
DEEP BI-DIRECTIONAL RECURRENT NETWORKS OVER SPECTRAL WINDOWS

Abdel-rahman Mohamed, Frank Seide, Dong Yu, Jasha Droppo, Andreas Stolcke, Geoffrey Zweig, Gerald Penn∗

Microsoft Research, ∗University of Toronto

ABSTRACT

Long short-term memory (LSTM) acoustic models have recently

achieved state-of-the-art results on speech recognition tasks. As a

type of recurrent neural network, LSTMs potentially have the ability

to model long-span phenomena relating the spectral input to linguis-

tic units. However, it has not been clear whether their observed per-

formance is actually due to this capability, or instead if it is due to a

better modeling of short term dynamics through the recurrence. In

this paper. we answer this question by applying a windowed (trun-

cated) LSTM to conversational speech transcription, and find that a

limited context is adequate, and that it is not necessaary to scan the

entire utterance.

The sliding window approach allows not only incremental (on-

line) recognition with a bidirectional model, but also frame-wise ran-

domization (as opposed to utterance randomization), which results in

faster convergence.

On the SWBD/Fisher corpus, applying bidirectional LSTM

RNNs to spectral windows of about 0.5s improves WER on the

Hub5’00 benchmark set by 16% relative compared to our best

sequence-trained DNN. On an extended 3850h training set that that

also includes lectures, the relative gain becomes 28% (Hub5’00

WER 9.2%). In-house conversational data improves by 12 to 17%

relative.

Index Terms— Recurrent networks, LSTM, Deep learning,

acoustic modeling

1. INTRODUCTION

Neural network techniques for acoustic modeling can be roughly

divided into two categories: feed-forward networks which operate

on a fixed window of frames, and recurrent networks which recur-

sively process the entire utterance. Deep feed-forward neural net-

works (DNNs) with context dependent triphone-state targets have

been tremendously successful, improving the word-error rate over

comparable GMM baselines by up to 40% relative on the Switch-

board conversational transcription benchmark [1, 2, 3, 4]. Recurrent

Neural Network (RNN) acoustic models [5, 6, 7] have further im-

proved the results, as has speaker normalization and noise compen-

sation [8, 4].

DNNs model spectral windows using an exponential number of

distinct states that share latent factors [9, 4]. This allows DNNs

to generalize to unseen events better than Gaussian Mixture Model

(GMM) acoustic models which do not have the same sharing across

the models for different triphone states. DNN models can be fur-

ther improved by applying convolution and pooling over time and

frequency as in Convolutional Neural Networks (CNNs) [10, 11].

The convolution opertation allows the networks greater flexibility in

modeling small temporal and spectral shifts in speech data resulting

from different speakers and speaking speeds as well as band-limited

noise, while enjoying the same distributed representation power of

DNNs. In both DNN and CNN acoustic models, limited spectral

windows under 0.5s are typically used as inputs.

In contrast to feed-forward networks, Recurrent Neural Net-

work (RNN) acoustic models [5, 6] scan the entire utterance, and the

resulting probability distribution over HMM-states for each input

acoustic frame are conditioned on all frames observed prior to the

current time t. With their built-in memory cells, Long Short-Term

Memory (LSTM) RNNs [6] are capable of relating distant past to

current acoustic events, achieving drastically better performance on

different acoustic modeling tasks [6, 12, 7] compared to baseline

DNNs and RNNs.

In light of the exceptional performance of RNNs, it is interest-

ing to try to understand the reasons for this performance. There are

at least two reasonable explpanations: (1) RNNs sequentially pro-

cess the entire input utterance conditioning each input frame on the

entire history up to the current point in time. Learning the global

structure of input sequences could allow the network to learn a kind

of phonetic sequence model, i.e. an implicit probability distribution

of each sound conditioned on previously observed sounds. Also, the

network could be marginalizing over other global information in the

sequence that is unnecessary for the recognition task, like session

and speaker characteristics. (2) Rather than explaining the entire

spectral window at once by the hidden layer representation, as it is

the case for DNNs, RNNs consume only one frame at a time us-

ing input-to-hidden connections while learning the relationship of

the current frame to its previous (and future, if bi-directional [13])

frames via lateral hidden-to-hidden connections. Dividing the task

into two sets of weights, input-to-hidden and hidden-to-hidden, al-

lows different hidden units to “conspire” to jointly map complicated

input speech patterns into simpler abstractions that generalize better

to unseen events.

