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Abstract

A key problem in spoken language identification (LID) is to design effective representations which are specific to language
information. For example, in recent years, representations based on both phonotactic and acoustic features have proven
their effectiveness for LID. Although advances in machine learning have led to significant improvements, LID performance is
still lacking, especially for short duration speech utterances. With the hypothesis that language information is weak and
represented only latently in speech, and is largely dependent on the statistical properties of the speech content, existing
representations may be insufficient. Furthermore they may be susceptible to the variations caused by different speakers,
specific content of the speech segments, and background noise. To address this, we propose using Deep Bottleneck
Features (DBF) for spoken LID, motivated by the success of Deep Neural Networks (DNN) in speech recognition. We show
that DBFs can form a low-dimensional compact representation of the original inputs with a powerful descriptive and
discriminative capability. To evaluate the effectiveness of this, we design two acoustic models, termed DBF-TV and parallel
DBF-TV (PDBF-TV), using a DBF based i-vector representation for each speech utterance. Results on NIST language
recognition evaluation 2009 (LRE09) show significant improvements over state-of-the-art systems. By fusing the output of
phonotactic and acoustic approaches, we achieve an EER of 1.08%, 1.89% and 7.01% for 30 s, 10 s and 3 s test utterances
respectively. Furthermore, various DBF configurations have been extensively evaluated, and an optimal system proposed.
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Introduction

Language identification (LID) is the task of determining the

identity of the spoken language present within a speech utterance.

LID is a key pre-processing technique for future multi-lingual

speech processing systems, such as audio and video information

retrieval, automatic machine translation, diarization, multi-lingual

speech recognition, intelligent surveillance and so on.

A major problem in LID is how to design a language specific

and effective representation for speech utterances. It is challenging

due to large variations introduced by different speech content,

speakers, channels and background noises. Over the past few

decades, intensive research efforts have studied the effectiveness of

different representations from various research domains, such as

phonotactic and acoustic information [1–3], lexical knowledge [4],

prosodic information [5], articulatory parameters [6], and

universal attributes [7]. Among existing representations, Eady

[5], Matrouf et. al. [4] and Kirchoff et. al. [6] show that

appropriate incorporation of extra language-related cues may help

to improve the effectiveness of representation. In this paper, we

mainly focus on the phonotactic and acoustic representations,

which are considered to be the most common ones for LID [8,9].

Phonotactic representations focus on capturing the statistics of

phonemic constraints and patterns for each language. It is known

that the phonotactic representation of a given utterance is the

token sequence or lattice output from a phone recognizer (PR).

The corresponding approaches, such as Parallel Phone Recogniz-

ers followed by Language Models (PPR-LM) [3] and Parallel

Phone Recognizers followed by Support Vector Machines (PPR-

SVM) [10,11] have achieved the state-of-the-art performance.

However, the effectiveness of such representations relies heavily on

the performance of the phone recognizer (PR) [12]. When the

labelled dataset size is limited, it is difficult to achieve good PR

results. Furthermore, the recognizing stage is time consuming,

which constrains the wide applicability of the phonotactic

approaches.

By contrast, acoustic representations mainly capture the spectral

feature distribution for each language, which is more efficient and

does not require prior linguistic knowledge. Two important factors

for effective acoustic representation are, (1) a front-end feature

extractor which forms the frame level representation based on

spectral features, and (2) a back-end model which constructs the

acoustic representation for spoken LID. A popular feature is Shift

Delta Cepstra (SDC), which is effectively an extension of

traditional MFCC or PLP features [13–15]. Typical back-end
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models include Gaussian Mixture Model-Universal Background

Model (GMM-UBM) [15] and Gaussian Mixture Model-Support

Vector Machine (GMM-SVM) [16,17]. With the help of modern

machine learning techniques, such as discriminative training [18–

20], Factor Analysis (FA) [21–23] and Total Variability (TV)

modeling [24,25], the performance of acoustic approaches tends to

be comparable to or even exceed that of phonotactic ones. In fact,

even greater performance improvement can be achieved by

exploiting both phonotactic and acoustic approaches, through

fusing their results [26–28].

