaches approximate the posterior by finding a distribution
within a tractable family that minimizes the KL divergence to the posterior (Hinton & Van Camp,
1993). These approaches formulate and solve an optimization problem, as opposed, for example, to
sampling methods like MCMC (Jordan et al., 1999; Wainwright et al., 2008). Typically (and in our
experiments), the posterior is approximated by a mean-field or factorized distribution where strong
independence assumptions are made. For instance, each neural network weight can be modeled via
a –conditionally independent– Gaussian distribution whose mean and variance are estimated from
data. Recent advances have scaled these approaches to estimate the posterior of neural networks with
millions of parameters (Blundell et al., 2015). A common criticism of variational inference is that it
underestimates uncertainty (e.g., (Bishop, 2006)), which could lead to under-exploration.

Expectation-Propagation The family of expectation-propagation algorithms (Opper & Winther,
2000; Minka, 2001b;a) is based on the message passing framework (Pearl, 1986). They iteratively
approximate the posterior by updating a single approximation factor (or site) at a time, which usually
corresponds to the likelihood of one data point. The algorithm sequentially minimizes a set of local
KL divergences, one for each site. Most often, and for computational reasons, likelihoods are chosen
to lie in the exponential family. In this case, the minimization corresponds to moment matching. See
Gelman et al. (2014) for further details. We focus on methods that directly optimize the global EP
objective via stochastic gradient descent, as, for instance, Power EP (Minka, 2004). In particular, in
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this work, we implement the black-box α-divergence minimization algorithm (Hernández-Lobato
et al., 2016), where local parameter sharing is applied to the Power EP energy function. Note that
different values of α ∈ R\{0} correspond to common algorithms: α = 1 to EP, and α → 0 to
Variational Bayes. The optimal α value is problem-dependent (Hernández-Lobato et al., 2016).

Dropout Dropout is a training technique where the output of each neuron is independently zeroed
out with probability p at each forward pass (Srivastava et al., 2014). Once the network has been
trained, dropout can still be used to obtain a distribution of predictions for a specific input. Following
the best action with respect to the random dropout prediction can be interpreted as an implicit form
of Thompson sampling. Dropout can be seen as optimizing a variational objective (Kingma et al.,
2015; Gal & Ghahramani, 2016; Hron et al., 2017).

Monte Carlo Monte Carlo sampling remains one of the simplest and reliable tools in the Bayesian
toolbox. Rather than parameterizing the full posterior, Monte Carlo methods estimate the posterior
through drawing samples. This is naturally appealing for highly parameterized deep neural networks
for which the posterior is intractable in general and even simple approximations such as multivariate
Gaussian are too expensive (i.e. require computing and inverting a covariance matrix over all
parameters). Among Monte Carlo methods, Hamiltonian Monte Carlo (Neal, 1994) (HMC) is often
regarded as a gold standard algorithm for neural networks as it takes advantage of gradient information
and momentum to more effectively draw samples. However, it remains unfeasible for larger datasets
as it involves a Metropolis accept-reject step that requires computing the log likelihood over the whole
data set. A variety of methods have been developed to approximate HMC using mini-batch stochastic
gradients. These Stochastic Gradient Langevin Dynamics (SGLD) methods (Neal, 1994; Welling &
Teh, 2011) add Gaussian noise to the model gradients during stochastic gradient updates in such a
manner that each update results in an approximate sample from the posterior. Different strategies have
been developed for augmenting the gradients and noise according to a preconditioning matrix. Li et al.
(2016) show that a preconditioner based on the RMSprop algorithm performs well on deep neural
networks. Patterson & Teh (2013) suggested using the Fisher information matrix as a preconditioner
in SGLD. Unfortunately the approximations of SGLD hold only if the learning rate is asymptotically
annealed to zero. Ahn et al. (2012) introduced Stochastic Gradient Fisher Scoring to elegantly remove
this requirement by preconditioning according to the Fisher information (or a diagonal approximation
thereof). Mandt et al. (2016) develop methods for approximately sampling from the posterior using a
constant learning rate in stochastic gradient descent and develop a prescription for a stable version
of SGFS. We evaluate the diagonal-SGFS and constant-SGD algorithms from Mandt et al. (2016)
in this work. Specifically for constant-SGD we use a constant learning rate for stochastic gradient

descent, where the learning rate ǫ is given by ǫ = 2 S
N
BB

T where S is the batch size, N the number

of data points and BB
T is an online average of the diagonal empirical Fisher information matrix.

For Stochastic Gradient Fisher Scoring we use the following stochastic gradient update for the model
parameters θ at step t:

θt+1 = θt − ǫ H g(θt) +
√
ǫ H E ν, ν ∼ N (0, I) (3)

where we take the noise covariance EE
T to also be BB

T and H = 2

N
(ǫBB

T +EE
T)−1.

Bootstrap A simple empirical approach to approximate the sampling distribution of any estimator is
the Bootstrap (Efron, 1982). The main idea is to simultaneously train q models, where each model i
is based on a different dataset Di. When all the data D is available in advance, Di is typically created
by sampling |D| elements from D at random with replacement. In our case, however, the data grows
one example at a time. Accordingly, we set a parameter p ∈ (0, 1], and append the new datapoint to
each Di independently at random with probability p. In order to emulate Thompson Sampling, we
sample a model uniformly at random (i.e., with probability pi = 1/q.) and take the action predicted
to be best by the sampled model. We mainly tested cases q = 5, 10 and p = 0.8, 1.0, with neural
network models. Note that even when p = 1 and the datasets are identical, the random initialization
of each network, together with the randomness from SGD, lead to different predictions.

Direct Noise Injection Parameter-Noise (Plappert et al., 2017) is a recently proposed approach for
exploration in deep RL that has shown promising results. The training updates for the network are
unchanged, but when selecting actions, the network weights θ are perturbed with isotropic Gaussian
noise. Crucially, the network uses layer normalization (Ba et al., 2016), which ensures that all weights
are on the same scale. The magnitude of the Gaussian noise is adjusted so that the overall effect of
the perturbations is similar in scale to ǫ-greedy with a linearly decaying schedule (see (Plappert et al.,
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2017) for details). Because the perturbations are done on the model parameters, we might hope that
the actions produced by the perturbations are more sensible than ǫ-greedy.

Bayesian Non-parametric Gaussian processes (Rasmussen & Williams, 2005) are a gold-standard
method for modeling distributions over non-linear continuous functions. It can be shown that, in the
limit of infinite hidden units and under a Gaussian prior, a Bayesian neural network converges to a
Gaussian process (Neal, 1994). As such, GPs would appear to be a natural baseline. Unfortunately,
standard GPs computationally scale cubically in the number of observations, limiting their appli-
cability to relatively small datasets. There are a wide variety of methods to approximate Gaussian
processes using, for example, pseudo-observations (Snelson & Ghahramani, 2006) or variational
inference (Titsias, 2009). We implemented both standard and sparse GPs but only report the former
due to similar performance. For the standard GP, due to the scaling issue, we stop adding inputs to
the GP after 1000 observations. This performed significantly better than randomly sampling inputs.
Our implementation is a multi-task Gaussian process (Bonilla et al., 2008) with a linear and Matern
3/2 product kernel over the inputs and an exponentiated quadratic kernel over latent vectors for the
different tasks. The hyperparameters of this model and the latent task vectors are optimized over the
GP marginal likelihood. This allows the model to learn correlations between the outputs of the model.
Specifically, the covariance function K(·) of the GP is given by:

K(xk, x̂l) = kmatern(x
k, x̂l) · klin(xk, x̂l) · ktask(vk,vl) (4)

kmatern(x
k, x̂l) = α(1 +

√
3rλm

(x, x̂)) exp(−
√
3rλm

(x, x̂))) (5)

klin(x
k, x̂l) = β(x⊘ λl)(x̂⊘ λl)

T (6)

and the task kernel between tasks t and l are kt(x
k, x̂l) = exp(−rλm

(vk, v̂l))2) where v
l indexes

the latent vector for task l and rλ(x, x̂) = |(x⊘ λ)− (x̂⊘ λ)|. The length-scales, λm and λl, and
amplitude parameters α, β are optimized via the log marginal likelihood. For the sparse version we
used a Sparse Variational GP (Hensman et al., 2015) with the same kernel and with 300 inducing
points, trained via minibatch stochastic gradient descent (Matthews et al., 2017).

4 FEEDBACK LOOP IN THE LINEAR CASE

In this section, we illustrate some of the subtleties that arise when uncertainty estimates drive
sequential decision-making using simple linear examples.

There is a fundamental difference between static and dynamic scenarios. In a static scenario, e.g.
supervised learning, we are given a model family Θ (like the set of linear models, trees, or neural
networks with specific dimensions), a prior distribution π0 over Θ, and some observed data D

that —importantly— is assumed i.i.d. Our goal is to return an approximate posterior distribution:
π̃ ≈ π = P(θ | D). We define the quality of our approximation by means of some distance d(π̃, π).

On the other hand, in dynamic settings, our estimate at time t, say π̃t, will be used via some
mechanism M, in this case Thompson sampling, to collect the next data-point, which is then
appended to Dt. In this case, the data-points in Dt are no longer independent. Dt will now determine
two distributions: the posterior given the data that was actually observed, πt+1 = P(θ | Dt), and our
new estimate π̃t+1. When the goal is to make good sequential decisions in terms of cumulative regret,
the distance d(π̃t, πt) is in general no longer a definitive proxy for performance. For instance, a
poorly-approximated decision boundary could lead an algorithm, based on π̃, to get stuck repeatedly
selecting a single sub-optimal action a. After collecting lots of data for that action, π̃t and πt could
start to agree (to their capacity) on the models that explain what was observed for a, while both would
stick to something close to the prior regarding the other actions. At that point, d(π̃t, πt) may show
relatively little disagreement, but the regret would already be terrible.

Let π∗
t be the posterior distribution P(θ | Dt) under Thompson Sampling’s assumption, that is, data

was always collected according to π∗
j for j < t. We follow the idea that π̃t being close to π∗

t for all t
leads to strong performance. However, this concept is difficult to formalize: once different decisions
are made, data for different actions is collected and it is hard to compare posterior distributions.

We illustrate the previous points with a simple example, see Figure 1. Data is generated according
to a bandit with k = 6 arms. For a given context X ∼ N (µ,Σ), the reward obtained by pulling
arm i follows a linear model ri,X = XTβi + ǫ with ǫ ∼ N (0, σ2

i ). The posterior distribution over
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(a) Two independent instances of Thompson Sampling with the true linear posterior.

(b) Thompson Sampling with the true linear posterior (green), and the diagonalized version (red).

(c) Linear posterior versus diagonal posterior fitted to the data collected by the former.

Figure 1: Visualizations of the posterior approximations in a linear example.

(a) Posterior Approximations. (b) Case d = 15. (c) Case d = 30.

Figure 2: The impact on regret of different approximated posteriors. We show (green) the actual
linear posterior, (orange) the diagonal posterior approximation and (blue) the precision approximation
in 2a. In 2b and 2c we visualize the impact of the approximations on cumulative regret.

βi ∈ Rd can be exactly computed using the standard Bayesian linear regression formulas presented
in Section 3. We set the contextual dimension d = 20, and the prior to be β ∼ N (0, λ Id), for λ > 0.

In Figure 1, we show the posterior distribution for two dimensions of βi for each arm i after n = 500
pulls. In particular, in Figure 1a, two independent runs of Thompson Sampling with their posterior
distribution are displayed in red and green. While strongly aligned, the estimates for some arms
disagree (especially for arms that are best only for a small fraction of the contexts, like Arm 2 and 3,
where fewer data-points are available). In Figure 1b, we also consider Thompson Sampling with an
approximate posterior with diagonal covariance matrix, Diag in red, as defined in Section 3. Each
algorithm collects its own data based on its current posterior (or approximation). In this case, the
posterior disagreement after n = 500 decisions is certainly stronger. However, as shown in Figure 1c,
if we computed the approximate posterior with a diagonal covariance matrix based on the data
collected by the actual posterior, the disagreement would be reduced as much as possible within the
approximation capacity (i.e., it still cannot capture correlations in this case). Figure 1b shows then
the effect of the feedback loop. We look next at the impact that this mismatch has on regret.
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We illustrate with a similar example how inaccurate posteriors sometimes lead to quite different
behaviors in terms of regret. In Figure 2a, we see the posterior distribution β ∼ N (µ,Σ) of a linear
model in green, together with the two diagonal linear approximations introduced in Section 3: the
Diag (in orange) and the PrecisionDiag (in blue) approximations, respectively. We now assume there
are k linear arms, βi ∈ R

d for i = 1, . . . , k, and decisions are made according to the posteriors in
Figure 2a. In Figures 2b and 2c we plot the regret of Thompson Sampling when there are k = 20
arms, for both d = 15 and d = 30. We see that, while the PrecisionDiag approximation does even
outperform the actual posterior, the diagonal covariance approximation truly suffers poor regret when
we increase the dimension d, as it is heavily penalized by simultaneously over-exploring in a large
number of dimensions and repeateadly acting according to implausible models.

5 EMPIRICAL EVALUATION

In this section, we present the simulations and outcomes of several synthetic and real-world data
bandit problems with each of the algorithms introduced in Section 3. In particular, we first explain
how the simulations were set up and run, and the metrics we report. We then split the experiments
according to how data was generated, and the underlying models fit by the algorithms from Section 3.

5.1 THE EXPERIMENTAL FRAMEWORK

We run the contextual bandit experiments as described at the beginning of Section 2, and discuss
below some implementation details of both experiments and algorithms. A detailed summary of the
key parameters used for each algorithm can be found in Table 2 in the appendix.

Neural Network Architectures All algorithms based on neural networks as function approximators
share the same architecture. In particular, we fit a simple fully-connected feedforward network with
two hidden layers with 100 units each and ReLu activations. The input of the network has dimension
d (same as the contexts), and there are k outputs, one per action. Note that for each training point
(Xt, at, rt) only one action was observed (and algorithms usually only take into account the loss
corresponding to the prediction for the observed action).

Updating Models A key question is how often and for how long models are updated. Ideally, we
would like to train after each new observation and for as long as possible. However, this may limit
the applicability of our algorithms in online scenarios where decisions must be made immediately.
We update linear algorithms after each time-step by means of (1) and (2). For neural networks, the
default behavior was to train for ts = 20 or 100 mini-batches every tf = 20 timesteps. 2 The size of
each mini-batch was 512. We experimented with increasing values of ts, and it proved essential for
some algorithms like variational inference approaches. See the details in Table 2.

Metrics We report two metrics: cumulative regret and simple regret. We approximate the latter as
the mean cumulative regret in the last 500 time-steps, a proxy for the quality of the final policy (see
further discussion on pure exploration settings, Bubeck et al. (2009)). Cumulative regret is computed
based on the best expected reward, as is standard. For most real datasets (Statlog, Covertype, Jester,
Adult, Census, and Song), the rewards were deterministic, in which case, the definition of regret
also corresponds to the highest realized reward (i.e., possibly leading to a hard task, which helps to
understand why in some cases all regrets look linear). We reshuffle the order of the contexts, and
rerun the experiment 50 times to obtain the cumulative regret distribution and report its statistics.