Under the second view, RNNs act as an extreme case of CNNs

with the convolution operation applied along the time axis using sin-

gle frame inputs, while the pooling operation is replaced by a learned

hidden-to-hidden matrix that automatically adjusts the pooling win-

dow as needed. (For convolution over the frequency axis, we can

imagine an RNN looping over the frequency axis where the learned

hidden-to-hidden weights act as a generalization of the heteroge-

neous pooling mechanism [14].)

This paper examines the second hypothesis by limiting the

amount of input that the RNN is allowed to see, exactly as is done

with DNN and CNN inputs. The empirical results lead us to con-

clude that RNNs owe their good performance to their recurrent way

of processing input frames, rather than to having access to the en-

tire utterance history. The important discriminative information is

available in the local neighborhood of each input frame, but DNN

and CNN acoustic models fail to match RNNs in extracting such

information.

Along the same lines, the authors in [15] proposed to apply a

simple RNN to speaker-adapted features followed by multiple layers

of feedforward neural networks. The new composite model showed



about 5% relative WER improvement over the DNN only baseline

on a standard ASR task.

In the next section, we will describe the specific windowed RNN

used in this paper. We will then discuss the practical implementa-

tion, including parallelization of training with 1-bit SGD (section 3)

and speeding up decoding and enabling sequence training by frame

grouping and “jitter training” (section 4), followed by experimental

results.

2. RECURRENCE OVER SPECTRAL WINDOWS

The main aim of this paper is to show that important discriminant

information has been readily available to the DNN and CNN acoustic

models, but they failed to extract it. Whereas RNNs succeeded due

to the way they process input frames recurrently one-by-one, and by

simplifying the task into a frame-embedding task using the input-to-

hidden weights followed by a recurrence step that relates individual

embedding to neighboring ones using the hidden-to-hidden weights.

2.1. Model Structure

Like DNNs and CNNs, the windowed RNN in this paper predicts the

probability of a speech state (such as a tied triphone state, senone) in

a speech frame t by processing an input spectral window consisting

of speech frames t− T to t+ T .

Specifically, we use a deep bi-directional LSTM RNN [6] that

recurrently processes all input frames τ inside the window to predict

the HMM states of the desired center frame t. The model consists

of several stacked bi-directional LSTM RNNs (up to 6 in our case),

where each bi-directional layer has two different hidden-to-hidden

weight matrices, one for each direction, i.e. left-to-right and right-

to-left.

Each layer’s hidden states of all frames in the window, of both

directions, are fed as inputs to the respective frames of the next layer.

Except for the input layer, each hidden layer therefore has four dif-

ferent input-to-hidden weight matrices to process inputs from the

two input streams to the current layer forward and backward streams.

At the top sits a softmax layer that takes the top hidden layer’s

forward and backward hidden state of the center frame as its input.

There is no fully connected hidden layer. It’s RNNs all the way

down.

The LSTM units [16] are of today’s standard variant, with input,

forget, and output gates controlling the flow from and to the cell that

stores the state of each unit (e.g., [6]).

2.2. Uni- vs. bi-directional RNNs

Why bi-directional? Although speech is not symmetric, coartic-

ulation happens in both directions. For a uni-directional RNN to

capture any right context, the network would have to propagate the

information from the predicted frame t itself—arguably the most

pertinent information—with high fidelity through multiple steps of

recurrence. Although LSTMs offer substantially better memoriza-

tion of acoustic events in distant past than simple RNNs, LSTMs

can still potentially attenuate the stored signal in the cell. For uni-

directional networks, acoustic events occurring by the beginning of

spectral window may get too diluted to affect the decision, and the

target frame might not be predicted with high temporal precision.

Bi-directional RNNs offer a more stable alternative.

This was experimentally confirmed in preliminary tests on a

400h-subset of our main training set described in the results section,

using phoneme-loop decoding. (Both systems also used mixture of

softmaxes, see next section.) A bi-directional model with a hidden

dimension of 512 outperformed a uni-directional model with twice

the hidden dimension by 0.6% absolute phoneme error rate (4% rel-

ative).

