
DEEP BELIEF NETWORKS FOR I-VECTOR BASED SPEAKER RECOGNITION

Omid Ghahabi, Javier Hernando

TALP Research Center, Department of Signal Theory and Communications
Universitat Politecnica de Catalunya, Barcelona, Spain

{omid.ghahabi, javier.hernando}@upc.edu

ABSTRACT

The use of Deep Belief Networks (DBNs) is proposed in this
paper to model discriminatively target and impostor i-vectors
in a speaker verification task. The authors propose to adapt
the network parameters of each speaker from a background
model, which will be referred to as Universal DBN (UDBN).
It is also suggested to backpropagate class errors up to only
one layer for few iterations before to train the network. Ad-
ditionally, an impostor selection method is introduced which
helps the DBN to outperform the cosine distance classifier.
The evaluation is performed on the core test condition of the
NIST SRE 2006 corpora, and it is shown that 10% and 8%
relative improvements of EER and minDCF can be achieved,
respectively.

Index Terms— Speaker Recognition, i-vector, Deep Be-
lief Network, Neural Network

1. INTRODUCTION

Even though the task of speaker recognition has been inves-
tigated for several decades, new approaches are still being
explored. The i-vector framework recently developed in [1]
is an effective factor analysis method for the compact repre-
sentation of the speaker useful information. The framework
maps every speaker utterance to a low dimensional identity
vector. The target and test i-vectors can then be compared ef-
fectively using the cosine distance metric [1]. There are also
some post-processing techniques to compensate speaker and
session variabilities (eg., [1][2][3][4]) and, therefore, to in-
crease the overal performance of the system.

On the other hand, Deep Belief Networks (DBN) have
recently opened a new research line in image, audio, and
speech processing areas (eg., [5][6][7] [8][9]). DBNs are
originally generative networks which can be trained by a
greedy layer-wise algorithm using Restricted Boltzmann Ma-
chines (RBMs) [10][11]. However, by adding a top label
layer and using a standard backpropagation algorithm, these
generative DBNs can be converted to discriminative ones
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what is often called a pre-trained discriminative network
[11][12].

Acoustic modeling using DBNs has been shown to be ef-
fective in speech recognition [5][13][12] [14]. However, few
attempts using only RBMs [15][16] or generative DBNs [17]
have been carried out in speaker recognition area. In this
paper, we propose to use both generative and discriminative
DBNs. We take the advantage of the unsupervised learning
to model a global DBN which will be called Universal DBN
(UDBN) in this paper and the advantage of the supervised
learning to model each target model discriminatively. In ad-
dition, by using i-vectors as inputs to the network, DBNs will
be combined with the recent successful i-vector approach.

Two main ideas will be employed in this paper to make
such a structure efficient for speaker recognition. Firstly,
with a proposed impostor selection method and clustering,
the number of impostor i-vectors are decreased to provide
a balanced training. Secondly, a UDBN-adaptation method
is proposed to initialize the network parameters. It will be
shown that the proposed adaptation method outperforms both
random and pre-training initializations.

The rest of the paper is organized as follows. Sections 2
and 3 review respectively the i-vector framework and the
background of DBN. The proposed method is described in
details in Section 4. Section 5 presents the experimental setup
and results. And section 6 concludes the paper.

2. I-VECTOR EXTRACTION

This section has a brief overview on the i-vector framework
developed in [1]. Given the centralized Baum-Welch statistics
from all available speech utterances, the low rank total vari-
ability matrix (T ) is trained in an iterative process. This ma-
trix tries to capture all kinds of variabilities, including speaker
and session variabilities, appeared in training utterances. The
training process assumes that an utterance can be represented
by the Gaussian Mixture Model (GMM) mean supervector,

M = m+ Tω (1)

where m is the speaker- and session-independent mean su-
pervector from the Universal Background Model (UBM), and
ω is a low rank vector referred to as the identity vector or
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Fig. 1: RBM (a) and RBM training (b).
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Fig. 2: Generative (a) and discriminative (b) DBNs.

i-vector. The supervector M is assumed to be normally dis-
tributed with the mean m and the covariance TT t, and the
i-vectors have a standard normal distribution N (0, 1). Ex-
tracting an i-vector from the total variability subspace is es-
sentially a maximum a-posterior adaptation of ω in the space
defined by T . These i-vectors are named raw i-vectors as they
are not post-processed by any techniques. More details can
be found in [1].