Hyper-Parameter Tuning Deep learning methods are known to be very sensitive to the selection of
a wide variety of hyperparameters, and many of the algorithms presented are no exception. Moreover,
that choice is known to be highly dataset dependent. Unfortunately, in the bandits scenario, we
commonly do not have access to each problem a-priori to perform tuning. For the vast majority of
algorithms, we report the outcome for three versions of the algorithm defined as follows. First, we
use one version where hyper-parameters take values we guessed to be reasonable a-priori. Then, we
add two additional instances whose hyper-parameters were optimized on two different datasets via
Bayesian Optimization. For example, in the case of Dropout, the former version is named Dropout,
while the optimized versions are named Dropout-MR (using the Mushroom dataset) and Dropout-
SL (using the Statlog dataset) respectively. Some algorithms truly benefit from hyper-parameter

2For reference, the standard strategy for Deep Q-Networks on Atari is to make one model update after every
4 actions performed (Mnih et al., 2015; Osband et al., 2016; Plappert et al., 2017; Fortunato et al., 2017).
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(a) δ = 0.5 (b) δ = 0.7 (c) δ = 0.9 (d) δ = 0.95 (e) δ = 0.99

Figure 3: Wheel bandits for increasing values of δ ∈ (0, 1). Optimal action for blue, red, green,
black, and yellow regions, are actions 1, 2, 3, 4, and 5, respectively.

optimization, while others do not show remarkable differences in performance; the latter are more
appropriate in settings where access to the real environment for tuning is not possible in advance.

Buffer After some experimentation, we decided not to use a data buffer as evidence of catastrophic
forgetting was observed, and datasets are relatively small. Accordingly, all observations are sampled
with equal probability to be part of a mini-batch. In addition, as is standard in bandit algorithms, each
action was initially selected s = 3 times using round-robin independently of the context.

5.2 REAL-WORLD DATA PROBLEMS WITH NON-LINEAR MODELS

We evaluated the algorithms on a range of bandit problems created from real-world data. In particular,
we test on the Mushroom, Statlog, Covertype, Financial, Jester, Adult, Census, and Song datasets
(see Appendix Section A for details on each dataset and bandit problem). They exhibit a broad range
of properties: small and large sizes, one dominating action versus more homogeneous optimality,
learnable or little signal, stochastic or deterministic rewards, etc. For space reasons, the outcome of
some simulations are presented in the Appendix. The Statlog, Covertype, Adult, and Census datasets
were originally tested in Elmachtoub et al. (2017). We summarize the final cumulative regret for
Mushroom, Statlog, Covertype, Financial, and Jester datasets in Table 1. In Figure 5 at the appendix,
we show a box plot of the ranks achieved by each algorithm across the suite of bandit problems (see
Appendix Table 6 and 7 for the full results).

5.3 REAL-WORLD DATA PROBLEMS WITH LINEAR MODELS

As most of the algorithms from Section 3 can be implemented for any model architecture, in this
subsection we use linear models as a baseline comparison across algorithms (i.e., neural networks that
contain a single linear layer). This allows us to directly compare the approximate methods against
methods that can compute the exact posterior. The specific hyper-parameter configurations used in
the experiments are described in Table 3 in the appendix. Datasets are the same as in the previous
subsection. The cumulative and simple regret results are provided in appendix Tables 4 and 5.

5.4 THE WHEEL BANDIT

Some of the real-data problems presented above do not require significant exploration. We design
an artificial problem where the need for exploration is smoothly parameterized. The wheel bandit is
defined as follows (see Figure 3). Set d = 2, and δ ∈ (0, 1), the exploration parameter. Contexts are
sampled uniformly at random in the unit circle in R

2, X ∼ U(D). There are k = 5 possible actions.
The first action a1 always offers reward r ∼ N (µ1, σ

2), independently of the context. On the other
hand, for contexts such that ‖X‖ ≤ δ, i.e. inside the blue circle in Figure 3, the other four actions
are equally distributed and sub-optimal, with r ∼ N (µ2, σ

2) for µ2 < µ1. When ‖X‖ > δ, we are
outside the blue circle, and only one of the actions a2, . . . , a5 is optimal depending on the sign of
context components X = (X1, X2). If X1, X2 > 0, action 2 is optimal. If X1 > 0, X2 < 0, action
3 is optimal, and so on. Non-optimal actions still deliver r ∼ N (µ2, σ

2) in this region, except a1
whose mean reward is always µ1, while the optimal action provides r ∼ N (µ3, σ

2), with µ3 ≫ µ1.
We set µ1 = 1.2, µ2 = 1.0, µ3 = 50.0, and σ = 0.01. Note that the probability of a context randomly
falling in the high-reward region is 1− δ2 (not blue). The difficulty of the problem increases with δ,
and we expect algorithms to get stuck repeatedly selecting action a1 for large δ. The problem can be
easily generalized for d > 2. Results are shown in Table 9.
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Table 1: Cumulative regret incurred by the algorithms in Section 3 on the bandits described in
Section A. Results are relative to the cumulative regret of the Uniform algorithm. We report the mean
and standard error of the mean over 50 trials.

Mean Rank Mushroom Statlog Covertype Financial Jester

AlphaDivergence (1) 47 54.29 ± 0.04 19.35 ± 1.72 39.42 ± 0.50 40.10 ± 0.69 72.99 ± 0.54
AlphaDivergence 46.6 54.17 ± 0.03 19.30 ± 0.84 44.31 ± 0.77 47.76 ± 0.89 71.86 ± 0.72
AlphaDivergence-SL 44.3 53.88 ± 0.03 21.12 ± 1.14 60.05 ± 0.02 70.19 ± 3.50 69.11 ± 0.75
BBB 39.8 3.57 ± 0.20 12.61 ± 1.53 58.19 ± 2.16 22.55 ± 1.27 71.43 ± 0.67
BBB-MR 37.5 10.93 ± 2.69 25.29 ± 0.00 60.92 ± 0.55 59.84 ± 2.89 65.01 ± 0.74
BBB-SL 34.4 4.08 ± 0.19 1.86 ± 0.29 38.50 ± 0.97 13.76 ± 0.60 74.70 ± 0.68
BootstrappedNN 22.4 5.60 ± 0.60 0.65 ± 0.02 26.23 ± 0.10 9.21 ± 0.44 73.38 ± 0.62
BootstrappedNN-MR 22.6 2.15 ± 0.13 1.19 ± 0.15 31.27 ± 0.08 7.72 ± 0.28 63.26 ± 0.58
BootstrappedNN-SL 22.9 3.93 ± 0.17 0.54 ± 0.01 25.53 ± 0.05 10.88 ± 0.61 70.64 ± 0.59
Dropout 30.5 5.57 ± 1.02 2.35 ± 0.59 30.65 ± 0.23 17.55 ± 0.67 66.24 ± 0.74
Dropout-MR 20.3 2.65 ± 0.08 1.30 ± 0.32 29.28 ± 0.12 10.16 ± 0.44 63.68 ± 0.60
Dropout-SL 26.4 4.39 ± 1.02 1.89 ± 0.47 26.39 ± 0.17 13.18 ± 0.86 66.90 ± 0.80
GP 31.75 11.49 ± 0.66 3.92 ± 0.74 46.25 ± 0.75 3.18 ± 0.08 74.95 ± 0.93
NeuralLinear 22 2.22 ± 0.08 0.91 ± 0.01 29.91 ± 0.17 11.44 ± 0.11 75.43 ± 0.41
NeuralLinear-MR 22.4 1.92 ± 0.10 1.30 ± 0.01 28.87 ± 0.14 13.47 ± 0.12 72.75 ± 0.50
NeuralLinear-SL 17.4 2.42 ± 0.09 0.52 ± 0.01 27.60 ± 0.10 9.98 ± 0.56 71.11 ± 0.47
RMS 28.7 6.68 ± 1.52 2.85 ± 0.73 27.74 ± 0.18 12.73 ± 0.73 69.93 ± 0.56
RMS-MR 29.8 4.32 ± 1.06 2.36 ± 0.44 32.46 ± 0.57 10.72 ± 0.51 68.43 ± 0.72
RMS-SL 30.7 3.29 ± 0.16 2.22 ± 0.87 28.25 ± 0.14 12.76 ± 0.63 71.50 ± 0.49
SGFS 30.8 5.99 ± 1.02 3.82 ± 0.45 36.57 ± 0.80 29.00 ± 0.53 68.02 ± 0.63
SGFS-MR 21.8 3.80 ± 0.46 1.44 ± 0.01 30.12 ± 0.05 12.49 ± 0.71 66.27 ± 0.72
SGFS-SL 30.9 2.79 ± 0.10 2.14 ± 0.13 35.27 ± 0.27 43.95 ± 1.12 73.90 ± 1.51
ConstSGD 36.9 26.37 ± 3.14 6.79 ± 1.42 22.47 ± 0.78 88.16 ± 2.80 70.09 ± 0.80
ConstSGD-MR 29.9 3.10 ± 0.08 7.24 ± 1.07 23.39 ± 0.66 46.47 ± 1.85 71.25 ± 0.61
ConstSGD-SL 35.1 41.94 ± 2.31 2.96 ± 0.79 21.61 ± 0.15 51.94 ± 3.78 70.24 ± 0.95
EpsGreedyRMS 23.6 4.97 ± 1.04 2.13 ± 0.34 27.42 ± 0.13 12.36 ± 0.47 69.65 ± 0.70
EpsGreedyRMS-SL 23.2 3.08 ± 0.15 1.09 ± 0.20 28.09 ± 0.09 7.93 ± 0.39 69.64 ± 0.61
EpsGreedyRMS-MR 24.4 2.44 ± 0.15 1.71 ± 0.44 30.03 ± 0.20 8.07 ± 0.45 66.18 ± 0.57
LinDiagPost 30.6 17.67 ± 0.18 51.29 ± 0.03 95.48 ± 0.02 9.59 ± 0.05 58.61 ± 0.49

LinDiagPost-MR 37.3 8.64 ± 2.33 31.51 ± 0.03 65.03 ± 0.03 20.57 ± 0.13 60.62 ± 0.49
LinDiagPost-SL 31.5 14.86 ± 2.12 15.60 ± 0.03 42.72 ± 0.03 2.04 ± 0.04 59.96 ± 0.67
LinDiagPrecPost 15.8 9.48 ± 1.59 7.53 ± 0.02 34.40 ± 0.02 4.58 ± 0.04 58.58 ± 0.60

LinDiagPrecPost-MR 26.1 16.21 ± 3.14 8.77 ± 0.07 35.69 ± 0.02 9.15 ± 0.10 59.08 ± 0.45

LinDiagPrecPost-SL 16.9 13.17 ± 1.73 6.80 ± 0.02 33.85 ± 0.07 1.82 ± 0.06 58.83 ± 0.45

LinGreedy 25.3 14.28 ± 1.99 11.32 ± 0.63 35.29 ± 0.11 2.18 ± 0.14 59.69 ± 0.60

LinGreedy (ǫ = 0.01) 18.1 3.38 ± 0.18 10.42 ± 0.39 34.59 ± 0.08 2.94 ± 0.12 59.95 ± 0.58
LinGreedy (ǫ = 0.05) 19.6 5.89 ± 0.06 12.75 ± 0.16 37.00 ± 0.03 6.57 ± 0.11 61.62 ± 0.43
LinPost 16.4 6.12 ± 0.67 7.64 ± 0.02 34.40 ± 0.02 7.26 ± 0.05 59.14 ± 0.50

LinPost-MR 28.3 7.93 ± 2.00 10.31 ± 0.03 38.64 ± 0.02 15.61 ± 0.10 59.17 ± 0.56

LinPost-SL 18.9 14.34 ± 1.84 6.82 ± 0.02 33.61 ± 0.03 2.50 ± 0.03 60.02 ± 0.57
LinFullDiagPost 33.1 86.80 ± 0.13 28.29 ± 0.02 73.82 ± 0.03 6.96 ± 0.06 63.22 ± 0.61
LinFullDiagPost-MR 28.2 2.39 ± 0.08 14.24 ± 0.02 37.59 ± 0.02 10.25 ± 0.11 62.87 ± 0.42
LinFullDiagPost-SL 27.9 2.24 ± 0.10 12.04 ± 0.04 37.08 ± 0.06 10.92 ± 0.45 62.56 ± 0.51
LinFullDiagPrecPost 14.3 3.47 ± 0.36 7.34 ± 0.03 34.04 ± 0.02 4.04 ± 0.05 60.63 ± 0.44
LinFullDiagPrecPost-MR 15.6 2.90 ± 0.34 7.88 ± 0.03 34.24 ± 0.03 7.74 ± 0.06 60.65 ± 0.50
LinFullDiagPrecPost-SL 17.7 2.65 ± 0.14 6.84 ± 0.02 33.97 ± 0.06 4.99 ± 0.18 60.99 ± 0.55
LinFullPost 13.9 2.37 ± 0.25 7.34 ± 0.02 34.00 ± 0.02 5.66 ± 0.04 61.87 ± 0.44
LinFullPost-MR 16.8 1.82 ± 0.15 7.35 ± 0.02 34.27 ± 0.02 7.85 ± 0.07 60.76 ± 0.46
LinFullPost-SL 18.1 2.62 ± 0.27 6.90 ± 0.02 33.91 ± 0.02 5.32 ± 0.07 60.89 ± 0.47
ParamNoise 27.4 2.77 ± 0.15 1.47 ± 0.17 26.81 ± 0.10 19.04 ± 0.78 68.92 ± 0.53
ParamNoise-MR 23 2.31 ± 0.11 1.76 ± 0.18 28.20 ± 0.11 20.25 ± 0.41 70.25 ± 0.64
ParamNoise-SL 20.9 2.49 ± 0.09 1.73 ± 0.24 25.63 ± 0.09 10.62 ± 0.64 66.75 ± 0.54
Uniform 51 100.00 ± 0.15 100.00 ± 0.03 100.00 ± 0.01 100.00 ± 1.48 100.00 ± 1.01

6 DISCUSSION

Overall, we found that there is significant room for improvement in uncertainty estimation for neural
networks in sequential decision-making problems. First, unlike in supervised learning, sequential
decision-making requires the model to be frequently updated as data is accumulated. As a result,
methods that converge slowly are at a disadvantage because we must truncate optimization to make the
method practical for the online setting. In these cases, we found that partially optimized uncertainty
estimates can lead to catastrophic decisions and poor performance. Second, and while it deserves
further investigation, it seems that decoupling representation learning and uncertainty estimation
improves performance. The NeuralLinear algorithm is an example of this decoupling. With such
a model, the uncertainty estimates can be solved for in closed form (but may be erroneous due to
the simplistic model), so there is no issue with partial optimization. We suspect that this may be the
reason for the improved performance. In addition, we observed that many algorithms are sensitive to
their hyperparameters, so that best configurations are problem-dependent.

Finally, we found that in many cases, the inherit randomness in Stochastic Gradient Descent provided
sufficient exploration. Accordingly, in some scenarios it may be hard to justify the use of complicated
(and less transparent) variations of simple methods. However, Stochastic Gradient Descent is by no
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(a) Linear data, d = 10 input size, and k = 6 actions.
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(b) Statlog data.

Figure 4: Cumulative regret for Bayes By Backprop (Variational Inference, fixed noise σ = 0.75)
applied to a linear model and an exact mean field solution, denoted PrecisionDiag, with a linear bandit
(left) and with the Statlog bandit (right). The suffix of the BBB legend label indicates the number of
training epochs in each training step. We emphasize that in this evaluation, all algorithms use the
same family of models (i.e., linear). While PrecisionDiag exactly solves the mean field problem, BBB
relies on partial optimization via SGD. As the number of training epochs increases, BBB improves
performance, but is always outperformed by PrecisionDiag.

means always enough: in our synthetic exploration-oriented problem (the Wheel bandit) additional
exploration was necessary.