2.3. Mixture of Softmaxes

We also experimented with a refinement aimed at squeezing the most

out of the input window: a mixture-of-softmax structure that acts on

the bi-directional hidden representation extracted at every time step

τ in the 2T + 1 frames long window.

Two different hidden-to-output weight matrices, which are

shared across all time steps τ , process hidden representations

from both forward and backward streams leading to a matrix O
of (2T + 1) columns of unnormalized log output activations for

the K HMM states. These are combined through a mixing weight

matrix M of size (2T +1) ·K to produce the final prediction vector

P :

Pk =
exp(

∑t+T

τ=t−T
mτk · oτk)

∑K

j=1
exp(

∑t+T

τ=t−T
mτj · oτj)

(1)

M is trained jointly with the other network weights. The mixture

softmax is designed to force different output HMM states to attend

differently to different positions within the input window. It also

allows for using large input spectral windows because it ensures that

every input frame would have a say on predicting the target label

regardless of its relative distance of the label location in the window.

In preliminary tests, the mixture of softmaxes was effective: It

had a 4% relative better word-error rate for a 2-hidden-layer network

trained on 400h. Unfortunately, because it has very large memory re-

quirements, we were not able to use it in the large-scale experiments

in this paper. Instead, as stated above, we train the network to pre-

dict HMM states from the hidden representations at the center frame

only. We hope that future developments will allow us to use this

method effectively also for large-scale production model training.

3. TRAINING WINDOWED RNNS

The model are trained from random initialization using back-

propagation. We use AdaGrad and a learning-rate profile that

was originally optimized for DNN training, but turned out to work

well for RNNs as well. Two aspects of our implementation, though,

warrant additional discussion.

3.1. Subsampling

Training on large volumes of data that does not fit a server’s RAM

requires to process data in chunks. Our training software uses a large

rolling window over randomized blocks of about 15 minutes of data.

It then randomly samples from the rolling window to create training

minibatches. Sampling is done such that each frame is used exactly

once as a center frame per data pass.

This also means that every frame is used exactly once in ev-

ery non-center position of the context window. But because, unlike

DNNs, RNNs apply the same model parameters to all frames in the

window, this causes overfitting to the loaded chunk in RAM. Our

remedy is to sub-sample the data further to only a small fraction

(5%) of loaded data. This leads to a very notable WER difference.



Table 1. Scalability of 1-bit SGD (6 hidden layers 20+8+20 jitter):

processing speed for a minibatch size of 8192.

nodes x GPUs 1x1 1x4 2x4 1x8 2x8 4x8 8x8

speed [ksps] 0.13 0.5 0.9 0.9 1.7 2.8 4.6
efficiency 100% 96% 87% 87% 82% 67% 55%

3.2. Parallel Training Using 1-Bit SGD

The windowed RNNs’ benefit of rapid convergence comes at a cost:

very large computational cost per sample. Compared to a feed-

forward DNN, a bi-directional LSTM with about the same number

of parameters over a window of 41 frames requires 41 times as many

multiply-and-accumulate operations, because every model parame-

ter is applied repeatedly to every frame in the window. For our best

model configuration, processing 24h of training data costs on the

order of 18 hours.

As a consequence, training of windowed RNNs is only feasible

if a method of parallelization is used.

We apply our previously proposed 1-bit SGD parallelization

technique [17]. It implements data-parallel training on the mini-

batch level: Minibatches are distributed over multiple computation

nodes, and for each minibatch the sub-gradients are aggregated

across all nodes (an “all-reduce” operation).

Unfortunately, a direct implementation of this approach cannot

lead to meaningful speed-ups, because the time it takes to exchange

the gradients is significantly larger than the time it takes to compute

a sub-batch on a compute node.

Our method alleviates this by reducing bandwidth in two ways:

automatic minibatch-size scaling and 1-bit quantization of gradients.

