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Abstract

Deep learning, a relatively new branch of machine learning, has been investigated for use in a 

variety of biomedical applications. Deep learning algorithms have been used to analyze different 

physiological signals and gain a better understanding of human physiology for automated 

diagnosis of abnormal conditions. In this manuscript, we provide an overview of deep learning 

approaches with a focus on deep belief networks in electroencephalography applications. We 

investigate the state-of-the-art algorithms for deep belief networks and then cover the application 

of these algorithms and their performances in electroencephalographic applications. We covered 

various applications of electroencephalography in medicine, including emotion recognition, sleep 

stage classification, and seizure detection, in order to understand how deep learning algorithms 

could be modified to better suit the tasks desired. This review is intended to provide researchers 

with a broad overview of the currently existing deep belief network methodology for 

electroencephalography signals, as well as to highlight potential challenges for future research.
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I. Introduction

Over the last decade, automated disease diagnosis has gained a lot of attention among 

artificial intelligence researchers [1]–[6]. The goal of this research is to increase the 

accuracy and the speed of disease diagnosis with the aid of automated computer analysis 

[3,7,8]. This is advantageous in different aspects of healthcare such as early diagnosis and 

decreasing medical expenses in areas that suffer from a lack of professional human resources 
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[3,7,8]. Machine learning is a fast developing branch of artificial intelligence that helps 

machines to learn features from data and process it then to find patterns [9]. Machine 

learning techniques could also be used to analyze new datasets and make predictions about 

the nature of data sources based on old datasets [9,10]. Recently, these methods have been 

used to analyze physiological signals, such as electroencephalography (EEG), 

magnetoencephalography, electrocardiography, blood pressure, and heart rate [11]–[23]. 

However, the focus of our study is on the automated analysis of EEG signals.

EEG is a recording of the electrical activity in the brain [24,25]. EEG can be used as a 

diagnostic tool for several neurological disorders, as well as a practical tool to answer 

neuroscience questions in different research areas; such as psychology or rehabilitation 

[24,26]. The analysis of EEG signals can be challenging due to high levels of noise and high 

data dimensionality [27]–[29]. To deal with these problems, signal processing techniques 

such as filtering and dimensionality reduction methods have been introduced [12,18,28]–

[31]. However, they demand careful execution so as not to remove important details from the 

original signal during processing stages. In addition, many physiological signals are non-

stationary, which means that signal characteristics, such as frequency, change over time 

[15,27,32]–[35]. This makes it difficult to identify characteristics of the process underlying 

signal dynamics solely from patterns of observed time series [15,27,32,33]. There are some 

approaches, such as wavelet transform and time-varying autoregressive models, to help with 

the analysis of non-stationary signals like EEG [32,36,37]. Finally, the ultimate goal for 

automated analysis of EEG signals is for it to be considered as a practical clinical tool by 

producing a classifier with clinically-acceptable levels of accuracy. However, the efficiency 

of the algorithms regarding required execution time and memory is also an important factor, 

and the algorithm’s real-world practicality must also be considered [18,19]. Balancing these 

two conflicting requirements has been an ongoing demand in the field of EEG signal 

research.

In order to analyze EEG signals, one approach is to extract features from the signals in 

different domains [18,19,21], which are selected by data experts or by feature selection 

algorithms, such as principal components analysis (PCA) and independent components 

analysis (ICA) [38,39]. However, these methods are inherently limited by the choices made 

by the researcher, as only the features they manually select are considered. This method is 

also task specific, and changing the input or goals of the analysis will likely change what 

features are best suited for the task. Therefore, an automated feature selection and extraction 

from raw EEG data would be desirable to be less dependent on human expertise and more 

time-efficient [15,40].

Deep learning (DL) is an approach that can learn features purely from data [41]–[43], which 

is advantageous for two reasons. The first advantage is that this method intelligently learns 

features directly from the raw data through several layers in a hierarchical manner [42]–[45]. 