Next, we discuss our main findings for each class of algorithms.

Linear Methods. Linear methods offer a reasonable baseline, surprisingly strong in many cases.
While their representation power is certainly a limiting factor, their ability to compute informative
uncertainty measures seems to payoff and balance their initial disadvantage. They do well in several
datasets, and are able to react fast to unexpected or extreme rewards (maybe as single points can have
a heavy impact in fitted models, and their updates are immediate, deterministic, and exact). Some
datasets clearly need more complex non-linear representations, and linear methods are unable to
efficiently solve those. In addition, linear methods obviously offer computational advantages, and it
would be interesting to investigate how their performance degrades when a finite data buffer feeds the
estimates as various real-world online applications may require (instead of all collected data).

In terms of the diagonal linear approximations described in Section 3, we found that diagonalizing
the precision matrix (as in mean-field Variational Inference) performs dramatically better than
diagonalizing the covariance matrix.

NeuralLinear. The NeuralLinear algorithm sits near a sweet spot that is worth further studying.
In general it seems to improve the RMS neural network it is based on, suggesting its exploration
mechanisms add concrete value. We believe its main strength is that it is able to simultaneously learn
a data representation that greatly simplifies the task at hand, and to accurately quantify the uncertainty
over linear models that explain the observed rewards in terms of the proposed representation. While
the former process may be noisier and heavily dependent on the amount of training steps that
were taken and available data, the latter always offers the exact solution to its approximate parent
problem. This, together with the partial success of linear methods with poor representations, may
explain its promising results. In some sense, it knows what it knows. In the Wheel problem, which
requires increasingly good exploration mechanisms, NeuralLinear is probably the best algorithm.
Its performance is almost an order of magnitude better than any RMS algorithm (and its spinoffs,
like Bootstrapped NN, Dropout, or Parameter Noise), and all greedy linear approaches. On the other
hand, it is able to successfully solve problems that require non-linear representations (as Statlog or
Covertype) where linear approaches fail. In addition, the algorithm is remarkably easy to tune, and
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robust in terms of hyper-parameter configurations. While conceptually simple, its deployment to
large scale systems may involve some technical difficulties; mainly, to update the Bayesian estimates
when the network is re-trained. We believe, however, standard solutions to similar problems (like
running averages) could greatly mitigate these issues. In our experiments and compared to other
algorithms, as shown in Table 8, NeuralLinear is fast from a computational standpoint.

Variational Inference. Overall, Bayes By Backprop performed poorly, ranking in the bottom half of
algorithms across datasets (Table 1). To investigate if this was due to underestimating uncertainty (as
variational methods are known to (Bishop, 2006)), to the mean field approximation, or to stochastic
optimization, we applied BBB to a linear model, where the mean field optimization problem can be
solved in closed form (Figure 4). We found that the performance of BBB slowly improved as the
number of training epochs increased, but underperformed compared to the exact mean field solution.
Moreover, the difference in performance due to the number of training steps dwarfed the difference
between the mean field solution and the exact posterior. This suggests that it is not sufficient to
partially optimize the variational parameters when the uncertainty estimates directly affect the data
being collected. In supervised learning, optimizing to convergence is acceptable, however in the
online setting, optimizing to convergence at every step incurs unreasonable computational cost.

Expectation-Propagation. The performance of Black Box α-divergence algorithms was poor.
Because this class of algorithms is similar to BBB (in fact, as α → 0, it converges to the BBB
objective), we suspect that partial convergence was also the cause of their poor performance. We
found these algorithms to be sensitive to the number of training steps between actions, requiring a
large number to achieve marginal performance. Their terrible performance in the Mushroom bandit
is remarkable, while in the other datasets they perform slightly worse than their variational inference
counterpart. Given the successes of Black Box α-divergence in other domains (Hernández-Lobato
et al., 2016), investigating approaches to sidestep the slow convergence of the uncertainty estimates
is a promising direction for future work.

Monte Carlo. Constant-SGD comes out as the winner on Covertype, which requires non-linearity
and exploration as evidenced by performance of the linear baseline approaches (Table 1). The method
is especially appealing as it does not require tuning learning rates or exploration parameters. SGFS,
however, performs better on average. The additional injected noise in SGFS may cause the model to
explore more and thus perform better, as shown in the Wheel Bandit problem where SGFS strongly
outperforms Constant-SGD.

Bootstrap. The bootstrap offers significant gains with respect to its parent algorithm (RMS) in
several datasets. Note that in Statlog one of the actions is optimal around 80% of the time, and the
bootstrapped predictions may help to avoid getting stuck, something from which RMS methods
may suffer. In other scenarios, the randomness from SGD may be enough for exploration, and the
bootstrap may not offer important benefits. In those cases, it might not justify the heavy computational
overhead of the method. We found it surprising that the optimized versions of BootstrappedNN
decided to use only q = 2 and q = 3 networks respectively (while we set its value to q = 10 in
the manually tuned version, and the extra networks did not improve performance significantly).
Unfortunately, Bootstrapped NNs were not able to solve the Wheel problem, and its performance was
fairly similar to that of RMS. One possible explanation is that —given the sparsity of the reward—
all the bootstrapped networks agreed for the most part, and the algorithm simply got stuck selecting
action a1. As opposed to linear models, reacting to unusual rewards could take Bootstrapped NNs
some time as good predictions could be randomly overlooked (and useful data discarded if p ≪ 1).

Direct Noise Injection. When properly tuned, Parameter-Noise provided an important boost in
performance across datasets over the learner that it was based on (RMS), average rank of ParamNoise-
SL is 20.9 compared to RMS at 28.7 (Table 1). However, we found the algorithm hard to tune
and sensitive to the heuristic controlling the injected noise-level. On the synthetic Wheel problem
—where exploration is necessary— both parameter-noise and RMS suffer from underexploration
and perform similarly, except ParamNoise-MR which does a good job. In addition, developing an
intuition for the heuristic is not straightforward as it lacks transparency and a principled grounding,
and thus may require repeated access to the decision-making process for tuning.

Dropout. We initially experimented with two dropout versions: fixed p = 0.5, and p = 0.8. The
latter consistently delivered better results, and it is the one we manually picked. The optimized
versions of the algorithm provided decent improvements over its base RMS (specially Dropout-MR).
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In the Wheel problem, dropout performance is somewhat poor: Dropout is outperformed by RMS,
while Dropout-MR offers gains with respect to all versions of RMS but it is not competitive with
the best algorithms. Overall, the algorithm seems to heavily depend on its hyper-parameters (see
cum-regret performance of the raw Dropout, for example). Dropout was used both for training and
for decision-making; unfortunately, we did not add a baseline where dropout only applies during
training. Consequently, it is not obvious how to disentangle the contribution of better training from
that of better exploration. This remains as future work.

Bayesian Non-parametrics. Perhaps unsurprisingly, Gaussian processes perform reasonably well
on problems with little data but struggle on larger problems. While this motivated the use of sparse
GP, the latter was not able to perform similarly to stronger (and definitively simpler) methods.

7 CONCLUSIONS AND FUTURE WORK

In this work, we empirically studied the impact on performance of approximate model posteriors for
decision making via Thompson Sampling in contextual bandits. We found that the most robust meth-
ods exactly measured uncertainty (possibly under the wrong model assumptions) on top of complex
representations learned in parallel. More complicated approaches that learn the representation and its
uncertainty together seemed to require heavier training, an important drawback in online scenarios,
and exhibited stronger hyper-parameter dependence. Further exploring and developing the promising
approaches is an exciting avenue for future work.
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Figure 5: A boxplot of the ranks achieved by each algorithm across the suite of benchmarks. The red
and black solid lines respectively indicate the median and mean rank across problems.
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Table 2: Detailed description of the algorithms in the experiments. Unless otherwise stated, algorithms
use ts = 20 (mini-batches per training period), and tf = 20 (one training period every tf contexts).

Algorithm Description

AlphaDivergence (1) BB α-divergence with α = 0.5, noise σ = 0.1, K = 10, prior var σ2

0
= 0.1. (ts = 100, first 100 times linear decay from ts = 10000).

AlphaDivergence BB α-divergence with α = 0.1, noise σ = 0.1, K = 10, prior var σ2

0
= 0.1. (ts = 100, first 100 times linear decay from ts = 10000).

AlphaDivergence-SL BB α-divergence with α = 0.01, noise σ = 2.79, K = 1, prior var σ2

0
= 0.18. (ts = 200, first 100 times linear decay from ts = 10000).

BBB BayesByBackprop with noise σ = 0.1. (ts = 100, first 100 times linear decay from ts = 10000).
BBB-MR BayesByBackprop with noise σ = 1.3, and prior σp = 1.48. (ts = 50, first 100 times linear decay from ts = 10000).
BBB-SL BayesByBackprop with noise σ = 0.03, and prior σp = 2.86. (ts = 100, first 100 times linear decay from ts = 10000).
BootstrappedNN Bootstrapped with q = 10 models, and p = 1.0. Based on RMS3 net.
BootstrappedNN-MR Bootstrapped with q = 2 models, p = 0.95, ts = 50, tf = 50. Based on RMS2 net.

BootstrappedNN-SL Bootstrapped with q = 3 models, p = 0.92, ts = 20, tf = 20. Based on RMS3 net.

Dropout Dropout with probability p = 0.8. Based on RMS2 net.
Dropout-MR Dropout with probability p = 0.8, ts = 50, tf = 50. Based on RMS2 net.

Dropout-SL Dropout with probability p = 0.95, ts = 100, tf = 5. Based on RMS3 net.

GP For computational reasons, it only uses the first 1000 data points.
NeuralLinear Noise prior a0 = 3, b0 = 3. Ridge prior λ = 0.25. Based on RMS2 net. Trained for ts = 20, tf = 20.

NeuralLinear-MR Noise prior a0 = 12, b0 = 30. Ridge prior λ = 23.0. Based on RMS2 net. Trained for ts = 50, tf = 20.

NeuralLinear-SL Noise prior a0 = 38, b0 = 1. Ridge prior λ = 1.5. Based on RMS2 net. Trained for ts = 20, tf = 20.

RMS1 Greedy NN approach, fixed learning rate (γ = 0.01).
RMS2 Learning rate decays, and it is reset every training period.
RMS3 Learning rate decays, and it is not reset at all. It starts at γ = 1.
RMS Based on RMS3 net. Learning decay rate is 0.55, initial learning rate is 1.0. Trained for ts = 100, tf = 20.

RMS-MR Based on RMS3 net. Learning decay rate is 2.5, initial learning rate is 1.0. Trained for ts = 50, tf = 20.

RMS-SL Based on RMS3 net. Learning decay rate is 0.4, initial learning rate is 1.1. Trained for ts = 100, tf = 20.

SGFS Burning = 500, learning rate γ = 0.014, EMA decay = 0.9, noise σ = 0.75.
SGFS-MR Burning = 100, learning rate γ = 0.19, EMA decay = 0.23, noise σ = 0.33.
SGFS-SL Burning = 2000, learning rate γ = 0.15, EMA decay = 0.58, noise σ = 0.34.
ConstSGD Burning = 500, EMA decay = 0.9, noise σ = 0.5.
ConstSGD-MR Burning = 50, EMA decay = 0.87, noise σ = 0.44. Trained for ts = 20, tf = 50.

ConstSGD-SL Burning = 500, EMA decay = 0.82, noise σ = 1.05. Trained for ts = 20, tf = 10.

EpsGreedyRMS Initial ǫ = 0.01, multiplied by 0.999 after every context. Based on RMS3 net.
EpsGreedyRMS-MR Initial ǫ = 0.046, multiplied by 0.93 after every context. Based on RMS3 net. Trained for ts = 50, tf = 20.

EpsGreedyRMS-SL Initial ǫ = 0.23, multiplied by 0.95 after every context. Based on RMS2 net. Trained for ts = 50, tf = 10.

LinPost Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.

LinPost-MR Ridge prior λ = 11.12. Assumed noise level σ2 = 2.0.

LinPost-SL Ridge prior λ = 37.58. Assumed noise level σ2 = 0.037.

LinDiagPost Σ in Eq. 1 is diagonalized. Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.

LinDiagPost-MR Σ in Eq. 1 is diagonalized. Ridge prior λ = 14.20. Assumed noise level σ2 = 2.49.

LinDiagPost-SL Σ in Eq. 1 is diagonalized. Ridge prior λ = 40.0. Assumed noise level σ2 = 0.011.

LinDiagPrecPost Σ−1 in Eq. 1 is diagonalized. Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.

LinDiagPrecPost-MR Σ−1 in Eq. 1 is diagonalized. Ridge prior λ = 37.35. Assumed noise level σ2 = 0.68.

LinDiagPrecPost-SL Σ−1 in Eq. 1 is diagonalized. Ridge prior λ = 13.49. Assumed noise level σ2 = 0.01.

LinGreedy Takes action with highest predicted reward for Ridge regression, λ = 0.25. Noise level σ2 = 0.25.
LinGreedy (eps = 0.01) linGreedy that selects action uniformly at random with prob p = 0.01.
LinGreedy (eps = 0.05) linGreedy that selects action uniformly at random with prob p = 0.05.
LinFullPost Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
LinFullPost-MR Noise prior a0 = 30.0, b0 = 35.0. Ridge prior λ = 20.0.
LinFullPost-SL Noise prior a0 = 35.0, b0 = 5.0. Ridge prior λ = 20.0.
LinFullDiagPost Σ in Eq. 1 is diagonalized. Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
LinFullDiagPost-MR Σ in Eq. 1 is diagonalized. Noise prior a0 = 22.27, b0 = 35.89. Ridge prior λ = 39.95.
LinFullDiagPost-SL Σ in Eq. 1 is diagonalized. Noise prior a0 = 39.94, b0 = 0.03. Ridge prior λ = 39.74.
LinFullDiagPrecPost Σ in Eq. 1 is diagonalized. Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
LinFullDiagPrecPost-MR Σ in Eq. 1 is diagonalized. Noise prior a0 = 0.23, b0 = 21.23. Ridge prior λ = 2.21.
LinFullDiagPrecPost-SL Σ in Eq. 1 is diagonalized. Noise prior a0 = 4.25, b0 = 0.073. Ridge prior λ = 13.07.
ParamNoise Layer normalization. Initial noise σ = 0.01, and level ǫ = 0.01. Based on RMS2 net.
ParamNoise-MR Layer normalization. Initial noise σ = 2.6, and level ǫ = 1.5. Based on RMS3 net, ts = 20, tf = 20.

ParamNoise-SL Layer normalization. Initial noise σ = 1.8, and level ǫ = 2.0. Based on RMS2 net, ts = 20, tf = 50.

Uniform Takes each action at random with equal probability.
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Table 3: Detailed description of the algorithms in the linear experiments. Unless otherwise stated,
algorithms use ts = 100 (mini-batches per training period), and tf = 20 (one training period every
tf contexts).

Algorithm Description

Alpha Divergences BB α-divergence with α = 0.1, noise σ = 0.1, K = 10, prior var σ2

0
= 0.1. (ts = 100, first 100 times linear decay from ts = 10000).

Alpha Divergences (1) BB α-divergence with α = 0.5, noise σ = 0.1, K = 10, prior var σ2

0
= 0.1. (ts = 100, first 100 times linear decay from ts = 10000).