Automatic minibatch-size scaling means that at regular intervals

(72h of training data), the trainer automatically adjusts the minibatch

size to the largest possible. Increasing minibatch size by a certain

factor means reducing the number of data exchanges and thus band-

width by that same factor [18]. The algorithm tries out larger mini-

batch sizes on a small subset of upcoming data (45 minutes), where

learning rate and momentum parameters are normalized such that

the contribution from each sample remains the same (specifically,

we do not divide the gradient by the number of samples, and define

momentum as a unit-gain low-pass filter with a fixed time constant).

We find that there is a maximum minibatch size up to which conver-

gence does not change, but above which convergence slows or breaks

down. The process aims to select that maximum feasible minibatch

size, as to minimize bandwidth.

Secondly, the all-reduce step exchanges gradients rather than

model parameters because gradients are amenable to data compres-

sion. In [17], we showed that gradient values can be aggressively

quantized to but a single bit, if one carries over the quantization error

from one minibatch to the next. Specifically, each time we quantize

a sub-gradient, we compute and remember the quantization error,

and then add it to the next minibatch’s sub-gradient prior to its quan-

tization. Akin to dithering and sigma-delta coding, this ensures that,

at least in the limit, gradient values are exchanged at full precision;

just distributed over time. This reduces bandwidth 32-fold.

In [17], this technique was applied to feed-forward DNNs,

where it led to speed-ups of 7 when parallelizing over 20 GPUs (at a

WER loss of about 0.1 percentage points). The dramatically higher

ratio of computation to communication cost of windowed RNNs

allows for a higher degree of parallelization. Table 1 shows that

parallelization efficiency for 64 GPUs is still 55%, for a minibatch

size of 8k, which the automatic minibatch-scaling process deems

appropriate at about 6% into the training.

Most results in this paper used 16 GPUs, reducing the cost of

processing 24h of data from about 18 hours to 90 to 100 minutes.

This is the first time that 1-bit SGD was applied to RNNs and to

sequence training. 1-bit SGD was a key enabler without which this

paper would not have been feasible.

4. IMPROVING EFFICIENCY BY PREDICTING GROUPS

OF FRAMES

Another key enabler for this technology is a small modification of the

basic model, where we group multiple consecutive frames to share

the same underlying RNN state. This makes decoding and sequence

training more feasible.

4.1. Frame Grouping for Faster Decoding

The dramatically increased computation is not only an issue for

training—it also hampers decoding. Consider that while GPUs can

be assumed for training, they are typically not available in the data

centers where speech recognition is deployed, due to cost and energy

consumption/heat dissipation. The computational cost of our best

model exceeds what can be computed in real-time on a single Intel

multi-core server—a significant obstacle to real-world deployment.

We propose to augment the model such that multiple consecutive

frames are predicted jointly, using the same underlying RNN state

(and the same softmax parameters).

Consider a model that uses 20 context frames on either side of

the predicted frame (denoted as 20+1+20). It requires to apply the

model matrices 41 times for every frame.

If we, however, instead predict 8 consecutive frames from the 20

preceding and succeeding context frames (denoted as 20+8+20), we

would reduce computation by 41/(48/8) = 6.8 times. This brings

computation cost back into a range of a single server (we can still

process less concurrent streams per servers, but that is the price to

pay for the improved accuracy).

Note that each of the 8 jointly predicted frames has a different

left/right context length, ranging from (20+1+27) to (27+1+20). For

example, the first of the 8 frames has a context of 27 frames to the

right but only 20 to the left.

This structure has similarities with “context-sensitive chunk

BPTT” in [19]. One difference is how we train it, by “jitter training”

as explained next.

4.2. “Jitter Training”

While frame grouping accelerates decoding, it leads to less random-

ization of training samples, which we find to harm convergence. To

address this, let’s take the alternative viewpoint of individual frames

in the training corpus. To them, the context “jitters,” and the jitter

can be considered random. This leads to a way to allow full sam-

ple randomization again in CE training by simulating jitter: (a) use

Fig. 1. Illustration of reducing computation by frame grouping.

8 consecutive frames share the same underlying RNN state, where

each frame sees a slightly differently shifted (jittering) context win-

dow. The window is advanced by 8 frames.



an enlarged context window (27+8+27 in the above example) and

(b) for every sample, simulate a pseudo-random jitter value (in our

example in the range 0..7). To take advantage of GPU parallelism,

this is implemented by applying the full enlarged context window

but then interjecting code that zeroes out the respective hidden and

error state values to simulate the jitter.