The high number of hidden layers means that deep learning takes into account higher-order 

features and relationships between those features, such that low-level information with 

simple concepts are learned through low layers and high-level information with complex 

concepts are learned at high layers [41]–[44]. The second advantage is that it can be applied 

to unlabeled data by using unsupervised methods [41,44,45], which makes it an applicable 
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method for abundant unlabeled EEG data. Labeling EEG data requires time and expertise, 

whereas unsupervised methods are both time and cost efficient. DL is inspired by the inner 

workings of the human brain, which also exhibits a layered learning structure. Various DL 

architectures such as autoencoder [46]–[48], convolutional deep neural networks [22,48], 

and deep belief networks [11,14,18]–[20] have been applied to EEG data analysis where 

they have been shown to produce advanced results on different tasks.

In this paper, we review recent applications of Deep Belief Network (DBN) method for EEG 

signals. We identify various EEG applications in medicine and describe how DBN methods 

have been applied and modified based on the task desired. We begin by describing some of 

the DBN approaches in order to understand contributions made in the analysis of EEG 

signals. Using this understanding, we then explain the most recent applications of DBN to 

EEG signals.

II. DBN

In general, a Deep Neural Network (DNN) is superficially similar to a simple neural 

network. It contains an input layer and an output layer of ‘neurons’, separated by numerous 

layers of hidden units. However, there are differences in how these networks are trained 

[44,45]. Specifically, the DNN uses unsupervised learning techniques to adjust the weights 

between hidden layers, allowing the network to identify the best internal representation 

(features) of the inputs [45]. This property of DNN enables flexible, high-order modeling of 

the complex and non-linear relationship between the input and output of the network. The 

effectiveness of DNN in learning features and classification has been proven for different 

pattern recognition applications including speech, vision, and natural language processing 

[49]–[54]. These results have led to a new trend in research in automatic pattern recognition 

using DL techniques, although many areas lack the sufficient volume of research that would 

be necessary to make any conclusive declarations.

Despite some breakthroughs, attaining a proper training method for the DNN has been a 

major challenge [55,56]. DNNs have many hidden layers with large numbers of parameters 

that need to be trained. There are two steps for training DNNs. The first step is to randomly 

initialize the feature detection layers [55]. A cascade of generative models, including one 

visible input layer and one hidden layer, should be considered to initialize weights in the 

DNN [55]. These generative models are trained without considering discriminative 

information [43,55]. Finally, the whole DNN is discriminatively trained with the standard 

backpropagation algorithm [42,55]. Studies have shown that the standard gradient-based 

random initialization of network weights performs poorly with a DNN of more than two 

layers [42,55]. As the computational complexity and the large space parameters of a DNN 

with many hidden layers increases, they result in a lower speed of training [42]. Another 

problem associated with a large number, in addition to the low speed of training, is getting 

stuck in local minima which, in most cases, does not lead to desired results [43,55]. On the 

other hand, the machine learning literature has proposed semi-supervised algorithms in 

which an unsupervised pre-training procedure is used as an efficient regularizer to present 

more effective deep learning architectures [42,55]. In this method, the unsupervised pre-

training initializes the parameters in a way such that the optimization process ends with a 
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lower minima of the cost function. The first presented pre-training method is DBN [43,57]. 

Other pre-training methods such as Restricted Boltzmann Machine (RBM) [58] and Deep 

Boltzmann Machines (DBM) have also been presented.

RBMs can serve as a nuclear component of the DNN [44]. A Boltzmann Machine is a 

stochastic neural network where, in simplest terms, there are no discrete ‘layers’ and each 

neuron is bi-directionally connected to every other neuron [44,59,60]. A RBM morphs this 

structure into a more traditional form. It contains a dedicated input and output layers with 

unidirectional connections and no links between neurons of the same layer. A model of such 

a system is presented in Figure 1. This clear relation between input and output layers allows 

for much faster training of the network. A further advantage of the RBM is that it can easily 

be expanded by allowing the output layer of neurons from one RBM to serve as the input 

layer for another RBM. Cascading multiple RBMs in this manner produces a neural network 

with multiple hidden layers, commonly referred to as a DBN [43,44,55], as shown in Figure 