Alpha Divergences (2) BB α-divergence with α = 1.0, noise σ = 0.1, K = 10, prior var σ2

0
= 0.1. (ts = 100, first 100 times linear decay from ts = 10000).

Alpha Divergences (3) BB α-divergence with α = 0.5, noise σ = 0.1, K = 10, prior var σ2

0
= 1.0. (ts = 100, first 100 times linear decay from ts = 10000).

BBBN BayesByBackprop with noise σ = 0.1. (ts = 100, first 100 times linear decay from ts = 10000).
BBBN2 BayesByBackprop with noise σ = 0.5. (ts = 100, first 100 times linear decay from ts = 10000).
BBBN3 BayesByBackprop with noise σ = 0.75. (ts = 100, first 100 times linear decay from ts = 10000).
BBBN4 BayesByBackprop with noise σ = 1.0. (ts = 100, first 100 times linear decay from ts = 10000).
Bootstrapped NN Bootstrapped with q = 5 models, and p = 0.85. Based on RMS3 net.
Bootstrapped NN2 Bootstrapped with q = 5 models, and p = 1.0. Based on RMS3 net.
Bootstrapped NN3 Bootstrapped with q = 10 models, and p = 1.0. Based on RMS3 net.
Dropout (RMS3) Dropout with probability p = 0.8. Based on RMS3 net.
Dropout (RMS2) Dropout with probability p = 0.8. Based on RMS2 net.
RMS1 Greedy NN approach, fixed learning rate (γ = 0.01).
RMS2 Learning rate decays, and it is reset every training period.
RMS2b Similar to RMS2, but training for longer (ts = 800).
RMS3 Learning rate decays, and it is not reset at all. Starts at γ = 1.
SGFS Burning = 500, learning rate γ = 0.014, EMA decay = 0.9, noise σ = 0.75.
ConstSGD Burning = 500, EMA decay = 0.9, noise σ = 0.5.
EpsGreedy (RMS1) Initial ǫ = 0.01. Multiplied by 0.999 after every context. Based on RMS1 net.
EpsGreedy (RMS2) Initial ǫ = 0.01. Multiplied by 0.999 after every context. Based on RMS2 net.
EpsGreedy (RMS3) Initial ǫ = 0.01. Multiplied by 0.999 after every context. Based on RMS3 net.

LinDiagPost Σ in Eq. 1 is diagonalized. Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.

LinDiagPrecPost Σ−1 in Eq. 1 is diagonalized. Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.

LinGreedy Takes action with highest predicted reward for Ridge regression, λ = 0.25. Noise level σ2 = 0.25.
LinGreedy (eps = 0.01) linGreedy that selects action uniformly at random with prob p = 0.01.
LinGreedy (eps = 0.05) linGreedy that selects action uniformly at random with prob p = 0.05.

LinPost Ridge prior λ = 0.25. Assumed noise level σ2 = 0.25.
LinFullDiagPost Σ in Eq. 1 is diagonalized. Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.

LinFullDiagPrecPost Σ−1 in Eq. 1 is diagonalized. Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
LinFullPost Noise prior a0 = 6, b0 = 6. Ridge prior λ = 0.25.
Param-Noise Initial noise σ = 0.01, and level ǫ = 0.01. Based on RMS3 net.
Param-Noise2 Initial noise σ = 0.01, and level ǫ = 0.01. Based on RMS3 net. Trained for longer: ts = 800.
Uniform Takes each action at random with equal probability.
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Table 4: Cumulative regret incurred by linear models using algorithms in Section 3 on the bandits described in Section A. Values reported are the mean over 50
independent trials with standard error of the mean.

Mushroom Statlog Covertype Financial Jester Adult

Cumulative regret

Alpha Divergences 29051.02 ± 238.56 3213.57 ± 8.88 47594.06 ± 30.86 119.92 ± 1.70 60401.66 ± 455.68 34774.94 ± 18.70
Alpha Divergences (1) 65203.06 ± 204.46 3636.06 ± 19.61 47904.47 ± 27.89 118.67 ± 1.86 61896.47 ± 380.77 35043.71 ± 15.02
Alpha Divergences (2) 67612.86 ± 195.67 5644.49 ± 24.17 50401.92 ± 35.04 131.40 ± 2.05 69341.27 ± 587.65 35925.67 ± 12.82
Alpha Divergences (3) 77061.53 ± 221.74 3670.65 ± 17.56 47973.43 ± 35.15 164.44 ± 2.89 62070.93 ± 452.55 35193.04 ± 16.59
BBBN 19352.55 ± 2315.29 2611.59 ± 9.19 43684.69 ± 59.12 132.12 ± 11.53 56384.55 ± 477.64 31650.61 ± 15.92

BBBN2 24885.00 ± 4784.46 2820.29 ± 7.58 44603.71 ± 21.78 232.86 ± 2.07 56465.72 ± 498.79 33540.20 ± 15.02
BBBN3 43362.04 ± 7452.98 3065.43 ± 11.70 45880.12 ± 21.76 361.13 ± 2.62 57055.81 ± 492.60 35011.00 ± 16.26
BBBN4 61581.02 ± 8644.66 3365.49 ± 15.22 47324.12 ± 21.01 496.80 ± 3.84 55826.75 ± 525.71 36290.27 ± 16.80
Bootstrapped NN 15207.55 ± 2223.28 2801.43 ± 58.40 48399.53 ± 276.16 149.15 ± 12.35 57922.32 ± 470.78 31740.18 ± 35.07
Bootstrapped NN2 30388.98 ± 3002.15 2777.61 ± 85.16 49919.61 ± 421.32 124.47 ± 8.93 56886.28 ± 522.05 31760.43 ± 53.26
Bootstrapped NN3 22681.53 ± 2445.45 2574.35 ± 38.98 108.00 ± 6.96 56693.99 ± 497.70 31845.12 ± 63.36
Dropout (RMS3) 24079.80 ± 2905.35 3504.33 ± 233.49 49382.00 ± 336.47 118.64 ± 6.63 56600.80 ± 562.76 32133.98 ± 67.08
Dropout (RMS2) 30470.00 ± 3256.06 3594.18 ± 224.22 49555.14 ± 354.48 127.23 ± 8.85 57321.68 ± 496.09 32132.51 ± 81.59
RMS1 19626.63 ± 2706.22 3147.37 ± 12.28 49518.84 ± 234.92 126.73 ± 9.38 58098.59 ± 546.44 33514.08 ± 20.16
RMS2 24920.71 ± 3629.18 3511.47 ± 237.12 49475.98 ± 355.82 129.84 ± 9.76 55619.60 ± 476.35 32183.02 ± 71.02
RMS2b 35375.51 ± 3941.93 4128.22 ± 273.86 49554.74 ± 461.20 128.02 ± 10.80 55941.69 ± 554.92 32094.82 ± 78.15
RMS3 24408.57 ± 2876.77 3288.41 ± 198.61 50056.27 ± 392.93 109.53 ± 7.92 56661.44 ± 495.01 32087.24 ± 65.81
SGFS 129586.43 ± 82.79 10811.00 ± 186.70 79162.47 ± 375.83 4747.22 ± 64.59 67961.22 ± 1393.66 40784.20 ± 87.79
ConstSGD 129737.86 ± 85.36 9405.92 ± 0.33 79492.84 ± 927.87 4749.99 ± 72.03 65572.88 ± 1112.01 39450.41 ± 33.53
EpsGreedy (RMS1) 8732.76 ± 516.32 3283.57 ± 11.93 48605.16 ± 125.63 143.89 ± 4.31 56961.95 ± 444.26 33569.51 ± 19.84
EpsGreedy (RMS2) 23687.76 ± 2166.78 3009.10 ± 124.54 48617.06 ± 331.37 146.49 ± 5.56 55855.45 ± 457.55 32021.98 ± 66.44
EpsGreedy (RMS3) 23637.96 ± 1847.91 2938.84 ± 80.86 48509.29 ± 273.31 145.17 ± 5.62 56072.51 ± 479.59 32026.18 ± 67.21
LinDiagPost 42696.84 ± 276.34 19118.47 ± 12.30 122826.24 ± 24.59 459.02 ± 2.95 56568.08 ± 527.28 41858.82 ± 9.56
LinDiagPrecPost 19523.67 ± 2404.15 2805.69 ± 9.76 44253.76 ± 50.98 217.08 ± 2.17 56227.81 ± 463.11 33521.02 ± 15.75
LinGreedy 26835.20 ± 3759.77 3897.45 ± 215.39 45446.98 ± 166.07 105.48 ± 6.73 55651.56 ± 438.66 34558.63 ± 315.75
LinGreedy (eps=0.01) 8522.86 ± 537.80 3775.86 ± 143.74 44407.24 ± 81.43 129.20 ± 3.84 57082.85 ± 538.96 32214.82 ± 114.46
LinGreedy (eps=0.05) 14489.69 ± 145.06 4814.65 ± 66.76 47485.59 ± 42.17 308.34 ± 4.74 58201.11 ± 460.96 31813.22 ± 19.33
LinPost 16251.22 ± 1680.93 2849.12 ± 6.62 44176.49 ± 22.51 347.11 ± 2.69 56677.18 ± 550.34 33243.59 ± 16.12
LinfullDiagPost 212029.08 ± 387.36 10546.86 ± 9.82 94875.53 ± 34.06 336.08 ± 2.70 59981.66 ± 388.85 40372.00 ± 12.03
LinfullDiagPrecPost 10485.82 ± 1081.24 2738.04 ± 7.74 43734.08 ± 26.14 189.89 ± 2.13 57738.18 ± 428.36 32329.84 ± 12.74
LinfullPost 5299.90 ± 532.93 2746.51 ± 6.46 43728.67 ± 25.12 267.23 ± 2.33 59037.26 ± 463.65 32233.51 ± 14.20
Param-Noise 27804.49 ± 3389.40 2888.02 ± 61.41 49353.51 ± 364.93 142.05 ± 13.22 57399.91 ± 543.27 32091.20 ± 80.79
Param-Noise2 22882.35 ± 2682.16 2853.94 ± 57.96 49426.47 ± 326.31 107.94 ± 5.45 57418.49 ± 530.30 32090.24 ± 66.27
Uniform 244892.76 ± 412.03 37288.98 ± 8.71 128543.61 ± 18.59 4672.92 ± 57.66 95646.52 ± 1145.95 41989.37 ± 8.38
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Table 5: Simple regret incurred by linear models using algorithms in Section 3 on the bandits described in Section A. Simple regret was approximated by averaging
the regret over the final 500 steps. Values reported are the mean over 50 independent trials with standard error of the mean.

Mushroom Statlog Covertype Financial Jester Adult

Simple regret

Alpha Divergences 0.68 ± 0.04 0.07 ± 0.00 0.31 ± 0.00 0.00 ± 0.00 2.91 ± 0.04 0.75 ± 0.00
Alpha Divergences (1) 1.50 ± 0.05 0.08 ± 0.00 0.31 ± 0.00 0.00 ± 0.00 2.98 ± 0.03 0.75 ± 0.00
Alpha Divergences (2) 1.51 ± 0.05 0.13 ± 0.00 0.32 ± 0.00 0.00 ± 0.00 3.42 ± 0.05 0.77 ± 0.00
Alpha Divergences (3) 1.50 ± 0.05 0.08 ± 0.00 0.31 ± 0.00 0.00 ± 0.00 2.97 ± 0.03 0.75 ± 0.00
BBBN 0.35 ± 0.05 0.06 ± 0.00 0.28 ± 0.00 0.01 ± 0.00 2.78 ± 0.04 0.67 ± 0.00

BBBN2 0.45 ± 0.09 0.06 ± 0.00 0.28 ± 0.00 0.01 ± 0.00 2.77 ± 0.04 0.70 ± 0.00
BBBN3 0.81 ± 0.15 0.06 ± 0.00 0.29 ± 0.00 0.03 ± 0.00 2.78 ± 0.04 0.72 ± 0.00
BBBN4 1.13 ± 0.18 0.06 ± 0.00 0.29 ± 0.00 0.05 ± 0.00 2.77 ± 0.04 0.75 ± 0.00
Bootstrapped NN 0.22 ± 0.04 0.05 ± 0.00 0.31 ± 0.00 0.01 ± 0.00 2.82 ± 0.04 0.68 ± 0.00

Bootstrapped NN2 0.51 ± 0.06 0.05 ± 0.00 0.33 ± 0.00 0.01 ± 0.00 2.76 ± 0.03 0.68 ± 0.00

Bootstrapped NN3 0.36 ± 0.05 0.05 ± 0.00 0.01 ± 0.00 2.82 ± 0.04 0.68 ± 0.00
Dropout (RMS3) 0.41 ± 0.06 0.07 ± 0.01 0.32 ± 0.00 0.01 ± 0.00 2.78 ± 0.03 0.69 ± 0.00
Dropout (RMS2) 0.56 ± 0.06 0.07 ± 0.01 0.32 ± 0.00 0.01 ± 0.00 2.81 ± 0.03 0.68 ± 0.00
RMS1 0.33 ± 0.05 0.07 ± 0.00 0.32 ± 0.00 0.01 ± 0.00 2.90 ± 0.04 0.73 ± 0.00
RMS2 0.42 ± 0.07 0.07 ± 0.01 0.33 ± 0.00 0.01 ± 0.00 2.72 ± 0.03 0.69 ± 0.00
RMS2b 0.61 ± 0.08 0.08 ± 0.01 0.32 ± 0.01 0.01 ± 0.00 2.75 ± 0.03 0.69 ± 0.00
RMS3 0.39 ± 0.05 0.06 ± 0.00 0.33 ± 0.00 0.01 ± 0.00 2.84 ± 0.04 0.68 ± 0.00
SGFS 2.59 ± 0.02 0.21 ± 0.00 0.53 ± 0.01 1.28 ± 0.02 3.55 ± 0.08 0.90 ± 0.01
ConstSGD 2.58 ± 0.01 0.21 ± 0.00 0.53 ± 0.01 1.28 ± 0.02 3.43 ± 0.07 0.87 ± 0.00
EpsGreedy (RMS1) 0.08 ± 0.01 0.07 ± 0.00 0.32 ± 0.00 0.01 ± 0.00 2.80 ± 0.04 0.73 ± 0.00
EpsGreedy (RMS2) 0.32 ± 0.04 0.05 ± 0.00 0.32 ± 0.00 0.01 ± 0.00 2.78 ± 0.03 0.69 ± 0.00
EpsGreedy (RMS3) 0.32 ± 0.03 0.05 ± 0.00 0.32 ± 0.00 0.02 ± 0.00 2.78 ± 0.04 0.68 ± 0.00
LinDiagPost 0.80 ± 0.02 0.32 ± 0.00 0.82 ± 0.00 0.03 ± 0.00 2.75 ± 0.04 0.92 ± 0.00
LinDiagPrecPost 0.37 ± 0.05 0.05 ± 0.00 0.28 ± 0.00 0.01 ± 0.00 2.77 ± 0.04 0.69 ± 0.00
LinGreedy 0.51 ± 0.08 0.07 ± 0.01 0.30 ± 0.00 0.01 ± 0.00 2.73 ± 0.03 0.74 ± 0.01
LinGreedy (eps=0.01) 0.07 ± 0.01 0.07 ± 0.00 0.29 ± 0.00 0.01 ± 0.00 2.80 ± 0.03 0.67 ± 0.00

LinGreedy (eps=0.05) 0.24 ± 0.02 0.10 ± 0.00 0.31 ± 0.00 0.06 ± 0.00 2.86 ± 0.03 0.68 ± 0.00
LinPost 0.29 ± 0.03 0.06 ± 0.00 0.28 ± 0.00 0.01 ± 0.00 2.74 ± 0.04 0.69 ± 0.00
LinfullDiagPost 4.10 ± 0.07 0.18 ± 0.00 0.63 ± 0.00 0.00 ± 0.00 2.86 ± 0.03 0.89 ± 0.00
LinfullDiagPrecPost 0.19 ± 0.02 0.05 ± 0.00 0.28 ± 0.00 0.00 ± 0.00 2.82 ± 0.03 0.67 ± 0.00

LinfullPost 0.08 ± 0.01 0.05 ± 0.00 0.28 ± 0.00 0.00 ± 0.00 2.86 ± 0.03 0.67 ± 0.00

Param-Noise 0.49 ± 0.07 0.05 ± 0.00 0.32 ± 0.00 0.01 ± 0.00 2.87 ± 0.04 0.69 ± 0.00
Param-Noise2 0.36 ± 0.05 0.05 ± 0.00 0.33 ± 0.00 0.01 ± 0.00 2.83 ± 0.04 0.69 ± 0.00
Uniform 4.88 ± 0.07 0.86 ± 0.00 0.86 ± 0.00 1.25 ± 0.02 5.03 ± 0.07 0.93 ± 0.00
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Table 6: Cumulative regret incurred by models using algorithms in Section 3 on the bandits described in Section A. Values reported are the mean over 50 independent
trials with standard error of the mean. Normalized with respect to the performance of Uniform.