Figure 2 shows convergence when randomizing and jointly pre-

dicting groups of 8 consecutive samples vs. full sample randomiza-

tion with jitter. The resulting word error rate after about 2300h of

samples (jitter training has converged at this point) differs by over 1

percentage point.

4.3. Saving Memory to Enable Sequence Training

Another challenge with this model arises in sequence training: Mem-

ory consumption. Sequence training optimizes the model using a

whole-sequence criterion that incorporates sequence constraints of

the speech recognizer: the left-to-right HMM, dictionary, and lan-

guage model [20, 3].

The problem is that as part of back-propagation of windowed

RNNs, one needs memory to store activation and error vectors of

every frame in every sample in the minibatch.

For example, in one of our best models, the activation state of

one sample in one hidden layer consists of 512 LSTM cells × seven

values per cell × 2 directions—for each of 41 frames in the window.

Our implementaton then requires the same amount once again for

the error state.

All in all, for a 6-hidden layer model, a typical utterance of 8

seconds requires 10.5 GB GPU RAM! Since there is also the out-

put layer and the actual model, gradients, etc., even 8-second utter-

ances are not feasible with the 12 GB of our modern NVidia K40m

GPUs. Realistically, we’d have to discard utterances longer than 5

seconds.

Sharing RNN state across groups of frames reduces state mem-

ory accordingly. E.g. using groups of 8, we can now fit about 40 sec-

onds in GPU RAM, which is enough for the large majority of utter-

ances, and often allows to batch multiple utterances for efficiency.

5. EXPERIMENTAL RESULTS

5.1. Setup

We evaluate the windowed RNN on our research system for con-

versational speech transcription for Skype Translator. We chose

this task because for speech-to-speech translation, where errors

from recognition and translation compound, improving recognition

accuracy is paramount even if that requires a significantly more

expensive acoustic model.

Fig. 2. Convergence of jitter training (solid line) vs. randomizing

consecutive groups of 8 frames. Shown is training-set frame accu-

racy over epochs of 24h.

The training data consists of two publicly available Switchboard

CTS corpora, 309 hours of SWBD1 and 1700h of Fisher; 1700h

of subtitled in-house lectures recorded at Microsoft Research over

many years; and 140h of TED lectures. Features are 40-channel

wideband Mel-filterbank parameters using a 10-th root non-linearity

instead of the usual log to gracefully handle zero filter outputs that

occur for narrowband data. This does not degrade accuracy.

The baseline CD-DNN-HMM in this system is close to the one

described in [2]. It has 7 hidden layers of dimension 2048 and

an output dimension of 9000, a total of 46M model parameters.

The 9000 senones were selected by a GMM system trained only on

SWBD1/Fisher using narrow-band PLP features. The GMM align-

ments for the full 3850h corpus are also created with this narrow-

band SWBD1/Fisher model. All RNNs have a hidden dimension of

512 for each direction.

For testing, we use the publicly available Hub5’00 “sw” set

(1831 utterances), the two parts of the RT03S corpus, as well as

two in-house corpora. The first, denoted as “Tele-Conf.,” consists

of 1 hour of tele-conferences of 12 speakers. The utterances for

each speaker were selected longest first until 5 minutes were reached,

i.e. there is a bias for longer “content” utterances, as opposed to, e.g.,

back-channels. The second, denoted as “Speech Trans.,” consists of

domain data collected for developing Skype Translator, about 20k

words.

Our compute servers are equipped with 8 NVidia Tesla K20Xm

GPU cards each and connected through Infiniband.

The decoding language model is an interpolation of a trigram

trained on the Fisher transcripts, and one trained on written back-

ground text. It has only about 8M trigrams, so we rescored the main

results with larger LMs: a 5-gram trained on roughly 5 billion to-

kens from newswire, political proceedings, and web sources for the

Tele-Conf and Speech-Trans corpora; and for the CTS sets an in-

terpolated 4-gram obtained from three source-specific components,

two trained with maximum-entropy estimation [21] on 4M words of

Switchboard transcripts and 21M words of Fisher CTS transcripts,

and one obtained from 191M words of conversational web data se-

lected using frequent CTS n-grams, prepared by the University of

Washington [22]. Recognition lattices were rescored with the com-

bined LM, and new 1-best hypotheses were decoded, keeping the

original LM weight at 13.25.