2. While this superficially resembles a multi-layer feed-forward neural network, it differs in 

how the network is trained [42,44]. Specifically, each RBM is added to the network one 

layer at a time, and trained in an unsupervised manner before supervised learning and 

backpropagation are applied to the whole network [43,44,55]. In this method, a DBN is both 

able to self-select relevant features for analysis and is not subject to the impractically long 

convergence times of networks that utilize only back-propagation to modify weights 

between their many layers [60]. The unsupervised learning method commonly employed in 

this context is the contrastive divergence algorithm, which is summarized below.

A RBM has the general form of an energy function for a pair of visible and hidden vectors < 

v, h > with a matrix of weights W related to the connection between v and h as follows [61]:

E(v, h) = − aTv − bTh − vTWh (1)

where a and b are the bias weights for visible units and hidden units respectively. Probability 

distributions of v and h are constructed in terms of E:

P(v, h) = 1
Z e−E(v, h) (2)

where Z is a normalizing constant defined as:

Z = ∑
v′, h′

e−E(v′, h′) (3)

Furthermore, the probability of a vector v equals the sum of the above equation over hidden 

units:
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P(v) = 1
Z ∑

h
e−E(v, h) (4)

Differentiating a log-likelihood of training data with respect to W is computed as follows:

∑
n = 1

n = N ∂logP(vn)
∂W i j

= vih j data
− vih j model

(5)

where 〈.〉data and 〈.〉model indicate expected values in the data or model distribution. The 

learning rules for weights of the network in the log-likelihood-based training data can be 

obtained as [61]:

ΔW i j = ε( vih j data
− vih j model

) (6)

where ε is the learning rate.

Since there is no connection between the neurons at either the hidden or visible layer, 

unbiased samples can be achieved from 〈vihj〉data. In addition, the hidden or visible unit 

activations are conditionally independent given visible or hidden units, respectively [61]. For 

instance, the conditional property of h given v is defined as:

P(h |v) = ∏
j

P(h j |v) (7)

where hj ∈ {0, 1} and the probability of hj = 1 is:

P(h j = 1|v) = σ(b j + ∑
i

viWij) (8)

where σ is logistic function defined as:

σ(x) = (1 + e−x)−1
(9)

Similarly, the conditional probability of vi = 1 is computed as:

P(vi = 1|v) = σ(ai + ∑
i

W i jh j) (10)
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In general, unbiased sampling from 〈vihj〉 is not straightforward, but it becomes applicable 

by first sampling a reconstruction of the visible units from hidden units and then using Gibbs 

sampling in multiple iterations [61]. By applying Gibbs sampling, all hidden units are 

updated in parallel using equation (8), and in following, visible units are updated using 

equation (10). Finally, the proper sampling from 〈vihj〉 could be achieved by computing the 

expected value of multiplying the updated values for hidden and visible units. Sigmoid 

equations (8) and (10) allow one to use the RBM weights to initialize feedforward neural 

networks with sigmoid hidden units.

It should be mentioned that there are several supervised and unsupervised algorithms used 

for the DL method, but this paper puts focus on only DBN, since it is a common algorithm 

used for EEG classification.

III. EEG

The general workflow of EEG application in medicine includes EEG data acquisition, 

preprocessing of EEG data by applying simple and/or advanced signal processing 

techniques, extracting features manually or automatically using DL methods, and finally 

applying classifiers for desired events or tasks. Figure 3 demonstrates the flowchart for this 

procedure. In the next subsections, three applications of DBNs for EEG data in medical 

applications will be described, including emotion recognition, seizure detection, and sleep 

stage classification.