Despite significant recent advances in LID techniques, perfor-

mance is still far from satisfactory, especially for short duration

utterances [9]. This may be because language characteristics are a

kind of weak information latently contained in the speech signal

and largely dependent on its statistical properties. For short

duration utterances especially, existing representations are defi-

cient by being overly susceptible to variations caused by different

speakers, channels, speech content and background noises. To

address this, more powerful features, having higher discriminative

and descriptive capabilities, are preferred.

Recently, deep learning techniques have achieved significant

performance gains in a number of applications, including large

scale speech recognition and image classification [29,30], largely

due to their powerful modeling capabilities, aided by the

availability of the large scale datasets. In this paper, we aim to

apply deep learning techniques to the spoken LID task. Our

preliminary work demonstrated that an acoustic system based on

deep bottleneck features (DBF) can effectively mine the contextual

information embedded in speech frames [31]. Specially, DBFs

were generated by a structured Deep Neural Network (DNN)

containing a narrow internal bottleneck layer. Since the number of

hidden nodes in the bottleneck layer is much smaller than those in

other layers, DNN training forces the activation signals in the

bottleneck layer to form a low-dimensional compact representa-

tion of the original inputs. It should be noted that this is unlike

work by Diez et. al. [32,33], in which the log-likelihood ratios of

posterior probabilities, called Phone Log-Likelihood Ratios

(PLLR), output from the multi-layered perceptron(MLP), were

used as frame level features for LID. We will present a more

detailed discussion and comparison later in this article.

This paper extends our preliminary work in five main ways:

N The DBF extractor and DNN structure are analyzed and

evaluated together with the crucial DBF training and

extraction process (including assessing two alternative training

corpuses and their configurations). In addition, the relationship

to the conventional SDC [13–15] and recently proposed

PLLR [32,33] approaches are explored;

N Two new acoustical systems are presented, i.e. DBF-TV and

parallel DBF-TV (PDBF-TV), and systematically evaluated

across various configurations of DBF extractor. The systems

are evaluated for a range of input feature temporal window

sizes, and number of bottleneck layer hidden nodes;

N The relationship is explored between DBF and different test

conditions, based on analysis of evaluation results;

N An optimal LID system configuration is proposed based on the

NIST language recognition evaluation 2009 (LRE09) dataset,

and compared to other high performance published approach-

es;

N A phonotactic representation is constructed, using a GMM-

HMM based phone recognizer (PR) trained with DBF. The

output is fused with that of the acoustic representation (using

two alternative fusion methods) to achieve extremely good

performance.

Experimental results will demonstrate that an acoustic repre-

sentation based on DBF significantly improves on state-of-the-art

performance, especially for short duration utterances. The

Figure 1. An illustration of the DNN training and DBF extraction procedure. Left: Pre-training of a stack of RBMs with the first layer hosting
a Gaussian-Bernoulli RBM and all other layers being Bernoulli-Bernoulli RBMs. The inputs to each RBM are from the outputs of the lower layer RBM.
Middle: The generative model DBN constructed from a stack of RBMs. Right: The corresponding DNN and DBF extractor. The DNN is created by
adding a randomly initialized softmax output layer on top of the DBN, and the parameters of DNN are obtained in a fine-tuning phase. The final DBF
extractor in the bottom right dashed rectangle is obtained by removing the layers above the bottleneck layer.
doi:10.1371/journal.pone.0100795.g001
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proposed phonotactic and acoustic fusion achieves equal error rate

(EER) figures of 1.08%, 1.89% and 7.01% for 30 s, 10 s and 3 s

test utterances respectively. This clearly exceeds the performance

of the best currently reported LID system [9], as well as our own

previous work [31] (in which the EER for 30 s, 10 s and 3 s test

utterances is 1.98%, 3.47% and 9.71%).