Mushroom Statlog Covertype Financial Jester Adult Song Census

AlphaDivergence (1) 54.29 ± 0.04 19.35 ± 1.72 39.42 ± 0.50 40.10 ± 0.69 72.99 ± 0.54 94.34 ± 0.03 97.65 ± 0.23 67.23 ± 0.37
AlphaDivergence 54.17 ± 0.03 19.30 ± 0.84 44.31 ± 0.77 47.76 ± 0.89 71.86 ± 0.72 94.13 ± 0.03 96.99 ± 0.20 64.26 ± 0.63
AlphaDivergence-SL 53.88 ± 0.03 21.12 ± 1.14 60.05 ± 0.02 70.19 ± 3.50 69.11 ± 0.75 94.13 ± 0.03 99.42 ± 0.05 67.84 ± 0.06
BBB 3.57 ± 0.20 12.61 ± 1.53 58.19 ± 2.16 22.55 ± 1.27 71.43 ± 0.67 94.03 ± 0.59 97.35 ± 0.37 65.99 ± 2.74
BBB-MR 10.93 ± 2.69 25.29 ± 0.00 60.92 ± 0.55 59.84 ± 2.89 65.01 ± 0.74 94.61 ± 0.36 95.77 ± 0.24 68.57 ± 1.01
BBB-SL 4.08 ± 0.19 1.86 ± 0.29 38.50 ± 0.97 13.76 ± 0.60 74.70 ± 0.68 90.28 ± 0.68 96.13 ± 0.26 42.00 ± 0.66
BootstrappedNN 5.60 ± 0.60 0.65 ± 0.02 26.23 ± 0.10 9.21 ± 0.44 73.38 ± 0.62 82.66 ± 0.28 90.60 ± 0.21 38.86 ± 0.08
BootstrappedNN-MR 2.15 ± 0.13 1.19 ± 0.15 31.27 ± 0.08 7.72 ± 0.28 63.26 ± 0.58 81.39 ± 0.12 99.85 ± 0.09 43.46 ± 0.07
BootstrappedNN-SL 3.93 ± 0.17 0.54 ± 0.01 25.53 ± 0.05 10.88 ± 0.61 70.64 ± 0.59 83.10 ± 0.07 95.92 ± 0.25 38.50 ± 0.06
Dropout 5.57 ± 1.02 2.35 ± 0.59 30.65 ± 0.23 17.55 ± 0.67 66.24 ± 0.74 84.38 ± 0.44 93.15 ± 0.36 39.82 ± 0.34
Dropout-MR 2.65 ± 0.08 1.30 ± 0.32 29.28 ± 0.12 10.16 ± 0.44 63.68 ± 0.60 80.66 ± 0.31 95.81 ± 0.21 36.84 ± 0.20
Dropout-SL 4.39 ± 1.02 1.89 ± 0.47 26.39 ± 0.17 13.18 ± 0.86 66.90 ± 0.80 81.41 ± 0.30 96.23 ± 0.25 36.96 ± 0.13
GP 11.49 ± 0.66 3.92 ± 0.74 46.25 ± 0.75 3.18 ± 0.08 74.95 ± 0.93 90.50 ± 0.46
NeuralLinear 2.22 ± 0.08 0.91 ± 0.01 29.91 ± 0.17 11.44 ± 0.11 75.43 ± 0.41 87.31 ± 0.27 95.18 ± 0.15 55.34 ± 0.42
NeuralLinear-MR 1.92 ± 0.10 1.30 ± 0.01 28.87 ± 0.14 13.47 ± 0.12 72.75 ± 0.50 86.02 ± 0.18 96.55 ± 0.25 54.01 ± 0.50
NeuralLinear-SL 2.42 ± 0.09 0.52 ± 0.01 27.60 ± 0.10 9.98 ± 0.56 71.11 ± 0.47 85.00 ± 0.09 94.99 ± 0.21 37.25 ± 0.06
RMS 6.68 ± 1.52 2.85 ± 0.73 27.74 ± 0.18 12.73 ± 0.73 69.93 ± 0.56 83.09 ± 0.24 91.55 ± 0.32 38.58 ± 0.19
RMS-MR 4.32 ± 1.06 2.36 ± 0.44 32.46 ± 0.57 10.72 ± 0.51 68.43 ± 0.72 87.90 ± 0.21 96.41 ± 0.28 43.64 ± 0.22
RMS-SL 3.29 ± 0.16 2.22 ± 0.87 28.25 ± 0.14 12.76 ± 0.63 71.50 ± 0.49 87.29 ± 0.16 96.63 ± 0.32 41.48 ± 0.19
SGFS 5.99 ± 1.02 3.82 ± 0.45 36.57 ± 0.80 29.00 ± 0.53 68.02 ± 0.63 87.73 ± 0.41 98.36 ± 0.29 40.55 ± 0.45
SGFS-MR 3.80 ± 0.46 1.44 ± 0.01 30.12 ± 0.05 12.49 ± 0.71 66.27 ± 0.72 76.00 ± 0.22 99.40 ± 0.33 37.33 ± 2.10
SGFS-SL 2.79 ± 0.10 2.14 ± 0.13 35.27 ± 0.27 43.95 ± 1.12 73.90 ± 1.51 85.15 ± 0.52 99.75 ± 0.38 49.37 ± 2.41
ConstSGD 26.37 ± 3.14 6.79 ± 1.42 22.47 ± 0.78 88.16 ± 2.80 70.09 ± 0.80 89.26 ± 0.29 96.84 ± 0.31 51.18 ± 1.74
ConstSGD-MR 3.10 ± 0.08 7.24 ± 1.07 23.39 ± 0.66 46.47 ± 1.85 71.25 ± 0.61 81.96 ± 0.46 96.02 ± 0.24 44.37 ± 1.39
ConstSGD-SL 41.94 ± 2.31 2.96 ± 0.79 21.61 ± 0.15 51.94 ± 3.78 70.24 ± 0.95 84.55 ± 0.34 96.08 ± 0.24 52.95 ± 1.29
EpsGreedyRMS 4.97 ± 1.04 2.13 ± 0.34 27.42 ± 0.13 12.36 ± 0.47 69.65 ± 0.70 83.33 ± 0.23 91.12 ± 0.23 38.55 ± 0.18
EpsGreedyRMS-SL 3.08 ± 0.15 1.09 ± 0.20 28.09 ± 0.09 7.93 ± 0.39 69.64 ± 0.61 87.65 ± 0.14 96.71 ± 0.29 40.07 ± 0.10
EpsGreedyRMS-MR 2.44 ± 0.15 1.71 ± 0.44 30.03 ± 0.20 8.07 ± 0.45 66.18 ± 0.57 85.20 ± 0.18 96.65 ± 0.25 40.32 ± 0.10
LinDiagPost 17.67 ± 0.18 51.29 ± 0.03 95.48 ± 0.02 9.59 ± 0.05 58.61 ± 0.49 99.72 ± 0.02 94.14 ± 0.02 99.43 ± 0.01
LinDiagPost-MR 8.64 ± 2.33 31.51 ± 0.03 65.03 ± 0.03 20.57 ± 0.13 60.62 ± 0.49 97.64 ± 0.03 98.33 ± 0.02 94.98 ± 0.02
LinDiagPost-SL 14.86 ± 2.12 15.60 ± 0.03 42.72 ± 0.03 2.04 ± 0.04 59.96 ± 0.67 94.45 ± 0.03 86.61 ± 0.02 90.31 ± 0.02
LinDiagPrecPost 9.48 ± 1.59 7.53 ± 0.02 34.40 ± 0.02 4.58 ± 0.04 58.58 ± 0.60 79.89 ± 0.03 87.03 ± 0.02 34.92 ± 0.02
LinDiagPrecPost-MR 16.21 ± 3.14 8.77 ± 0.07 35.69 ± 0.02 9.15 ± 0.10 59.08 ± 0.45 84.06 ± 0.03 89.63 ± 0.02 39.69 ± 0.02
LinDiagPrecPost-SL 13.17 ± 1.73 6.80 ± 0.02 33.85 ± 0.07 1.82 ± 0.06 58.83 ± 0.45 74.71 ± 0.05 85.02 ± 0.02 31.10 ± 0.02
LinGreedy 14.28 ± 1.99 11.32 ± 0.63 35.29 ± 0.11 2.18 ± 0.14 59.69 ± 0.60 83.03 ± 0.70 84.91 ± 0.02 30.73 ± 0.02

LinGreedy (ǫ = 0.01) 3.38 ± 0.18 10.42 ± 0.39 34.59 ± 0.08 2.94 ± 0.12 59.95 ± 0.58 76.66 ± 0.25 85.08 ± 0.02 31.38 ± 0.02
LinGreedy (ǫ = 0.05) 5.89 ± 0.06 12.75 ± 0.16 37.00 ± 0.03 6.57 ± 0.11 61.62 ± 0.43 75.75 ± 0.05 85.75 ± 0.02 34.06 ± 0.02
LinPost 6.12 ± 0.67 7.64 ± 0.02 34.40 ± 0.02 7.26 ± 0.05 59.14 ± 0.50 79.12 ± 0.03 87.17 ± 0.02 34.64 ± 0.02
LinPost-MR 7.93 ± 2.00 10.31 ± 0.03 38.64 ± 0.02 15.61 ± 0.10 59.17 ± 0.56 89.49 ± 0.04 92.66 ± 0.02 46.46 ± 0.02
LinPost-SL 14.34 ± 1.84 6.82 ± 0.02 33.61 ± 0.03 2.50 ± 0.03 60.02 ± 0.57 75.39 ± 0.04 85.43 ± 0.02 31.78 ± 0.02
LinFullDiagPost 86.80 ± 0.13 28.29 ± 0.02 73.82 ± 0.03 6.96 ± 0.06 63.22 ± 0.61 96.17 ± 0.02 91.60 ± 0.01 97.11 ± 0.01
LinFullDiagPost-MR 2.39 ± 0.08 14.24 ± 0.02 37.59 ± 0.02 10.25 ± 0.11 62.87 ± 0.42 85.97 ± 0.04 91.48 ± 0.02 57.15 ± 0.02
LinFullDiagPost-SL 2.24 ± 0.10 12.04 ± 0.04 37.08 ± 0.06 10.92 ± 0.45 62.56 ± 0.51 81.71 ± 0.09 90.90 ± 0.02 53.25 ± 0.02
LinFullDiagPrecPost 3.47 ± 0.36 7.34 ± 0.03 34.04 ± 0.02 4.04 ± 0.05 60.63 ± 0.44 77.00 ± 0.03 86.00 ± 0.02 32.48 ± 0.02
LinFullDiagPrecPost-MR 2.90 ± 0.34 7.88 ± 0.03 34.24 ± 0.03 7.74 ± 0.06 60.65 ± 0.50 77.90 ± 0.03 86.26 ± 0.02 32.91 ± 0.02
LinFullDiagPrecPost-SL 2.65 ± 0.14 6.84 ± 0.02 33.97 ± 0.06 4.99 ± 0.18 60.99 ± 0.55 75.81 ± 0.03 86.17 ± 0.02 31.78 ± 0.02
LinFullPost 2.37 ± 0.25 7.34 ± 0.02 34.00 ± 0.02 5.66 ± 0.04 61.87 ± 0.44 76.80 ± 0.03 86.14 ± 0.01 32.56 ± 0.02
LinFullPost-MR 1.82 ± 0.15 7.35 ± 0.02 34.27 ± 0.02 7.85 ± 0.07 60.76 ± 0.46 77.89 ± 0.03 86.74 ± 0.02 32.89 ± 0.02
LinFullPost-SL 2.62 ± 0.27 6.90 ± 0.02 33.91 ± 0.02 5.32 ± 0.07 60.89 ± 0.47 76.33 ± 0.03 86.47 ± 0.02 32.06 ± 0.02
ParamNoise 2.77 ± 0.15 1.47 ± 0.17 26.81 ± 0.10 19.04 ± 0.78 68.92 ± 0.53 87.55 ± 0.09 95.43 ± 0.07 39.20 ± 0.07
ParamNoise-MR 2.31 ± 0.11 1.76 ± 0.18 28.20 ± 0.11 20.25 ± 0.41 70.25 ± 0.64 86.57 ± 0.13 95.44 ± 0.11 40.46 ± 0.08
ParamNoise-SL 2.49 ± 0.09 1.73 ± 0.24 25.63 ± 0.09 10.62 ± 0.64 66.75 ± 0.54 81.51 ± 0.13 96.34 ± 0.28 35.75 ± 0.05
Uniform 100.00 ± 0.15 100.00 ± 0.03 100.00 ± 0.01 100.00 ± 1.48 100.00 ± 1.01 100.00 ± 0.02 100.00 ± 0.01 100.00 ± 0.01
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Table 7: Simple regret incurred by models using algorithms in Section 3 on the bandits described in Section A. Simple regret was approximated by averaging the
regret over the final 500 steps. Values reported are the mean over 50 independent trials with standard error of the mean. Normalized with respect to the performance
of Uniform.