A. Emotion recognition

Emotions are, arguably, one of the core aspects of human consciousness [62,63]. While such 

concepts are relatively simple to understand, being able to measure or quantify such high-

level brain activity is an incredibly complex task that has yet to be solved in a meaningful 

fashion. However, there have been smaller scientific advances in this regard. Various 

commercial applications, such as monitors of attentiveness or enjoyment, have been 

proposed to improve the functionality of consumer devices [64]–[66]. Meanwhile, in the 

medical field, it has been proposed that monitoring a patient’s emotional state would be a 

great benefit to diagnosing or treating diseases [67,68]. As a result, efforts have been made 

to develop a technique to monitor these conditions in a person.

Humans express emotions, both voluntarily and involuntarily, in a variety of different ways 

including facial expressions, body gestures, voice, and physiological factors such as heart 

rate and blood pressure [69]–[74]. Therefore, there are several types of data sources such as 

speech, text, facial expression, body movement, and physiological measurement like EEG, 

finger temperature, skin conductance level, heart rate, and muscle activity [11,13,14,69]–

[73]. There is a mass of emotion data for speech, text, and facial expression as these are 

details that can be easily gathered from devices used by people on a daily basis, such as 

cellphones and computers [75,76]. On the other hand, physiological signals can also be a 

good source of information since they could be collected continuously without participants 

interfering [77,78]. In addition, individuals can control factors like facial expression, text, 

and speech, but they cannot control physiological factors like heart rate or blood pressure 

[77,78]. However, recording physiological data is not convenient as it requires special 
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sensors and equipment that may not be commonly available, or may exist only in the 

laboratory setting. Recently, several companies have provided small portable bio-sensors to 

assess human emotions based on different physiological indices of heart rate, skin 

conductance responses, skin temperature, respiration rate, and even EEG. Here, we can 

name two of these bio-sensors: ‘Affectiva’ by MIT Media Lab [79] and ‘Emotive Headset’ 

by the Emotive company [79,80], as shown in Figure 4. Yet, the extent of physiologically 

informative data is limited in comparison with other information sources for the assessment 

of human emotions, such as text sources.

One source of data for emotion recognition that many studies have been acquired data from 

is the DEAP study [81]. In the DEAP study, EEG data (32 channels) and several peripheral 

physiological signals (8 channels), such as skin temperature, electrocardiogram, blood 

volume, electromyograms of Zygomaticus and Trapezius muscles, and electrooculogram 

(EOG) of 32 subjects were recorded while watching forty-minute long music videos clips. 

Participants then rated each video in terms of arousal, valence, like/dislike, dominance, and 

familiarity. In addition to the DEAP dataset, each researcher might design their own emotion 

recognition experiment. For instance, Zheng [13,14] used recorded EEG from subjects 

showing 12 clips to categorize emotions into positive and negative emotions.

The focus of this study is on emotion recognition based on EEG data. Features extracted 

from EEG signals can vary from simple statistical features such as mean and standard 

deviation to more complex features such as entropy rate and lempel-ziv complexity. For 

instance, some common extracted features from EEG signals for emotion recognition are 

computed in terms of frequency domain. As EEG has higher energy in low frequencies than 

in high frequencies, studies have shown that differential entropy would be a good choice to 

discriminate EEG patterns within low and high frequency energy [14].

The general theme of learning emotions is first feeding the algorithms tens of thousands 

examples of computed features from recorded EEG data in different emotions such as 

happiness, sadness, stress, etc., from individuals of different genders, cultures, ethnicities, 

and ages. Then, by using DL method, algorithms look for common characteristics of each 

emotion within the dataset, such as smiling as a characteristic of happiness. In this way, 

machines learn to recognize different emotions by using their characteristics and thus 

become able to recognize discrete emotions in unfamiliar EEG data sets.

Although there is a plenitude of features for each EEG data sample that can be used for 

emotion recognition, there is a lack of labeled EEG data for emotions as it is challenging to 

effectively label emotional experiments. This problem makes applying solely supervised 

learning inefficient for emotion recognition. Another problem is related to noisy EEG data. 