5.2. Comparing DNNs with windowed RNNs

Table 2 shows the WER improvement from using windowed RNN

compared to our best DNN baseline system. Shown are recognition

results for the 3850h training set on the 5 test sets, for both our best

DNN and the “jitter-trained” 6 hidden-layer windowed bidirectional

LSTM RNN (20 frames context on each side for a group of 8 con-

secutive frames).

After realignment and sequence training, a 28% relative WER

reduction is achieved on the Hub5’00 test set. Gains are 16 and 17%

on the two patts of RT03S, respectively, and 12 and 16% on our

proprietary test sets. When training only using the CE criterion on

GMM alignments, the gains are even larger, ranging from 18 to 33%

(on Hub5’00).

For comparability, Table 3 shows the same experiments except

the training set is limited to the public SWBD1/Fisher corpora.

Comparing CE models, the gain on Hub5’00 is 27%; while on

RT03S, we gain 20 and 17%. However, realignment and sequence

training do not help here for the windowed RNN, reducing the gain

on Hub5’00 to 16%. We believe we are seeing overfitting (while

for the 3850h set, the more inhomogenous nature of the data has a

regularizing effect).



Table 2. Comparison between baseline DNNs and windowed RNNs

using the 3850h training set, for five test sets. The numbers are word

error rates (WER) in percent.

configuration Hub5’00 RT03S RT03S Tele- Speech
-fsh -sw Conf. Trans.

DNN 16.4 17.5 24.2 22.7 20.2
+ realign 15.3 16.3 22.7 21.9 19.9
+ sequence training 13.7 14.9 21.5 20.8 18.2
+ large LM 12.8 13.9 20.0 19.9 17.0

windowed jitter RNN 11.0 13.1 18.7 18.7 15.6
(-33%) (-25%) (-23%) (-18%) (-23%)

+ realign 10.5 12.9 18.6 18.6 15.8
+ sequence training 9.9 12.5 17.8 18.1 15.1
+ large LM 9.2 11.5 16.7 17.5 14.2

(-28%) (-16%) (-17%) (-12%) (-17%)

5.3. Width and Depth

Table 4 shows the effect of the window width and number of hidden

RNN layers. Unlike above, the RNN here does not use frame group-

ing or jitter training. While the DNN achieves the best results with

10 or 15 context frames on each side, the windowed RNN can take

advantage of up to 25 frames. This is consistent with the hypothesis

that the RNN is better able to normalize out time variability in the

context.

5.4. Frame Grouping and “Jitter Training”

As discussed, frame grouping provides improved computational and

memory efficiency, making decoding and sequence training feasi-

ble. Table 5 shows results for a context window of 20 on each side,

while predicting a single frame (denoted as 20+1+20) vs. a group of

8 consecutive frames (20+8+20).

As expected from the convergence curve in Section 4, the re-

duced randomization due to grouping leads to notably worse accu-

racy, increasing WER by as much as 1.4 points for Hub5’00. The last

row shows that by switching to “jitter training,” the WER loss can

be recovered. In fact, WER improves somewhat (up to 0.8 points),

which we attribute to the increased context window. That increase is

random in the range of 0 to 7 frames, but it seems the RNN is able

to learn to still take advantage of the additional information when

present.

5.5. 1-bit SGD Parallelization

Lastly, we have seen in Section 3 that 1-bit SGD parallelization

scales well, better than with DNNs. Table 6 shows accuracies for

different numbers of parallel nodes. The number of nodes affects

the impact of quantization—less nodes lead to less averaging-out

of quantization errors, while with more nodes, quantization is more

Table 3. Comparison between baseline DNNs and windowed RNNs

using the public SWBD1+Fisher training set.

configuration Hub5’00 RT03S-fsh RT03S-sw

DNN 15.1 16.4 22.7
+ realign 13.9 15.2 21.6
+ sequence training 12.6 14.2 20.4
+ large LM 11.7 12.9 18.9

windowed jitter RNN 11.0 13.2 18.8
(-27%) (-20%) (-17%)

+ realign 11.2 13.6 19.4
+ sequence training 10.6 13.2 18.9
+ large LM 9.9 12.3 17.8

(-16%) (-7%) (-7%)

Table 4. Impact of #layers and context window.
windowing Hub5’00 Tele-Conf. Speech Trans.