The paper is organized as follows. How to generate the DBF

from a DNN is first briefly introduced, including the two main

categories, generative pre-training and discriminative fine-tuning.

Then, our proposed LID systems is presented in detail. Finally, the

experimental setup and results are presented and analyzed,

followed by the conclusion and future work.

Methods

Deep Bottleneck Features
In this section, we discuss the DBF extraction procedure and

structure as shown in Figure 1, used as an acoustic frontend for the

spoken LID task. We first describe the DNN training process,

including generative pre-training and discriminative fine-tuning

phases, followed by the DBF extraction process. We then detail the

configuration of DBF extraction for LID. Finally, we discuss the

relation to several existing frame level features, e.g. SDC and

PLLR.

DNN Training
The DNN training process includes pre-training and fine-tuning

phases [34]. During the pre-training phase, a generative Deep

Belief Net (DBN) with stacked Restricted Boltzmann Machines

(RBM) is trained in an unsupervised way. During the discrimina-

tive fine-tuning phase, a randomly initialized softmax layer is

added on top of the DBN, and all the parameters are fine-tuned

jointly using back-propagation (BP). Generally, the pre-training

phase provides a region of the weight space that allows the fine-

tuning phase to converge to a better local optimum, and reduce

overfitting [35].
Pre-Training Phase. The basic idea of pre-training is to fit a

generative DBN model to the input data. Conceptually, the DBN

can be trained greedily in a layer-by-layer manner, by treating

each pair of layers as a RBM [36], as shown in the left part of

Figure 1. An RBM is a bipartite graph model in which the visible

stochastic units are only connected to the hidden stochastic units

[37].

The RBM is a two-layer structure with V visible stochastic units

v~½v1,v2,:::,vV �
>

, and H hidden stochastic units

h~½h1,h2,:::,hH �
>

. The most frequently used RBMs are the

Gaussian-Bernoulli RBM and Bernoulli-Bernoulli RBM. In

Bernoulli-Bernoulli RBM, v[f0,1gV and h[f0,1gH are assumed

to be binary, the energy function of the state E(v,h) is defined as:

E(v,h)~{

X

V

i~1

X

H

j~1

vihjwji{

X

V

i~1

vib
v
i{

X

H

j~1

hjb
h
j ð1Þ

where wji represents the weight between visible unit i and hidden

unit j, bvi and bhj denote the real-valued biases of visible unit i and

hidden unit j respectively. The Bernoulli-Bernoulli RBM model

parameters can be defined as h~fW,bh,bvg, where

W~fwijgV|H , bh~½bh1,b
h
2,:::,b

h
H �

>
and bv~½bv1,b

v
2,:::,b

v
V �

>
. For

a Gaussian-Bernoulli RBM, the visible units are real-valued which

means v[RV , and h[f0,1gH are binary. Thus, the energy function

is defined as follows:

E(v,h)~{

X

V

i~1

X

H

j~1

vi

si
hjwjiz

X

V

i~1

(vi{bvi )
2

2s2i
{

X

H

j~1

hjb
h
j ð2Þ

where vi is a real-valued activity of visible unit i. Each visible unit

adds a parabolic offset to the energy function which is governed by

si. The Gaussian-Bernoulli RBM model parameter set can be

defined as h~fW,bh,bv,s2g similarly, where the variance

parameters s2i are commonly fixed to a pre-determined value

instead of being learnt.

According to the energy function E(v,h) in Eq. (1)&(2), the joint

probability associated with configuration (v,h) is defined as follows:

p(v,h; h)~
exp ({E(v,h; h))

Z
ð3Þ

where

Z~

X

v

X

h

exp({E(v,h; h)) ð4Þ

is a partition function. Given a training set, the RBM model

parameters h can be estimated by maximum likelihood learning

via the contrastive divergence (CD) algorithm [38]. After the RBM

of a lower layer is trained, the inferred states of the hidden units

can be used as the visible data for training the RBM of a higher

layer. This process is repeated to produce multiple layers of RBMs.