Here, ‘noisy’ refers to the effect of irrelevant EEG channels on recognition of emotion in 

EEG-based emotion recognition. In order to solve these two problems, Kang Li et al. [11] 

and Xiaoyi Li et al. [16,17] applied a DL architecture using DEAP dataset to learn emotions. 

They trained a two-layer DBN to extract high-level features and then applied a 

discriminative RBM upon the second hidden layer. In this way, by applying DBN to each of 

EEG channels, as shown in the Figure 5, low and latent features of EEG data were extracted 

to solve the problem of insufficient labeled data. Moreover, to deal with the noisy EEG data, 
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the response of the zero-stimulus of each channel on the trained DBN is calculated to choose 

the critical channels for emotion recognition. In addition, to optimize the hyperparameters, 

Xiaoyi Li et al. [16] tried various combinations of parameters using training data to find the 

best combinations with the minimum recognition error. In one experiment, both the EEG (32 

channels) dataset and peripheral physiological signals (8 channels) from DEAP dataset were 

fed into the DBN and its performance was compared to KNN, which demonstrated that the 

DBN is more capable of recognizing emotions. In another experiment, the DBN was applied 

only to EEG signals to compare the features extracted automatically using a DBN to those 

extracted with traditional manual extraction techniques. For DBN features, data from each 

EEG channel, 32 channels at 128 Hz for each subject, were fed into the DBN, while for the 

manual method, the PSD of EEG signals were computed. In order to compare the DBN 

features and PSD features, the SVM classifier with RBF kernel was implemented on both 

features. The outcome showed that feeding the raw EEG data into the DBN in order to learn 

effective features is as effective as manually selecting features for learning. Furthermore, 

Zheng et al. [14] applied DL models on differential entropies extracted from EEG signals to 

classify two emotions. He trained two DBN models with two hidden layers each and a DBN 

Hidden Markov Model (HMM). In doing so, he combined the DBN with HMM to form a 

static classifier with the potential of learning dynamic sequential patterns in human 

emotions. The results showed a slight improvement of accuracy in DBN models in 

comparison with KNN, SVM, and graph regularized Extreme Learning Machine (GELM) 

methods. In his next study [13], he added neutral to emotion categories and compared 

performance of the DBN model with KNN, LR, and SVM. DBN showed the best average 

accuracy of 86.08%. He also investigated the best channels and frequency bands for EEG-

based emotion recognition and determined them to be the lateral temporal and prefrontal 

channels and beta and gamma bands, respectively [82]. The summary of all emotion 

recognition studies is presented in Table 1.

B. Seizure detection

Epilepsy, or seizure disorder, is a common neurological disease, which affects approximately 

50 million people globally including 3 million Americans [83,84]. Epilepsy is characterized 

by recurring seizures which are unpredictable interruptions of normal brain function [85]. 

Seizures can be induced by a number of different factors such as primary central nervous 

system (CNS) dysfunction, metabolic disorders, or a high fever [86]–[88]. Epilepsy may 

occur alongside cerebral palsy, cognitive impairments, developmental disabilities, and 

autism. There are several clinical assessment tools for epilepsy including CT, MRI, and 

EEG. The focus of this paper is on EEG data, which enables tracking the electrical activity 

of brain. Most of the time, various EEG rhythmic patterns can be seen in the beginning of 

seizures, as shown in Figure 6. EEG can be used for epilepsy as a diagnostic tool to support 

diagnosis, classify seizures, as well as a prognostic tool to adjust anti-epileptic treatment.

Automated EEG-based seizure identification and classification is a challenging task as 

seizure patterns are very specific for each patient [15]. This is in addition to the 

complications brought by the inherently non-stationary nature of EEG signals [15]. So far, 

several classifiers have been applied to EEG data for seizure detection such as SVM and 

KNN [89,90], but the accuracies obtained from these classifiers are far from the high 
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accuracy required for clinical use. DL has been proposed as an improved method for seizure 

detection in this context, as it is able to operate on raw EEG data inputs rather than 

performing only a narrow statistical interpretation of data as in the other techniques. Studies 

employing DL methods will be discussed later in this section.