DNN, 7 hidden layers

10+1+10 16.2 22.8 20.4
15+1+15 16.4 22.7 20.2
20+1+20 16.5 23.2 20.5

windowed RNN, 4 hidden layers

15+1+15 12.3 19.8 17.0
20+1+20 11.8 19.9 16.6
25+1+25 11.6 19.5 16.5

windowed RNN, 6 hidden layers

15+1+15 11.7 19.6 16.5
20+1+20 11.1 19.5 16.0

prone to be dominated by outliers in the smaller sub-minibatches

[17]. Indeed we find a sweet spot at 16 nodes, which is what we use

throughout this paper, except for sequence training, where we used

8 since too small minibatches with utterance processing hurts load

balancing. (The 8-GPU result in Table 6 did not finish in time, so we

show a nearly converged result after 888 hours of data.)

In [17], it was shown that for DNNs, 1-bit SGD causes an accu-

racy loss of about 0.1 points when parallelizing over 10 nodes, com-

pared to the unquantized, non-parallel baseline. Unfortunately, such

a comparison is impractical for the windowed RNN due to training

time—that number would take about 75 days to produce. We have

to be content with the nevertheless large relative improvements over

the DNN.

Lastly, in 1-bit SGD, the first epoch of 24h is typically not ac-

celerated; we call this “warm start.” However, with our windowed

RNN, that first epoch already takes over half a day to compute, so we

experimented with shorter warm-starts of 2.4 and 9.6 hours. How-

ever, the last two rows of table 6 show that even with 9.6 hours, we

observe up to 0.3 points of WER loss, so all other experiments in

this paper used the slow, full 24 hours warm start.

6. CONCLUSIONS

Like state-of-the-art feed-forward DNNs, windowed (truncated)

RNNs operate on a finite sliding context window around the speech

frame to predict, but their recurrent nature makes them resilient to

timing variations and thus allows them to extract more class dis-

criminant information from the window than a feedforward DNNs.

The windowed model allows online recognition for a bidirec-

tional model, and to randomize training samples individually (as op-

posed to entire utterances), which leads to very fast and stable con-

vergence.

We evaluated windowed bidirectional LSTM RNNs on conver-

sational speech transcription. On the 2000h SWBD1/ Fisher cor-

pus, the model reduced word errors on the Hub5’00 benchmark set

by 16% relative over our best sequence-trained DNN. The model

benefits overproportionally from more data: On an extended 3850h

training set, the reduction on Hub5’00 is as large as 28%, reaching a

WER of 9.2%.

The much increased computational and memory demands have

been partially remedied by frame grouping, which makes decoding

Table 5. Impact of frame grouping and jitter training.
configuration Hub5’00 Tele-Conf. Speech Trans.

20+1+20 11.1 19.5 16.0
20+8+20 12.5 19.9 16.6

+ jitter training 11.0 18.7 15.6



Table 6. WERs for different 1-bit SGD configurations.
number of nodes (GPUs) Hub5’00 Tele-Conf. Speech Trans.

8 (after 888 hours) 11.5 19.3 16.3
16 (after 888 hours) 11.3 19.1 16.0
16 11.0 18.7 15.6
32 10.9 19.0 15.9

16, 2.4h warm start 11.3 19.5 16.1
16, 9.6h warm start 11.1 19.0 15.9

and sequence training feasible, while “jitter training” allows to still

train these models with full frame randomization, averting an accu-

racy loss.

More sophisticated LSTM architectures like the mixture of soft-

maxes allow to extract even more discriminative information from

spectral windows, and we believe that further gains are possible.

Overall, we are closer than ever on our quest to reach human per-

formance.

7. ACKNOWLEDGMENTS

The authors thank Donovan Smith and Jonathan Clark for rescoring

with the Skype-Translator language model.