3. DEEP BELIEF NETWORKS

DBNs are originally probabilistic generative models with
multiple layers of stochastic hidden units above a layer of
visible variables. There is an efficient greedy layer-wise al-
gorithm for learning DBNs [11]. The algorithm treats every
two adjacent layers as an RBM (Figs. 1a and 2a). The output
of each RBM is considered as the input to its above RBM.
RBMs are constructed from a layer of binary stochastic hid-
den units and a layer of stochastic visible units (Fig. 1a).

Training an RBM is based on an approximated version
of the Contrastive Divergence (CD) algorithm [10][11] which
consists of three steps (Fig. 1b). At first, hidden states (h) are
computed given visible states (v), then given h, v is recon-
structed, and in the third step h is updated given the recon-
structed v. Finally, the change of connection weights is given
as follows,

∆wij ≈ −α (〈vihj〉data − 〈vihj〉recon) (2)

where α is the learning rate, wij represents the weight be-
tween the visible unit i and the hidden unit j, 〈.〉data and
〈.〉recon denote the expectations when the hidden state val-
ues are driven respectively from the input visible data and
the reconstructed data. Actually, the training process tries
to minimize the reconstruction error between the actual in-
put data and the reconstructed one. The parameter updating
process is iterated until the algorithm converges. Each iter-
ation is called an epoch. It is possible to perform the above
parameter update after processing each training example, but

it is often more efficient to divide the whole input data (batch)
into smaller size batches (minibatch) and to do the parameter
update by an average over each minibatch. More theoretical
and practical details can be found in [10][11][18].

When the unsupervised learning is finished, by adding a
label layer on top of the network and doing a supervised back-
propagation training, it can be converted to a discriminative
model (Fig. 2b). In other words, the unsupervised learning
can be considered as a pre-training for the supervised stage.
It has been shown [11] that this unsupervised pre-training can
set the weights of the network to be closer to a good solution
than random initialization and, therefore, avoids local minima
when using supervised gradient descent.

4. PROPOSED DBN-BASED APPROACH

The idea is to model discriminatively the target and impostor
i-vectors by a DBN structure. As illustrated in Fig. 3, the
proposed method is composed of three main parts which will
be described in details as follows.

4.1. Impostor Selection and Balanced Training

As the speaker models in the proposed method will be finally
discriminative, they need both positive and negative data as
inputs. However, the problem is that the amount of posi-
tive and negative data are not balanced in this case. There
is only one target i-vector as the positive sample and there
are many impostor i-vectors as the negative ones. Training a
network with such highly unbalanced data will yield overfit-
ting. To avoid this, the number of impostors is reduced in two
steps (Fig. 3).

Firstly, among a large number of impostors only the most
informative ones are selected. The selection method is in-
spired from a Support Vector Machine (SVM)-based tech-
nique proposed in [19]. The following pseudocode shows
how our selection method works,

1. For each client i-vector st ∈ S,

(a) Compute score
(
st, bm|Mm=1

)
,

(b) Choose the first n highest scores and add their
corresponding impostor indexes to a set namedH

2. Compute the histogram of H and sort it descendingly,
3. Choose the first k impostors as the selected ones.

where score
(
st, bm|Mm=1

)
is the cosine score between st and

all impostors in the large dataset B. The parameters n and k
represent, respectively, the number of the closest impostors
to each target and the statistically closest ones to all available
targets. They will be determined experimentally in section 5.

Secondly, as the number of selected impostors is still high
in comparison to the number of target i-vectors, they are clus-
tered by the k-means algorithm using the cosine distance cri-
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Fig. 3: Block-diagram of the proposed method.

teria. The centroids of the clusters are used as the final nega-
tive samples.