Turner [18] and Page et al. [19] compared performance of different machine learning 

algorithms, including DBN, KNN, SVM, and logistic regression, for seizure detection using 

multi-channel EEG data. They emphasized the performance of algorithms, beyond the 

accuracy factor, including the computational complexity and memory requirements, given 

that the techniques will be implemented with wireless low-power embedded sensors. They 

extracted several features such as mean energy and average peak amplitude from EEG data 

of 23 channels at any given seconds. They then fed extracted features into both a DBN and 

several classifiers to compare the results. In the DBN case, they applied logistic regression 

as a classifier to the output of the DBN, as shown in Figure 7. The results showed that the 

logistic regression performed best with regard to complexity and accuracy when data from 

the same patient is used for both training and testing. However, in the situation where data 

from all patients except for one is used for training the model, and the excepted patient is 

then used as the test subject, the DBN showed the best results. However, adding a DBN 

stage to the system will increase both its memory and computational expense. Furthermore, 

Page et al. [19] justified the DBN model as a way to use multiple channels of data to 

determine the classification of one second of EEG, instead of using only one channel of 

EEG, by applying stacked denoising autoencoders on raw data before running the DBN. The 

summary of all seizure detection studies is presented in Table 2.

C. Sleep stage classification

Sleep is needed for human survival, along with food, water, and oxygen [91]–[94]. Sleeping 

disorders have physiological consequences such as hypertension, diabetes, and depression 

[91,94,95]. Over 70 million Americans suffer from disorders of sleep and wakefulness [91]. 

To diagnose sleeping disorders, a sleep study called a polysomnographic (PSG) is used to 

evaluate patients’ sleeping [96,97]. A PSG usually includes all-night recording of EEG, 

electrooculogram (EOG) and electromyogram (EMG) at a hospital or at a sleep center. 

These recordings are then divided into short epochs of 20 to 30 seconds and scored by an 

expert based on one of the standard sets of criteria published by Rechtschaffen and Kales 

(R&K) [96] or the American Academy of Sleep Medicines (AASM) [97]. The R&K criteria 

consider two sleep stages which include non-rapid eye movement (NREM) and rapid eye 

movement (REM). NREM has four stages ranging from S1 to S4. However, because the 

characteristics of S3 and S4 are very similar to each other, AASM considers these two stages 

as one stage of slow wave sleep (SWS) [97]. The manual scoring of sleeping by trained 

experts is a time-consuming and demanding procedure. In addition, it is subjective and 

depends on the skill and experience of the scoring individuals. Therefore, developing a 

system of automated scoring would be beneficial, as it would require less time and would 

result in more unilaterally accurate scoring.

So far, many studies have developed algorithms for automated sleep scoring [21], such as the 

SVM and neural network approaches, which rely primarily on manual extraction of features 
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from the signal. However, there is no general agreement between studies on which specific 

features are most applicable in the identification of a given sleeping disorder. Therefore, DL 

architecture has been recently considered as a new method to obtain latent information from 

PSG recordings. Langkvist et al. [20] and Zhang et al. [21] applied DBNs to EEG, EOG, and 

EMG signals in order to classify sleep stages. In both studies signals were preprocessed 

using notch filtering at 50 Hz to attenuate the power line disturbances, downsampling, and 

band-pass filtering. Langkvist et al. [20] conducted a 2-layer DBN with 200 hidden units in 

both layers and a HMM for validation of learned features. Their results showed that the 

DBN method increased the accuracy of sleeping classification by approximately 3% when 

compared with the handcrafted results. They also concluded that for multimodal signals such 

as PSG, it would be best to allocate separate DBNs for each of the signals and then to 

combine them using a secondary DBN at the top in order to achieve the highest accuracy. In 

this way, it is also possible to find out which signals provide better information regarding 

sleeping stages classification. On the other hand, Zhang et al. [21] applied the sparse version 

of DBN (SDBN) shown in Figure 8, as they believed that sparse models would be able to 

learn complex features from biological signals. They also used a voting principle based on 

classification entropy using combination of classifiers including SVM, KNN, and HMM. 