Mushroom Statlog Covertype Financial Jester Adult Song Census

AlphaDivergence (1) 51.57 ± 0.31 17.48 ± 1.51 30.71 ± 1.41 19.45 ± 0.80 68.37 ± 0.95 94.25 ± 0.19 97.44 ± 0.38 67.59 ± 0.65
AlphaDivergence 51.20 ± 0.32 13.32 ± 1.34 33.71 ± 1.72 26.86 ± 1.22 67.35 ± 0.91 94.36 ± 0.21 96.94 ± 0.39 63.62 ± 0.98
AlphaDivergence-SL 51.24 ± 0.36 22.47 ± 1.08 59.61 ± 0.31 60.74 ± 5.12 64.64 ± 0.86 93.57 ± 0.26 98.38 ± 0.20 68.01 ± 0.37
BBB 0.63 ± 0.17 12.47 ± 1.59 56.84 ± 2.21 19.00 ± 1.37 66.76 ± 0.82 93.57 ± 0.64 96.86 ± 0.42 64.62 ± 2.88
BBB-MR 8.94 ± 2.62 24.91 ± 0.28 60.37 ± 0.59 46.47 ± 3.57 63.18 ± 0.85 94.30 ± 0.43 95.91 ± 0.37 68.51 ± 1.07
BBB-SL 0.82 ± 0.16 1.26 ± 0.26 34.62 ± 0.75 7.46 ± 0.57 68.79 ± 0.93 87.27 ± 0.84 95.76 ± 0.34 36.74 ± 0.59
BootstrappedNN 2.43 ± 0.49 0.27 ± 0.04 22.47 ± 0.25 3.29 ± 0.36 70.29 ± 0.73 79.03 ± 0.40 87.63 ± 0.42 33.94 ± 0.32
BootstrappedNN-MR 1.26 ± 0.17 0.67 ± 0.10 29.81 ± 0.36 3.37 ± 0.32 59.96 ± 0.74 78.28 ± 0.30 99.14 ± 0.24 39.29 ± 0.37
BootstrappedNN-SL 1.44 ± 0.25 0.26 ± 0.03 21.38 ± 0.35 6.76 ± 0.64 67.17 ± 0.68 79.69 ± 0.31 95.78 ± 0.33 34.72 ± 0.31
Dropout 2.59 ± 1.09 1.34 ± 0.55 28.34 ± 0.42 11.42 ± 0.70 63.47 ± 0.80 82.18 ± 0.55 91.20 ± 0.43 36.25 ± 0.55
Dropout-MR 0.68 ± 0.14 0.67 ± 0.13 27.96 ± 0.36 6.04 ± 0.47 61.04 ± 0.74 77.55 ± 0.43 95.99 ± 0.32 34.34 ± 0.42
Dropout-SL 2.37 ± 1.07 1.38 ± 0.44 23.28 ± 0.40 8.70 ± 0.87 63.65 ± 0.78 77.91 ± 0.41 96.23 ± 0.34 34.58 ± 0.36
GP 10.66 ± 0.85 3.80 ± 0.74 45.65 ± 0.89 0.22 ± 0.07 74.38 ± 1.18 89.73 ± 0.59
NeuralLinear 0.46 ± 0.12 0.32 ± 0.04 25.30 ± 0.33 2.74 ± 0.08 70.67 ± 0.66 83.26 ± 0.46 94.46 ± 0.26 51.00 ± 0.62
NeuralLinear-MR 1.10 ± 0.16 0.56 ± 0.05 25.30 ± 0.36 3.98 ± 0.09 67.80 ± 0.69 82.03 ± 0.32 96.59 ± 0.31 48.44 ± 0.58
NeuralLinear-SL 0.84 ± 0.12 0.20 ± 0.03 23.89 ± 0.37 5.04 ± 0.64 67.80 ± 0.65 80.85 ± 0.26 94.44 ± 0.37 34.28 ± 0.36
RMS 5.02 ± 1.47 2.14 ± 0.75 23.71 ± 0.34 7.36 ± 0.69 65.68 ± 0.77 79.60 ± 0.40 88.02 ± 0.50 35.10 ± 0.39
RMS-MR 2.82 ± 1.07 1.72 ± 0.38 28.73 ± 0.47 5.73 ± 0.53 64.53 ± 0.88 84.59 ± 0.37 96.40 ± 0.35 39.75 ± 0.43
RMS-SL 1.22 ± 0.16 0.56 ± 0.21 23.00 ± 0.35 8.29 ± 0.61 68.15 ± 0.69 84.66 ± 0.29 96.22 ± 0.35 37.99 ± 0.45
SGFS 4.11 ± 0.83 2.41 ± 0.45 33.57 ± 0.86 16.76 ± 0.53 64.75 ± 0.85 82.80 ± 0.58 97.98 ± 0.38 35.92 ± 0.62
SGFS-MR 2.47 ± 0.47 1.05 ± 0.14 28.73 ± 0.32 6.74 ± 0.64 62.03 ± 0.74 74.08 ± 0.39 99.08 ± 0.38 35.24 ± 2.22
SGFS-SL 0.87 ± 0.13 0.87 ± 0.09 33.62 ± 0.42 19.12 ± 0.88 72.20 ± 1.64 82.64 ± 0.60 99.20 ± 0.42 46.39 ± 2.54
ConstSGD 19.57 ± 3.39 5.94 ± 1.46 15.63 ± 0.95 86.75 ± 3.92 68.48 ± 0.95 87.94 ± 0.46 96.42 ± 0.41 48.74 ± 2.01
ConstSGD-MR 0.85 ± 0.17 6.34 ± 1.10 17.25 ± 0.57 40.63 ± 2.73 67.64 ± 0.73 79.86 ± 0.50 96.07 ± 0.31 41.54 ± 1.57
ConstSGD-SL 37.01 ± 4.26 2.22 ± 0.78 16.15 ± 0.30 42.59 ± 4.82 69.47 ± 0.97 81.38 ± 0.41 95.90 ± 0.32 45.35 ± 1.75
EpsGreedyRMS 2.63 ± 1.09 0.55 ± 0.17 23.58 ± 0.34 5.83 ± 0.43 65.53 ± 0.89 79.31 ± 0.38 87.96 ± 0.40 34.46 ± 0.32
EpsGreedyRMS-SL 1.59 ± 0.21 0.62 ± 0.24 23.93 ± 0.32 3.32 ± 0.37 65.53 ± 0.76 84.35 ± 0.31 96.44 ± 0.40 37.01 ± 0.34
EpsGreedyRMS-MR 1.30 ± 0.19 1.26 ± 0.46 27.21 ± 0.43 3.73 ± 0.43 62.04 ± 0.66 81.89 ± 0.36 95.87 ± 0.34 37.07 ± 0.31
LinDiagPost 16.67 ± 0.40 37.05 ± 0.36 95.17 ± 0.22 2.08 ± 0.05 53.75 ± 0.51 99.78 ± 0.19 90.96 ± 0.29 98.77 ± 0.27
LinDiagPost-MR 6.85 ± 2.19 29.96 ± 0.30 61.52 ± 0.37 10.95 ± 0.18 55.44 ± 0.62 97.52 ± 0.19 97.38 ± 0.22 94.45 ± 0.31
LinDiagPost-SL 13.93 ± 2.06 13.97 ± 0.21 41.70 ± 0.31 0.16 ± 0.02 56.03 ± 0.79 94.24 ± 0.24 84.15 ± 0.28 90.62 ± 0.26
LinDiagPrecPost 8.56 ± 1.53 6.44 ± 0.18 32.97 ± 0.31 1.04 ± 0.04 54.31 ± 0.71 74.97 ± 0.31 84.83 ± 0.28 30.01 ± 0.35
LinDiagPrecPost-MR 15.55 ± 3.12 5.83 ± 0.15 33.40 ± 0.33 3.21 ± 0.08 54.92 ± 0.64 77.91 ± 0.26 86.27 ± 0.26 32.42 ± 0.27
LinDiagPrecPost-SL 12.16 ± 1.73 6.62 ± 0.16 33.17 ± 0.35 0.12 ± 0.04 54.35 ± 0.62 71.71 ± 0.37 83.14 ± 0.29 29.51 ± 0.31

LinGreedy 13.62 ± 2.04 9.35 ± 0.76 34.75 ± 0.33 0.50 ± 0.15 55.32 ± 0.82 80.52 ± 0.80 83.42 ± 0.29 29.10 ± 0.31

LinGreedy (ǫ = 0.01) 1.74 ± 0.22 8.31 ± 0.27 33.73 ± 0.32 0.97 ± 0.10 55.87 ± 0.77 73.23 ± 0.37 83.14 ± 0.27 29.76 ± 0.33
LinGreedy (ǫ = 0.05) 4.67 ± 0.35 11.54 ± 0.26 36.61 ± 0.34 5.12 ± 0.23 57.37 ± 0.60 74.01 ± 0.35 84.14 ± 0.29 32.85 ± 0.31
LinPost 5.31 ± 0.68 6.47 ± 0.15 33.02 ± 0.34 1.17 ± 0.04 54.91 ± 0.66 74.65 ± 0.29 84.76 ± 0.29 29.73 ± 0.35

LinPost-MR 6.67 ± 1.95 7.57 ± 0.19 34.25 ± 0.33 6.89 ± 0.11 55.27 ± 0.66 83.42 ± 0.28 88.66 ± 0.25 36.19 ± 0.34
LinPost-SL 13.69 ± 1.73 6.46 ± 0.17 32.50 ± 0.32 0.24 ± 0.03 56.15 ± 0.77 72.02 ± 0.32 83.44 ± 0.27 29.62 ± 0.29

LinFullDiagPost 83.94 ± 1.32 20.92 ± 0.28 73.04 ± 0.33 0.32 ± 0.03 57.29 ± 0.73 95.49 ± 0.23 88.14 ± 0.26 97.01 ± 0.26
LinFullDiagPost-MR 0.85 ± 0.13 12.24 ± 0.20 36.09 ± 0.37 2.70 ± 0.07 57.81 ± 0.65 82.39 ± 0.31 87.87 ± 0.31 54.49 ± 0.37
LinFullDiagPost-SL 0.69 ± 0.10 11.38 ± 0.22 36.42 ± 0.38 5.65 ± 0.37 57.18 ± 0.66 80.55 ± 0.25 87.66 ± 0.33 53.53 ± 0.34
LinFullDiagPrecPost 2.85 ± 0.37 6.44 ± 0.18 33.01 ± 0.31 0.18 ± 0.03 56.63 ± 0.69 73.58 ± 0.32 84.07 ± 0.26 29.59 ± 0.33

LinFullDiagPrecPost-MR 2.25 ± 0.34 6.21 ± 0.16 32.84 ± 0.32 0.56 ± 0.04 55.90 ± 0.67 73.16 ± 0.34 83.68 ± 0.27 30.01 ± 0.34
LinFullDiagPrecPost-SL 2.05 ± 0.16 6.14 ± 0.17 32.77 ± 0.33 1.15 ± 0.10 55.54 ± 0.77 72.89 ± 0.34 83.59 ± 0.30 30.22 ± 0.31
LinFullPost 1.75 ± 0.29 6.12 ± 0.15 33.16 ± 0.32 0.19 ± 0.03 57.43 ± 0.71 73.50 ± 0.27 84.01 ± 0.29 29.20 ± 0.37

LinFullPost-MR 1.27 ± 0.16 6.00 ± 0.18 33.01 ± 0.33 1.44 ± 0.04 55.72 ± 0.67 73.27 ± 0.26 84.70 ± 0.33 29.71 ± 0.33

LinFullPost-SL 2.11 ± 0.31 6.21 ± 0.18 32.99 ± 0.34 1.25 ± 0.06 55.94 ± 0.57 73.03 ± 0.27 84.81 ± 0.31 29.66 ± 0.29

ParamNoise 1.36 ± 0.20 0.66 ± 0.13 21.82 ± 0.30 15.32 ± 0.82 64.94 ± 0.75 84.55 ± 0.31 93.40 ± 0.28 35.97 ± 0.31
ParamNoise-MR 1.08 ± 0.17 0.83 ± 0.17 24.32 ± 0.37 15.45 ± 0.34 66.91 ± 0.83 83.52 ± 0.31 93.47 ± 0.31 36.79 ± 0.32
ParamNoise-SL 0.74 ± 0.17 0.62 ± 0.20 23.06 ± 0.35 4.98 ± 0.69 63.22 ± 0.64 78.58 ± 0.32 96.36 ± 0.35 32.80 ± 0.30
Uniform 100.00 ± 1.66 100.00 ± 0.27 100.00 ± 0.20 100.00 ± 1.58 100.00 ± 1.22 100.00 ± 0.17 100.00 ± 0.17 100.00 ± 0.20
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Table 8: Elapsed time for algorithms in Section 3 on the bandits described in Section A. Values reported are the mean over 50 independent trials with standard error
of the mean. Normalized with respect to the elapsed time required by RMS (which uses ts = 100 and tf = 20).