On the other hand, the target i-vector is repeated as many
as the number of impostor centroids. The repeated target i-
vectors will not act exactly the same as each other due to
the sampling noise created in the pre-training process of the
network [18]. Moreover, in both adaptation and supervised
learning stages (sections 4.2 and 4.3), the repeated versions
make the target and impostor classes having the same weights
when the network parameters are being updated. Once the
number of positive and negative samples are balanced, they
are divided equally among minibatches. The optimum num-
bers of impostor clusters and minibatches will be determined
experimentally in section. 5.

4.2. Universal DBN (UDBN) and Adaptation

Unlike the conventional neural networks that need the labeled
data to be trained, DBNs do not necessarily need such labeled
data as inputs. Actually, they have the ability to be trained un-
supervisingly [11][10]. Hence, they can be used for training a
global model called in this paper UDBN. By feeding many i-
vectors from different background speakers, a UDBN can be
trained. The training is carried out layer by layer using RBMs
as described in section 3.

In general, neural network parameters are initialized ran-
domly. As it was mentioned in section 3, it is shown that
the pre-trained parameters can be a better initialization for
training a network. However, when a few numbers of input
samples are available, just pre-training will not be enough to
achieve a good model. In this case we adapt the UDBN pa-
rameters to the new data of each speaker including both target
and impostor samples obtained in section 4.1. The adaptation
is carried out by pre-training each network initialized by the
UDBN parameters. To pre-train, only a few numbers of it-
erations (epoch) are used, otherwise the network will be led
to overfitting. In section 5 it will be shown that the proposed
adaptation process outperforms both the conventional random
initializing and pre-training started from random numbers.

4.3. Fine-tuning

Once the adaptation process is completed, a label layer is
added on the top of the network and the stochastic gradient
descent backpropagation is carried out on each minibatch as
the fine-tuning process. The softmax and the logistic sigmoid
will be the activation functions of the top label layer and the

rest hidden layer units, respectively. The connection weights
between the top label layer and its hidden layer bellow will be
initialized by small random numbers (N (0, 0.01)).

To minimize the negative effect of using random numbers,
we pre-train the top layer as well. Pre-training is performed
by only one layer error backpropagating for a few iterations.
Then a full backpropagation will be carried out on the whole
layers. If the input labels in the training phase are chosen as
(l1 = 1, l2 = 0) and (l1 = 0, l2 = 1) for target and impostor i-
vectors respectively, the final output score in the testing phase
will be computed in a Log Likelihood Ratio (LLR) form as
follows,

LLR = log(o1)− log(o2) (3)

where o1 and o2 represent respectively the output of the first
and the second units of the top layer. LLR computation helps
to gaussianize the true and false score distributions which can
be useful for score fusion. In addition, to make the fine-tuning
process more efficient a momentum factor is used to smooth
out the updates, and the weight decay method is used to pe-
nalize large weights.

5. EXPERIMENTAL RESULTS

This section gives the details of the databases, the baseline
and the proposed DBN-based setups emphasizing on the ef-
fect of each main idea proposed in section 4.

5.1. Baseline setup

Features used in the experiments are Frequency Filtering (FF)
features [20] extracted every 10 ms using a 30 ms Hamming
window. The number of static FF features is 16 and together
with delta FF and delta energy, they make 33-dimensional
feature vectors. Before feature extraction, speech signals are
subjected to an energy-based silence removal process.

The whole core test condition of the NIST 2006 SRE eval-
uation [21] is used in all experiments. It includes 816 tar-
get models and 51,068 trials. The signals have around two
minutes of speech. Performance is evaluated using the Equal
Error Rate (EER) and the minimum Decision Cost Function
(minDCF) calculated using CM = 10, CFA = 1 and PT =
0.01.

The i-vectors in all the experiments are 400-dimensional
raw i-vectors. Raw i-vectors are compared in the baseline sys-
tem using the cosine distance classifier. The i-vector frame-
work is carried out using the ALIZE open source software
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Fig. 4: Generative (a) and discriminative (b) 1-layer DBN structures
used in the experiments.
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Fig. 5: Determination of the parameters n and k defined in sec. 4.1.