Their process attained a 91.31% accuracy. The summary of all sleep stage classification 

studies is presented in Table 3.

IV. Discussion and future work

Experts have studied artificial neural networks for decades. The goal of this paper is not to 

show all approaches in this area, but to highlight one approach, deep learning (DL), that has 

demonstrated success in different applications, including automated classification of 

physiological signals. DL describes a neural network that has multiple hidden layers and can 

therefore create a much more effective inner representation of the data. This also allows it to 

identify relationships between higher-order features without the drawbacks encountered in 

other methods. Moreover, it is more flexible about which data are used as its input when 

compared with traditional machine learning methods, and is therefore better suited for 

unsupervised learning. Consequently, DL has the potential to make automatic analysis of 

physiological signals like EEG more accurate and less dependent on manual human analysis 

for either diagnosis or network training. However, there are several challenges to reach this 

point, as DL is a new approach with many open questions. In the following section, we will 

discuss some of the challenges to automated analysis of EEG data and how DL algorithms 

deal with them.

One of the challenges is dealing with multivariate data, such as multiple channels of EEG or 

a combination of multimodal physiological signals like EEG, skin temperature, and blood 

volume. Using multivariate data is advantageous as it can improve the accuracy of 

classification performance by interpreting multiple sources of data simultaneously. For 

instance, Page et al. [19] and Langkvist et al. [20] have applied DBNs on multi-channels 

signals from EEG and PSG (which includes EEG, EOG, and EMG) respectively, to classify 

seizures and sleep stages. The results of several studies have demonstrated good accuracy in 

classification using multimodal signals. The open question concerns what is the best 

optimized algorithm to combine these multi-modal information sources in order to achieve 
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the most accurate result. In addition, it is critical to find out which physiological sources 

provide discriminative information regarding specific task classification. Langkvist et al. 
[20] have demonstrated that to reach a high accuracy for multimodal signals, it would be 

better to apply separate DBNs for each signal and then combine their outputs with a 

secondary DBN. In this way, it is possible to figure out which physiological signal provides 

the most discriminative information regarding specific task classification.

Another challenging concern is how to deal with an enormous amount of EEG data. For 

instance, a time-series sample of EEG data including 256 readings per second from 23 

channels for several minutes, results in a large amount of data, which makes them difficult to 

deal with. One approach is to project the data to a smaller number of features, which 

appropriately describe the data. Based on the desired task for classification, various features 

might be extracted from EEG signals. This method relies on the data scientist’s expertise. In 

addition to the importance of choosing proper features, the number of extracted features is 

another critical point. Extracting many features from a small amount of data could lead to 

overfitting, whereby algorithms learn the training data instead of learning the dominant 

tendencies in the data. To overcome these problems, DL offers unsupervised algorithms to 

automatically select and extract features directly from data. In this way, the most relevant 

information can be extracted from the data, while the dependency on manual analysis is also 

decreased. As an example, Kang Li et al. [11] and Xiaoyi Li et al. [16] extracted hidden 

features from EEG data by applying DBN to each of EEG channels for emotion recognition. 

Results from different studies have demonstrated good performance for automated extraction 

of features using DL algorithms in regard to the classification accuracy.

The final goal of the automated analysis of EEG signals is to be implemented as a practical 

medical diagnostic tool in large-scale clinical settings. To reach this goal, it is necessary to 

boost the practicality of algorithms by improving both their accuracy and computational 

efficiency/complexity. Therefore, the complexity of DBN classifier algorithms is a critical 

point that needs to be addressed in subsequent studies. For instance, Turner et al. [18] and 

Page et al. [19] compared the complexity of DBN with other algorithms such as logistic 

regression, KNN, and SVM. They showed that computational complexity and memory were 

increased by DBN in comparison with logistic regression, although DBN provided higher 

accuracy. Therefore, there is still a need to investigate how to best improve the efficiency of 

algorithms to fill the gap between the academic and practical uses of DL algorithms.