Mushroom Statlog Covertype Financial Jester Adult Song Census

AlphaDivergence (1) 560.20 ± 46.72 735.02 ± 55.50 258.25 ± 14.97 10289.67 ± 827.51 1663.50 ± 143.87 687.87 ± 51.09 228.12 ± 16.04 265.24 ± 48.45
AlphaDivergence 547.82 ± 36.53 746.48 ± 57.83 258.34 ± 14.62 10407.11 ± 858.31 1662.82 ± 145.74 668.12 ± 61.06 225.35 ± 13.57 263.95 ± 55.08
AlphaDivergence-SL 498.78 ± 120.20 568.54 ± 61.40 300.86 ± 57.50 5517.58 ± 1612.75 1033.02 ± 215.51 519.17 ± 98.25 210.92 ± 31.13 225.41 ± 42.02
BBB 264.64 ± 11.42 327.16 ± 19.62 146.61 ± 10.23 4569.10 ± 278.55 799.22 ± 71.61 314.85 ± 19.49 133.48 ± 9.53 159.10 ± 7.45
BBB-MR 227.28 ± 46.01 288.37 ± 55.36 61.35 ± 12.44 5537.82 ± 1035.35 814.01 ± 117.19 262.50 ± 43.01 52.16 ± 12.50 88.67 ± 25.53
BBB-SL 247.48 ± 33.11 315.44 ± 55.78 78.16 ± 12.39 6282.18 ± 1787.78 926.67 ± 269.69 294.29 ± 49.57 62.44 ± 5.58 100.42 ± 27.02
BootstrappedNN 1032.55 ± 61.06 1033.71 ± 63.65 1061.96 ± 85.07 973.91 ± 77.44 974.03 ± 75.80 1010.18 ± 55.32 901.19 ± 148.51 961.95 ± 10.50
BootstrappedNN-MR 91.13 ± 9.23 67.81 ± 9.11 79.04 ± 16.50 61.76 ± 9.45 66.32 ± 10.25 83.63 ± 11.26 68.00 ± 9.65 144.11 ± 45.00
BootstrappedNN-SL 109.20 ± 20.02 68.67 ± 7.26 82.75 ± 10.40 77.57 ± 23.63 75.14 ± 12.67 95.69 ± 14.08 81.20 ± 18.90 194.35 ± 74.09
Dropout 145.85 ± 7.07 149.43 ± 10.07 172.68 ± 12.85 132.70 ± 10.60 131.35 ± 6.79 138.04 ± 8.30 146.93 ± 6.96 206.57 ± 64.03
Dropout-MR 50.02 ± 4.34 35.26 ± 2.99 40.45 ± 3.15 37.52 ± 5.32 36.90 ± 5.58 37.85 ± 2.97 37.28 ± 1.73 69.41 ± 1.87
Dropout-SL 399.08 ± 30.09 467.46 ± 42.40 328.78 ± 26.29 562.34 ± 79.47 484.15 ± 57.88 410.87 ± 29.54 261.61 ± 23.71 244.49 ± 12.64
GP 4400.76 ± 388.68 5764.29 ± 365.29 1789.18 ± 267.01 8223.17 ± 589.89 7353.49 ± 487.87 4633.66 ± 384.08
NeuralLinear 137.23 ± 5.64 207.10 ± 14.55 213.15 ± 14.33 212.58 ± 15.98 197.54 ± 17.03 213.20 ± 14.92 235.60 ± 38.82 154.16 ± 4.39
NeuralLinear-MR 177.61 ± 12.09 266.55 ± 15.62 208.71 ± 16.18 277.01 ± 23.85 234.43 ± 18.30 261.31 ± 17.80 194.03 ± 16.88 182.18 ± 16.12
NeuralLinear-SL 147.82 ± 12.82 220.61 ± 13.56 170.30 ± 10.58 216.47 ± 13.36 199.22 ± 13.34 227.79 ± 17.89 156.28 ± 13.78 145.56 ± 18.73
RMS 100.00 ± 5.31 100.00 ± 6.81 100.00 ± 6.79 100.00 ± 8.33 100.00 ± 12.27 100.00 ± 8.05 100.00 ± 11.36 100.00 ± 1.49
RMS-MR 67.23 ± 5.32 51.63 ± 4.53 56.07 ± 3.40 56.33 ± 7.38 54.28 ± 6.73 62.00 ± 5.76 48.67 ± 3.12 77.37 ± 9.96
RMS-SL 107.91 ± 7.99 103.45 ± 10.36 90.61 ± 6.25 114.05 ± 18.99 106.35 ± 10.45 106.84 ± 10.06 78.64 ± 6.58 99.23 ± 8.94
SGFS 142.34 ± 5.55 153.14 ± 8.43 127.02 ± 11.76 193.66 ± 10.14 150.93 ± 8.58 135.86 ± 7.42 117.44 ± 20.54 143.18 ± 8.81
SGFS-MR 188.74 ± 48.01 178.01 ± 22.31 119.30 ± 16.79 256.76 ± 79.99 196.23 ± 31.54 169.18 ± 21.40 94.49 ± 14.08 132.36 ± 37.92
SGFS-SL 88.45 ± 19.15 71.34 ± 8.41 60.82 ± 11.43 99.20 ± 24.01 81.54 ± 13.08 76.97 ± 11.93 50.09 ± 9.19 84.99 ± 20.89
ConstSGD 110.95 ± 7.49 109.21 ± 7.49 107.34 ± 7.72 116.68 ± 12.45 111.59 ± 9.00 109.71 ± 9.09 103.29 ± 9.15 102.17 ± 2.72
ConstSGD-MR 38.16 ± 12.76 13.18 ± 1.90 24.87 ± 5.29 15.80 ± 4.68 14.76 ± 1.94 27.57 ± 4.61 25.02 ± 4.28 61.32 ± 17.14
ConstSGD-SL 73.90 ± 16.27 51.23 ± 5.90 52.37 ± 9.78 65.17 ± 32.75 56.33 ± 9.32 63.96 ± 10.24 45.71 ± 6.80 77.31 ± 17.14
EpsGreedyRMS 99.92 ± 4.05 100.64 ± 6.12 100.74 ± 7.09 89.64 ± 5.27 97.95 ± 12.20 98.15 ± 7.95 101.84 ± 11.89 100.09 ± 2.26
EpsGreedyRMS-SL 242.38 ± 13.74 267.58 ± 25.50 306.46 ± 9.59 131.72 ± 14.07 205.68 ± 20.47 237.59 ± 24.88 247.70 ± 20.25 237.48 ± 16.65
EpsGreedyRMS-MR 60.25 ± 8.41 52.85 ± 5.24 51.73 ± 5.03 53.57 ± 10.19 49.82 ± 5.50 54.96 ± 5.93 48.55 ± 4.73 82.01 ± 16.40
LinDiagPost 81.33 ± 3.25 21.36 ± 1.67 42.80 ± 2.73 11.94 ± 0.92 22.46 ± 2.64 53.66 ± 3.41 58.46 ± 9.35 316.91 ± 14.97
LinDiagPost-MR 84.63 ± 15.24 24.04 ± 4.11 45.32 ± 3.17 12.38 ± 2.29 19.43 ± 1.25 51.61 ± 3.29 46.01 ± 5.01 339.40 ± 13.69
LinDiagPost-SL 85.61 ± 10.53 27.27 ± 3.25 55.19 ± 5.90 11.31 ± 1.00 21.42 ± 2.62 53.65 ± 5.03 48.08 ± 3.23 345.99 ± 25.13
LinDiagPrecPost 85.47 ± 9.51 25.24 ± 1.97 59.29 ± 5.03 12.97 ± 1.35 22.99 ± 2.70 59.23 ± 4.60 69.98 ± 13.79 364.87 ± 2.87
LinDiagPrecPost-MR 93.74 ± 19.87 24.97 ± 2.05 54.88 ± 4.57 11.88 ± 1.42 20.25 ± 1.62 55.10 ± 3.40 49.61 ± 5.34 381.78 ± 17.04
LinDiagPrecPost-SL 86.35 ± 8.15 25.95 ± 3.96 55.29 ± 4.83 12.16 ± 1.80 21.61 ± 2.34 59.50 ± 4.63 54.34 ± 4.92 395.69 ± 23.62
LinGreedy 78.87 ± 11.13 21.43 ± 1.42 56.02 ± 3.93 3.52 ± 0.46 13.96 ± 1.61 38.65 ± 5.96 65.92 ± 9.82 156.59 ± 2.11
LinGreedy (ǫ = 0.01) 73.55 ± 3.39 21.32 ± 1.77 55.23 ± 4.59 3.64 ± 0.42 13.74 ± 1.84 31.96 ± 3.30 64.04 ± 8.10 154.78 ± 3.15
LinGreedy (ǫ = 0.05) 73.92 ± 2.98 20.00 ± 1.64 52.66 ± 3.54 3.51 ± 0.33 13.09 ± 1.76 31.93 ± 3.05 62.83 ± 10.37 151.76 ± 2.02
LinPost 93.53 ± 3.58 25.93 ± 2.65 64.87 ± 5.03 23.19 ± 1.53 38.20 ± 3.64 139.53 ± 8.83 82.80 ± 7.24 445.23 ± 26.78
LinPost-MR 96.52 ± 12.06 33.95 ± 6.89 58.76 ± 4.66 26.40 ± 3.62 33.74 ± 1.37 123.41 ± 6.37 61.13 ± 7.06 446.60 ± 17.31
LinPost-SL 98.21 ± 8.85 27.45 ± 3.39 61.25 ± 6.07 22.55 ± 2.42 36.00 ± 2.94 132.03 ± 10.26 66.34 ± 5.45 484.06 ± 65.42
LinFullDiagPost 80.47 ± 3.28 25.46 ± 2.57 48.37 ± 3.15 15.35 ± 1.42 24.18 ± 2.58 57.20 ± 4.86 58.59 ± 3.26 332.62 ± 8.30
LinFullDiagPost-MR 81.25 ± 6.02 27.68 ± 2.58 57.34 ± 6.74 14.34 ± 2.52 20.90 ± 1.90 56.78 ± 5.02 45.75 ± 3.97 366.06 ± 22.65
LinFullDiagPost-SL 77.71 ± 3.45 25.78 ± 2.46 54.59 ± 5.23 14.39 ± 1.51 23.10 ± 3.86 58.76 ± 5.36 44.71 ± 2.81 370.14 ± 25.12
LinFullDiagPrecPost 80.75 ± 3.03 26.72 ± 2.01 58.37 ± 4.05 15.18 ± 1.46 22.56 ± 2.16 61.24 ± 4.59 83.81 ± 17.49 361.93 ± 2.18
LinFullDiagPrecPost-MR 84.67 ± 9.11 27.35 ± 2.81 56.35 ± 6.31 14.58 ± 2.03 22.05 ± 1.70 59.77 ± 5.55 53.34 ± 6.68 386.40 ± 23.35
LinFullDiagPrecPost-SL 77.85 ± 4.66 25.13 ± 2.30 53.79 ± 4.76 13.68 ± 0.90 22.69 ± 2.44 57.97 ± 3.79 51.95 ± 4.23 383.85 ± 26.36
LinFullPost 94.41 ± 3.70 27.22 ± 1.88 65.02 ± 4.04 26.00 ± 2.05 40.23 ± 3.46 141.53 ± 9.38 89.72 ± 14.85 446.91 ± 25.61
LinFullPost-MR 99.09 ± 5.90 28.90 ± 2.67 62.19 ± 4.79 29.87 ± 3.17 38.99 ± 3.01 141.13 ± 6.98 65.31 ± 3.70 474.35 ± 21.76
LinFullPost-SL 99.33 ± 5.56 29.80 ± 2.58 63.71 ± 5.07 28.95 ± 3.94 38.72 ± 2.50 142.55 ± 6.81 65.01 ± 2.90 475.69 ± 15.56
ParamNoise 145.32 ± 7.94 170.52 ± 13.40 129.23 ± 12.58 228.62 ± 20.71 185.53 ± 22.58 150.22 ± 11.55 119.95 ± 12.29 111.20 ± 2.67
ParamNoise-MR 62.50 ± 13.75 42.40 ± 6.77 41.12 ± 8.23 60.75 ± 9.18 50.05 ± 6.11 52.95 ± 7.74 34.72 ± 1.44 75.26 ± 22.61
ParamNoise-SL 33.49 ± 2.28 13.23 ± 1.56 22.01 ± 1.51 16.13 ± 3.81 16.29 ± 2.59 25.40 ± 1.65 25.33 ± 4.22 57.70 ± 8.43
Uniform 0.16 ± 0.01 0.21 ± 0.02 0.22 ± 0.01 0.18 ± 0.03 0.19 ± 0.02 0.17 ± 0.02 0.18 ± 0.08 0.13 ± 0.01
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Table 9: Cumulative regret incurred on the Wheel Bandit problem with increasing values of δ. Values reported are the mean over 50 independent trials with standard
error of the mean. Normalized with respect to the performance of Uniform.

δ = 0.5 δ = 0.7 δ = 0.9 δ = 0.95 δ = 0.99

AlphaDivergence (1) 123.93 ± 0.08 123.65 ± 0.13 120.78 ± 0.59 115.21 ± 1.14 103.17 ± 0.90
AlphaDivergence 123.71 ± 0.07 123.71 ± 0.13 119.45 ± 1.15 117.44 ± 0.79 103.72 ± 0.75
AlphaDivergence-SL 11.71 ± 0.56 12.12 ± 0.45 65.16 ± 5.41 98.03 ± 1.58 101.76 ± 0.61
BBB 8.36 ± 3.59 19.51 ± 5.36 74.67 ± 6.22 102.35 ± 3.30 102.85 ± 0.74
BBB-MR 1.37 ± 0.07 3.32 ± 0.80 34.42 ± 5.50 59.04 ± 5.59 97.38 ± 2.66
BBB-SL 8.85 ± 3.68 8.92 ± 3.57 55.29 ± 6.58 89.31 ± 4.77 101.89 ± 1.05
BootstrappedNN 5.87 ± 2.65 28.47 ± 5.29 90.62 ± 5.06 102.59 ± 3.42 101.76 ± 0.96
BootstrappedNN-MR 33.00 ± 2.05 33.69 ± 2.65 45.62 ± 3.10 62.79 ± 3.92 87.27 ± 2.69
BootstrappedNN-SL 6.16 ± 2.67 29.00 ± 6.23 73.01 ± 5.46 97.49 ± 3.79 100.46 ± 1.34
Dropout 43.83 ± 4.72 60.62 ± 4.74 101.12 ± 3.77 108.21 ± 2.43 104.25 ± 0.76
Dropout-MR 7.89 ± 1.51 9.03 ± 2.58 36.58 ± 3.62 63.12 ± 4.26 98.68 ± 1.59
Dropout-SL 23.12 ± 3.54 51.07 ± 5.99 97.82 ± 4.41 102.17 ± 3.57 103.03 ± 0.75
GP 3.51 ± 0.62 4.82 ± 0.99 36.06 ± 3.53 65.31 ± 2.42 96.22 ± 1.47
NeuralLinear 1.10 ± 0.02 1.77 ± 0.03 4.32 ± 0.11 11.42 ± 0.97 52.64 ± 2.04
NeuralLinear-MR 0.95 ± 0.02 1.60 ± 0.03 4.65 ± 0.18 9.56 ± 0.36 49.63 ± 2.41
NeuralLinear-SL 1.36 ± 0.04 8.70 ± 3.55 21.93 ± 4.57 35.97 ± 4.08 76.23 ± 3.15
RMS 25.10 ± 4.73 44.89 ± 6.19 89.85 ± 4.27 104.72 ± 3.19 104.23 ± 1.07
RMS-MR 9.05 ± 1.82 19.42 ± 3.73 50.87 ± 4.49 74.34 ± 4.46 98.16 ± 1.88
RMS-SL 13.49 ± 3.94 26.88 ± 4.84 77.70 ± 6.22 94.84 ± 4.50 101.46 ± 1.20
SGFS 7.59 ± 1.10 10.40 ± 1.42 19.31 ± 1.60 25.55 ± 1.53 45.55 ± 1.49
SGFS-MR 6.04 ± 1.01 18.18 ± 4.29 42.45 ± 3.86 62.34 ± 3.41 87.12 ± 2.44
SGFS-SL 5.96 ± 0.90 8.88 ± 1.20 18.72 ± 1.73 33.52 ± 1.75 77.44 ± 2.58
ConstSGD 22.24 ± 5.11 33.50 ± 5.64 86.01 ± 5.77 111.36 ± 2.18 104.33 ± 0.78
ConstSGD-MR 25.30 ± 3.55 37.88 ± 3.95 78.74 ± 4.09 86.29 ± 3.45 97.55 ± 1.90
ConstSGD-SL 33.54 ± 5.24 51.14 ± 6.79 97.80 ± 4.80 109.05 ± 2.72 104.53 ± 0.62
EpsGreedyRMS 5.18 ± 0.85 27.33 ± 4.95 73.30 ± 4.46 85.43 ± 4.04 101.42 ± 1.45
EpsGreedyRMS-SL 2.13 ± 0.66 7.44 ± 2.88 49.63 ± 4.26 67.10 ± 4.02 95.68 ± 2.20
EpsGreedyRMS-MR 10.36 ± 2.21 16.96 ± 3.50 63.07 ± 5.45 80.88 ± 4.79 97.69 ± 2.28
LinDiagPost 1.12 ± 0.03 1.80 ± 0.08 5.06 ± 0.14 8.99 ± 0.33 37.77 ± 2.18

LinDiagPost-MR 9.53 ± 0.45 6.33 ± 0.19 11.81 ± 0.83 20.81 ± 1.88 51.19 ± 2.09
LinDiagPost-SL 44.19 ± 4.41 40.65 ± 4.24 54.32 ± 3.34 66.09 ± 3.52 81.29 ± 2.36
LinDiagPrecPost 1.20 ± 0.04 1.85 ± 0.07 5.43 ± 0.19 9.84 ± 0.33 40.96 ± 2.25