8. REFERENCES

[1] Dong Yu, Li Deng, and George E. Dahl, “Roles of pre-training

and fine-tuning in context-dependent dbn-hmms for real-world

speech recognition,” in NIPS 2010 workshop on Deep Learn-

ing and Unsupervised Feature Learning, 2010.

[2] Frank Seide, Gang Li, and Dong Yu, “Conversational speech

transcription using context-dependent deep neural networks,”

in Interspeech 2011.

[3] Hang Su, Gang Li, Dong Yu, and Frank Seide, “Error back

propagation for sequence training of context-dependent deep

networks for conversational speech transcription,” in ICASSP

2013.

[4] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rah-

man Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Van-

houcke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury,

“Deep neural networks for acoustic modeling in speech recog-

nition,” Signal Processing Magazine, 2012.

[5] T. Robinson, M. Hochberg, and S. Renals, “The use of recur-

rent networks in continuous speech recognition,” pp. 233–258.

Kluwer Academic Publishers, 1996.

[6] Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton,

“Speech recognition with deep recurrent neural networks,” in

ICASSP 2013.

[7] Hasim Sak, Andrew W. Senior, and Françoise Beaufays, “Long

short-term memory based recurrent neural network architec-

tures for large vocabulary speech recognition,” CoRR, vol.

abs/1402.1128, 2014.

[8] Mark Gales and Steve Young, “The application of hidden

markov models in speech recognition,” Found. Trends Signal

Process., vol. 1, no. 3, 2007.

[9] Herve A. Bourlard and Nelson Morgan, Connectionist Speech

Recognition: A Hybrid Approach, Kluwer Academic Publish-

ers, 1993.

[10] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y. Ng,

“Unsupervised feature learning for audio classification using

convolutional deep belief networks,” in Advances in Neural

Information Processing Systems 22. 2009.

[11] Ossama Abdel-Hamid, Abdel-Rahman Mohamed, Hui Jiang,

Li Deng, Gerald Penn, and Dong Yu, “Convolutional neural

networks for speech recognition,” IEEE/ACM Trans. Audio,

Speech and Lang. Proc., vol. 22, no. 10, pp. 1533–1545, Oct.

2014.

[12] Alex Graves, Navdeep Jaitly, and Abdel rahman Mohamed,

“Hybrid speech recognition with deep bidirectional LSTM,” in

ASRU 2013.

[13] M. Schuster and K.K. Paliwal, “Bidirectional recurrent neural

networks,” Trans. Sig. Proc., vol. 45, no. 11, pp. 2673–2681,

Nov. 1997.

[14] Li Deng, Ossama Abdel-Hamid, and Dong Yu, “A deep convo-

lutional neural network using heterogeneous pooling for trad-

ing acoustic invariance with phonetic confusion,” in IEEE In-

ternational Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), May 2013.

[15] George Saon, Hong-Kwang Jeff Kuo, Steven J. Rennie,

and Michael Picheny, “The IBM 2015 english conversa-

tional telephone speech recognition system,” CoRR, vol.

abs/1505.05899, 2015.

[16] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term

memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,

1997.

[17] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu,

“1-bit stochastic gradient descent and its application to data-

parallel distributed training of speech DNNs,” in INTER-

SPEECH 2014.

[18] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu,

“On parallelizability of stochastic gradient descent for speech

DNNs,” in ICASSP 2014.

[19] Kai Chen, Zhi-Jie Yan, and Qiang Huo, “Training deep bidi-

rectional LSTM acoustic models for LVCSR by a context-

sensitive-chunk BPTT approach,” in interspeech 2015.

[20] Brian Kingsbury, “Lattice-based optimization of sequence

classication criteria for neural-network acoustic modeling,” in

icassp 2009.

[21] Tanel Alumäe and Mikko Kurimo, “Efficient estimation of

maximum entropy language models with N-gram features: An

SRILM extension,” in interspeech 2012.

[22] Ivan Bulyko, Mari Ostendorf, Manhung Siu, Tim Ng, Andreas

Stolcke, and Özgür Çetin, “Web resources for language model-

ing in conversational speech recognition,” ACM Transactions

on Speech and Language Processing, vol. 5, no. 1, 2007.