We can conclude that challenges need to be addressed in future studies for one desired 

generalized DL method applicable to EEG classification that could satisfy three demanded 

conditions. First, it could handle multivariate EEG signals from different channels and 

advanced level multimodal physiological signals, such as EEG combined with heart rate or 

blood pressure measurements. Second, it could be generalized for any specific desired tasks 

such as sleep stage classification, seizure detection, and emotion recognition to save time 

and effort that would otherwise be needed to design a specific algorithm for each task. 

Lastly, it is critical to find an efficient algorithm that satisfies the time and memory 

requirements for practical usage of EEG classification in clinical settings.
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Finally, it should be mentioned that there are several problems concerning the review of 

papers focusing on DBN methods and their applications to EEG signals. As the field is new, 

standards of analysis and experimentation have not been established. This makes it difficult 

to draw clear conclusions when comparing studies that might even be investigating identical 

conditions. Furthermore, these mathematically-focused contributions do not always control 

for physiological variables when obtaining data for classification. This issue is further 

exacerbated by the relatively a small amount of data that are typically used for these 

experiments, and a lack of sufficient details when reporting on how the data were obtained.

V. Conclusion

The development of DBN algorithms provides better data modeling and task classification 

for EEG data. In this paper, we reviewed studies that modified DBN algorithms in several 

EEG applications to reach a higher accuracy of feature extraction and classification 

processes. However, there is still a need for investigations to improve DBN algorithms in 

order to deal with challenges such as multimodal data, large datasets, and computational 

complexity issues.
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Fig. 1. 
RBM: an undirected graphical model that includes one layer of hidden units (h) and one 

layer of visible units (v).
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Fig. 2. 
DBN: an example of DBN with one visible layer (v) and three hidden layers (h1, h2, h3).
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Fig. 3. 
The general workflow of EEG application in medicine
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Fig. 4. 
Emotion measurement technology: (right picture) Affectiva by MIT’s Media Lab works 

based on facial cues or physiological responses; (left picture) Emotiv by Emotive Systems is 

an Australian electronics company developing brain-computer interfaces based on 

electroencephalography (EEG) technologies. We thank Emotiv Inc. and Affectiva for their 

permissions to use their images.
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Fig. 5. 
Architecture of unsupervised feature learning and classification that was used in [16] for 

emotion recognition.
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Fig. 6. 
An example of a seizure pattern in the scalp EEG data of a patient in [15]. The dashed red 

line indicates the onset of seizure. We thank IEEE for providing a permission to use this 

figure, which was originally published in A. Supratak, L. Li, and Y. Guo, “Feature extraction 

with stacked autoencoders for epileptic seizure detection,” in Proc. 36th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 
2014), Chicago, IL, USA, Aug. 26–30, 2014, pp. 4184–4187.
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Fig. 7. 
Flow diagram of the experiments for seizure detection in [18]. In this method, extracted 

features from raw EEG signals are fed directly into several classifiers and also into the DBN, 

and then logistic regression is used as a classifier. We thank for providing us with a 

permission to reproduce this figure, which was originally published in “Deep belief 

networks used on high resolution multichannel electroencephalography data for seizure 

detection,” by J. Turner, A. Page, T. Mohsenin, and T. Oates, in Proc. AAAI Spring 
Symposium Series, Palo Alto, California, USA, Mar. 24–26, Copyright ©2014, Association 

for the Advancement of Artificial Intelligence.
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Fig. 8. 
Flowchart of the multi-parameter sleep-staging method in [21]. Three signals of EEG, EOG, 

and EMG are fed into the sparse version of DBN (SDBN) to extract features automatically 

from input signals, after preprocessing. Then, several classifiers are applied to the output of 

SDBN. In the last step, a voting principle based on classification entropy is used to classify 

sleep stages.
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