LinDiagPrecPost-MR 14.87 ± 2.81 21.68 ± 4.03 57.41 ± 5.66 72.57 ± 4.08 87.98 ± 2.73
LinDiagPrecPost-SL 41.50 ± 4.31 34.41 ± 3.68 61.86 ± 4.33 79.32 ± 4.45 93.23 ± 2.39
LinGreedy 65.89 ± 4.90 71.71 ± 4.31 108.86 ± 3.10 102.80 ± 3.06 104.80 ± 0.91
LinGreedy (ǫ = 0.01) 11.67 ± 1.03 17.28 ± 1.29 46.14 ± 2.37 70.01 ± 3.52 96.54 ± 1.57
LinGreedy (ǫ = 0.05) 7.86 ± 0.27 9.58 ± 0.35 19.42 ± 0.78 33.06 ± 2.06 74.17 ± 1.63
LinPost 1.10 ± 0.04 1.73 ± 0.06 4.95 ± 0.17 10.31 ± 0.49 42.59 ± 2.05
LinPost-MR 6.18 ± 0.27 4.99 ± 0.38 9.28 ± 0.61 13.74 ± 0.64 43.18 ± 1.52
LinPost-SL 41.60 ± 3.93 46.98 ± 4.79 69.06 ± 3.70 81.39 ± 3.26 93.29 ± 1.98
LinFullDiagPost 2.45 ± 0.04 2.83 ± 0.05 6.18 ± 0.12 11.45 ± 0.39 53.63 ± 2.67
LinFullDiagPost-MR 9.54 ± 0.72 11.13 ± 1.56 43.59 ± 5.03 50.67 ± 4.79 91.84 ± 2.60
LinFullDiagPost-SL 44.95 ± 4.66 58.60 ± 5.40 86.66 ± 4.97 84.89 ± 4.63 91.02 ± 2.50
LinFullDiagPrecPost 1.55 ± 0.03 2.06 ± 0.06 5.38 ± 0.18 9.83 ± 0.39 57.42 ± 2.47
LinFullDiagPrecPost-MR 1.98 ± 0.05 2.33 ± 0.06 5.45 ± 0.11 9.36 ± 0.23 42.74 ± 2.18
LinFullDiagPrecPost-SL 27.93 ± 3.74 45.72 ± 4.66 69.33 ± 4.50 91.37 ± 3.97 95.43 ± 2.16
LinFullPost 1.63 ± 0.03 2.11 ± 0.05 5.28 ± 0.16 10.65 ± 0.57 57.86 ± 2.84
LinFullPost-MR 8.42 ± 1.26 11.69 ± 2.16 31.00 ± 2.61 52.58 ± 3.50 83.83 ± 2.35
LinFullPost-SL 41.68 ± 5.02 38.21 ± 4.18 73.95 ± 5.74 81.44 ± 5.28 90.81 ± 2.64
ParamNoise 22.39 ± 3.27 48.22 ± 4.75 94.57 ± 4.34 110.10 ± 2.47 103.16 ± 0.89
ParamNoise-MR 1.54 ± 0.20 3.30 ± 0.65 18.02 ± 2.27 38.93 ± 3.20 88.25 ± 2.07
ParamNoise-SL 12.07 ± 1.76 18.67 ± 2.40 58.87 ± 4.49 61.55 ± 2.92 95.13 ± 2.21
Uniform 100.00 ± 0.08 100.00 ± 0.09 100.00 ± 0.25 100.00 ± 0.37 100.00 ± 0.78
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Table 10: Simple regret incurred on the Wheel Bandit problem with increasing values of δ. Simple regret was approximated by averaging the regret over the final 500
steps. Values reported are the mean over 50 independent trials with standard error of the mean. Normalized with respect to the performance of Uniform.

δ = 0.5 δ = 0.7 δ = 0.9 δ = 0.95 δ = 0.99

AlphaDivergence (1) 122.82 ± 0.36 124.88 ± 0.74 121.83 ± 2.03 118.13 ± 3.03 114.60 ± 4.70
AlphaDivergence 123.78 ± 0.44 126.05 ± 0.96 117.76 ± 2.15 121.01 ± 2.66 110.49 ± 5.07
AlphaDivergence-SL 1.79 ± 0.15 2.80 ± 0.36 56.95 ± 6.18 93.41 ± 3.37 105.30 ± 4.55
BBB 6.31 ± 3.58 15.35 ± 5.63 68.68 ± 7.40 105.63 ± 4.34 101.63 ± 4.54
BBB-MR 0.60 ± 0.09 1.45 ± 0.61 27.03 ± 6.19 56.64 ± 6.36 102.96 ± 5.98
BBB-SL 6.48 ± 3.63 6.17 ± 3.61 47.39 ± 7.51 88.12 ± 6.22 110.58 ± 5.25
BootstrappedNN 4.25 ± 2.53 24.19 ± 5.41 88.95 ± 5.88 104.31 ± 4.23 105.10 ± 4.11
BootstrappedNN-MR 25.92 ± 2.33 28.73 ± 2.90 38.76 ± 3.65 57.72 ± 5.11 89.08 ± 5.56
BootstrappedNN-SL 4.83 ± 2.73 24.65 ± 6.52 67.63 ± 6.09 93.62 ± 5.61 103.26 ± 5.30
Dropout 43.07 ± 4.77 60.47 ± 4.82 102.49 ± 3.89 113.84 ± 3.74 107.98 ± 4.89
Dropout-MR 6.57 ± 1.48 6.37 ± 2.53 35.02 ± 3.94 59.45 ± 4.74 102.12 ± 4.76
Dropout-SL 19.96 ± 3.63 49.42 ± 6.35 99.31 ± 5.50 104.06 ± 4.66 103.39 ± 5.04
GP 2.80 ± 0.57 3.86 ± 1.05 34.61 ± 3.80 66.53 ± 3.21 96.94 ± 4.65
NeuralLinear 0.31 ± 0.03 0.68 ± 0.07 2.18 ± 0.13 5.44 ± 0.73 46.42 ± 3.45
NeuralLinear-MR 0.33 ± 0.04 0.79 ± 0.07 2.17 ± 0.14 4.08 ± 0.20 35.89 ± 2.98
NeuralLinear-SL 0.39 ± 0.04 6.65 ± 3.47 16.63 ± 4.73 28.73 ± 4.85 71.53 ± 5.90
RMS 22.98 ± 4.67 43.58 ± 6.51 88.70 ± 4.88 109.31 ± 4.48 105.06 ± 4.31
RMS-MR 7.75 ± 1.86 16.53 ± 3.48 47.26 ± 4.76 72.09 ± 5.40 109.20 ± 4.62
RMS-SL 11.01 ± 3.97 22.29 ± 4.70 74.99 ± 7.16 92.27 ± 5.07 103.35 ± 4.79
SGFS 4.57 ± 0.96 7.15 ± 1.39 13.34 ± 1.73 17.76 ± 1.65 35.03 ± 2.68
SGFS-MR 1.96 ± 0.35 14.70 ± 4.24 39.18 ± 4.39 59.62 ± 4.17 87.27 ± 4.54
SGFS-SL 3.09 ± 0.54 4.99 ± 1.05 10.79 ± 1.46 24.07 ± 2.26 73.50 ± 4.91
ConstSGD 20.40 ± 5.16 30.44 ± 5.93 87.26 ± 6.37 114.11 ± 3.22 109.77 ± 4.61
ConstSGD-MR 21.85 ± 3.66 36.00 ± 4.11 75.03 ± 4.74 86.91 ± 4.31 94.72 ± 4.78
ConstSGD-SL 32.38 ± 5.33 49.48 ± 7.05 97.36 ± 4.87 109.47 ± 3.49 108.68 ± 5.24
EpsGreedyRMS 1.59 ± 0.67 20.47 ± 5.20 64.39 ± 5.52 81.85 ± 5.48 104.21 ± 5.09
EpsGreedyRMS-SL 0.96 ± 0.54 5.46 ± 2.83 46.09 ± 4.73 64.99 ± 4.30 102.72 ± 4.31
EpsGreedyRMS-MR 7.96 ± 2.01 13.70 ± 3.65 60.71 ± 5.83 83.15 ± 6.07 96.78 ± 4.99
LinDiagPost 0.51 ± 0.05 1.06 ± 0.10 3.35 ± 0.30 5.41 ± 0.50 26.33 ± 3.28

LinDiagPost-MR 0.99 ± 0.07 0.86 ± 0.07 3.11 ± 0.21 10.13 ± 1.91 31.16 ± 2.34
LinDiagPost-SL 40.88 ± 4.54 37.69 ± 4.39 48.01 ± 3.85 62.42 ± 4.36 71.54 ± 4.22
LinDiagPrecPost 0.41 ± 0.04 0.87 ± 0.10 3.57 ± 0.30 5.17 ± 0.37 29.49 ± 3.02

LinDiagPrecPost-MR 10.72 ± 3.16 18.06 ± 4.14 59.68 ± 6.45 72.61 ± 4.79 92.59 ± 6.08
LinDiagPrecPost-SL 39.63 ± 4.34 29.90 ± 3.88 59.13 ± 5.05 79.67 ± 5.62 89.95 ± 5.20
LinGreedy 66.59 ± 5.02 73.06 ± 4.55 108.56 ± 3.65 105.01 ± 3.59 105.19 ± 4.14
LinGreedy (ǫ = 0.01) 2.36 ± 0.19 2.55 ± 0.19 16.11 ± 2.32 45.86 ± 4.79 88.92 ± 4.72
LinGreedy (ǫ = 0.05) 5.53 ± 0.19 6.07 ± 0.24 8.49 ± 0.47 12.65 ± 1.12 57.62 ± 3.57
LinPost 0.42 ± 0.05 0.97 ± 0.10 2.93 ± 0.26 5.54 ± 0.44 32.01 ± 3.06
LinPost-MR 0.70 ± 0.06 0.99 ± 0.10 3.08 ± 0.22 4.85 ± 0.27 25.42 ± 1.81

LinPost-SL 35.81 ± 3.86 37.32 ± 4.76 59.50 ± 4.75 69.56 ± 4.47 94.85 ± 5.05
LinFullDiagPost 1.13 ± 0.06 1.58 ± 0.09 3.16 ± 0.22 5.62 ± 0.41 39.24 ± 3.33
LinFullDiagPost-MR 2.07 ± 0.64 4.76 ± 1.66 40.16 ± 5.60 44.12 ± 5.35 93.98 ± 5.62
LinFullDiagPost-SL 42.92 ± 5.04 58.51 ± 5.82 89.72 ± 5.48 86.56 ± 5.33 86.16 ± 4.75
LinFullDiagPrecPost 0.72 ± 0.07 0.91 ± 0.09 3.43 ± 0.25 4.65 ± 0.43 45.19 ± 3.59
LinFullDiagPrecPost-MR 0.65 ± 0.06 0.98 ± 0.11 2.94 ± 0.24 4.59 ± 0.30 26.57 ± 2.51

LinFullDiagPrecPost-SL 25.86 ± 3.97 44.24 ± 4.63 67.12 ± 4.90 94.04 ± 4.75 94.17 ± 4.72
LinFullPost 0.65 ± 0.06 1.09 ± 0.09 3.53 ± 0.22 4.46 ± 0.33 45.04 ± 4.01
LinFullPost-MR 3.47 ± 1.20 7.45 ± 2.30 20.32 ± 2.65 41.85 ± 3.82 79.54 ± 4.56
LinFullPost-SL 39.42 ± 5.33 37.20 ± 4.40 75.61 ± 6.46 83.50 ± 6.18 96.19 ± 5.73
ParamNoise 18.75 ± 3.10 47.23 ± 4.97 92.26 ± 4.95 110.49 ± 3.72 110.64 ± 5.21
ParamNoise-MR 0.38 ± 0.04 1.36 ± 0.56 10.46 ± 2.00 28.77 ± 3.72 89.13 ± 4.79
ParamNoise-SL 7.54 ± 1.80 11.45 ± 2.22 52.55 ± 4.95 59.05 ± 3.66 97.85 ± 4.86
Uniform 100.00 ± 0.45 100.00 ± 0.78 100.00 ± 1.18 100.00 ± 2.21 100.00 ± 4.21
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(a) Gaussian Process (b) Sparse Gaussian Process (c) RMSProp

(d) ConstantSGD (e) SGFS (f) BBB

(g) Alpha Divergence (h) NeuralLinear (i) Bootstrap

(j) Dropout (k) Parameter Noise

Figure 6: We qualitatively compare plots of the sample distribution from various methods, similarly
to Hernández-Lobato et al. (2016). We plot the mean and standard deviation of 100 samples drawn
from each method conditioned on a small set of observations with three outputs (two are from the
same underlying function and thus strongly correlated while the third (bottom) is independent). The
true underlying functions are plotted in red.
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A REAL-WORLD DATASETS

Mushroom. The Mushroom Dataset (Schlimmer, 1981) contains 22 attributes per mushroom, and
two classes: poisonous and safe. As in Blundell et al. (2015), we create a bandit problem where the
agent must decide whether to eat or not a given mushroom. Eating a safe mushroom provides reward
+5. Eating a poisonous mushroom delivers reward +5 with probability 1/2 and reward -35 otherwise.
If the agent does not eat a mushroom, then the reward is 0. We set n = 50000.

Statlog. The Shuttle Statlog Dataset (Asuncion & Newman, 2007) provides the value of d = 9
indicators during a space shuttle flight, and the goal is to predict the state of the radiator subsystem of
the shuttle. There are k = 7 possible states, and if the agent selects the right state, then reward 1 is
generated. Otherwise, the agent obtains no reward (r = 0). The most interesting aspect of the dataset
is that one action is the optimal one in 80% of the cases, and some algorithms may commit to this
action instead of further exploring. In this case, n = 43500.

Covertype. The Covertype Dataset (Asuncion & Newman, 2007) classifies the cover type of northern
Colorado forest areas in k = 7 classes, based on d = 54 features, including elevation, slope, aspect,
and soil type. Again, the agent obtains reward 1 if the correct class is selected, and 0 otherwise. We
run the bandit for n = 150000.

Financial. We created the Financial Dataset by pulling the stock prices of d = 21 publicly traded
companies in NYSE and Nasdaq, for the last 14 years (n = 3713). For each day, the context was
the price difference between the beginning and end of the session for each stock. We synthetically
created the arms, to be a linear combination of the contexts, representing k = 8 different potential
portfolios. By far, this was the smallest dataset, and many algorithms over-explored at the beginning
with no time to amortize their investment (Thompson Sampling does not account for the horizon).

Jester. We create a recommendation system bandit problem as follows. The Jester Dataset (Goldberg
et al., 2001) provides continuous ratings in [−10, 10] for 100 jokes from 73421 users. We find a
complete subset of n = 19181 users rating all 40 jokes. Following Riquelme et al. (2017), we take
d = 32 of the ratings as the context of the user, and k = 8 as the arms. The agent recommends one
joke, and obtains the reward corresponding to the rating of the user for the selected joke.

Adult. The Adult Dataset (Kohavi, 1996; Asuncion & Newman, 2007) comprises personal informa-
tion from the US Census Bureau database, and the standard prediction task is to determine if a person
makes over $50K a year or not. However, we consider the k = 14 different occupations as feasible
actions, based on d = 94 covariates (many of them binarized). As in previous datasets, the agent
obtains reward 1 for making the right prediction, and 0 otherwise. We set n = 45222.

Census. The US Census (1990) Dataset (Asuncion & Newman, 2007) contains a number of personal
features (age, native language, education...) which we summarize in d = 389 covariates, including
binary dummy variables for categorical features. Our goal again is to predict the occupation of the
individual among k = 9 classes. The agent obtains reward 1 for making the right prediction, and 0
otherwise, for each of the n = 250000 randomly selected data points.

Song. The YearPredictionMSD Dataset is a subset of the Million Song Dataset (Bertin-Mahieux
et al., 2011). The goal is to predict the year a given song was released (1922-2011) based on d = 90
technical audio features. We divided the years in k = 10 contiguous year buckets containing the same
number of songs, and provided decreasing Gaussian rewards as a function of the distance between
the interval chosen by the agent and the one containing the year the song was actually released. We
initially selected n = 250000 songs at random from the training set.

The Statlog, Covertype, Adult, and Census datasets were tested in Elmachtoub et al. (2017).
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