[22]. The UBM and the T matrix are trained using more than
6,000 speech files collected from NIST 2004 and 2005 SRE
corpora. It is worth noting that in the case of NIST 2005 only
the speech files of those speakers which do not appear in NIST
2006 database are collected. The gender-independent UBM is
represented as a diagonal covariance, 512-component GMM.

5.2. Proposed DBN setup

Figure 4 illustrates the generative and discriminative DBNs
used in the experiments. As it is shown in this figure, only
one hidden layer networks are explored in this paper. The
hidden layer has 512 units.

Experimentally, the number of minibatches and the num-
ber of impostor clusters are set respectively to 3 and 12. Each
minibatch will include four impostor centroids and four re-
peated target samples.

The background i-vectors (Fig. 3) are extracted from the
same speech files used for training the UBM and the T matrix.
Fig. 5 illustrates the variability of EER in terms of the two pa-
rameters n and k defined in sec. 4.1. The same behavior can
be observed for minDCF. The figure shows that the minimum
EER is obtained when n = 50 and k = 1500. UDBN is
trained with the same background i-vectors of the impostor
database. As the input i-vectors are real-valued, a Gaussian-
Bernoulli RBM [18][12] is employed. Since the minimum di-
vergence training algorithm [23] is used in the i-vector extrac-
tion process, i-vectors are already zero-mean unit-variance
Normal distributed and, therefore, no post-processing is car-
ried out. The learning rate (α), number of epochs (NofE),
momentum, and weight decay are set respectively to 0.012,
50, 0.9, and 0.0002.

The generative parts of the speaker models (Fig. 4a) are
initialized by the UDBN parameters and then are pre-trained
with α = 0.05 and NofE = 25. The momentum and weight

Table 1: Results obtained on the core test condition of NIST SRE
2006 evaluation. (Imp: Impostor dataset, Init: Network initializa-
tion, T-L Init: Top layer initialization, F: Full, S: Selected, R: Ran-
dom, P: Pre-training, A: Adaptation, CD: Cosine Distance).

Setup Imp Init T-L Init EER (%) minDCF
Baseline

(i-vector+CD) - - - 7.18 0.0324
i-vector+DBN 1 F R R 8.80 0.0381
i-vector+DBN 2 S R R 8.29 0.0354
i-vector+DBN 3 S P R 7.62 0.0336
i-vector+DBN 4 S A R 7.04 0.0353
i-vector+DBN 5 S A P 6.44 0.0299

decay values are kept the same as in UDBN. The top con-
nection weights are initialized by N (0, 0.01) and pre-trained
with α = 1 and NofE = 15 before the whole backpropagation
is performed. The momentum is started by 0.4 and is scaled
up by 0.1 after each epoch (up to 0.9). The whole backprop-
agation is then carried out with α = 1, NofE = 30, and a
fixed momentum of 0.9. The weight decay for both top layer
pre-tarining and the whole backpropagation is set to 0.0012.

5.3. Results

Table 1 compares the results of the different configurations of
the proposed DBN-based structure with the baseline system.
Moreover, it shows the influence of each main contribution
proposed in sec. 4. For each DBN configuration the learning
rates are tuned and the best results are reported in the table.
The two first DBN configurations show the effectiveness of
the proposed impostor selection method. The influence of the
network initialization type is shown in the configurations 2-4.
Comparing these configurations shows that the pre-training
method outperforms the conventional random initialization
and the proposed adaptation method is the best. Finally, the
last structure including all three proposed ideas shows that
the introduced DBN can achieve respectively 27% and 22%
relative improvements of EER and minDCF in comparison
with the conventional network (the first DBN configuration).
In addition, the proposed DBN configuration can outperform
the baseline system, in which the raw i-vectors are compared
using cosine distance criteria, with relative improvements of
10% and 8% for EER and minDCF, respectively.

6. CONCLUSION

The authors proposed to model discriminately target and im-
postor i-vectors using Deep Belief Networks (DBNs). The
proposed adaptation method can adapt the network param-
eters of each speaker from a generative background model
which has been called Universal DBN (UDBN). Moreover,
the proposed impostor selection and balanced training method
helped the DBN structure to outperform both conventional
neural networks and the cosine distance classifier.
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