Finally, the RBMs can be stacked to produce the DBN, as shown

in the middle part of Figure 1.

Fine-Tuning Phase. The fine-tuning phase is shown in the

right part of Figure 1, in which an output labelling layer is added

on top of the pre-trained DBN. For a multiclass classification

problem, there are K units in the output layers. In our work, these

units correspond to the language-specific phonemes. Each unit

corresponds to the label of input features, which converts a

number of Bernoulli distributed units h into a multinomial

distribution through the following softmax function,

p(kDh; hDNN )~
exp

XH

i~1
wkihizbk

� �

XK

p~1
exp

XH

i~1
wpihizbp

� � ð5Þ

Figure 2. Block diagram of our proposed DBF-TV LID system.
This system consists of two main phases, the acoustic frontend and TV
modeling back-end.
doi:10.1371/journal.pone.0100795.g002
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where k is an index over all classes, hDNN are the DNN model

parameters, p(kDh; hDNN ) denotes the probability that the input is

classified into the k-th class.

The cost function C defines the cross-entropy error between the

true class label d and the predicted label from the softmax

operation;

C~{

X

K

k~1

dk log p(kDh; hDNN ) ð6Þ

where K is the total number of classes, and dk[f0,1g
K

are the

target variables indicating the class label with a 1-of-K coding

scheme. The BP algorithm is used to jointly tune all model

parameters by minimizing the cross entropy function in Eq. (6).

DBF Extraction
Given a trained DNN, each hidden layer proposes an internal

representation of the input features. These layers can be further

used to predict the phonemes or phoneme states. The DBF

extractor removes the layers above the bottleneck layer, shown by

the bottom right dashed rectangle in Figure 1. The advantage of a

bottleneck layer is that, being smaller, it reduces the redundancy of

input features and effectively reflects the relevant class label

information [39–41].

The corresponding DBF is a vector y~fym(x),m~1,:::,M3g,

where M3 denotes the number of hidden units in the 3-rd hidden

layer and ym(x) can be extracted using

ym(x)~
X

M2

j~1

w3
mjs

X

M1

i~1

w2
jis

X

D

d~1

w1
idxdzb1i

 !

zb2j

 !

zb3m ð7Þ

where s(:)~
1

1z exp (:)
represents the logistic sigmoid function.

x~½x1,x2,:::,xD�
T

is the D -dimensional input feature, concate-

nated from multiple frames of MFCC and prosodic features. wl
ji is

the weight on a connection to unit j in the l-th hidden layer from

unit i in the layer below. bli is the bias of unit i in the l-th hidden

layer.

DNN Training Settings
Corpus. Two separate DNNs, used for forming DBF

extractors, are evaluated in this paper. The Mandarin DNN

(MA-DNN) is trained from conversational telephone speech,

consisting of more than 1,600,000 utterances of about 1,000 hours

duration, recorded from 32,950 Mandarin speakers. The English

DNN (EN-DNN) uses the well-known Switchboard corpus,

consisting of the Switchboard-I training set and 20-hour Call

Home English data, having about 300-hours duration.

This data will only be used to train and construct two DBF

feature extractors (MA-DBF and EN-DBF). Each feature extractor

will later be evaluated for LID, using completely different

multilingual training and test data.

DNN Configuration. The DNN configuration is similar to

that used for ASR [29,41,42]. Specifically, the feature dimension

of each frame is 43, consisting of 39-dimensional MFCC+D

Figure 3. Block diagrams of two PDBF-TV LID systems. The diagram above the dashed line is PDBF-TV with later fusion. The diagram below
the dashed line is the PDBF-TV with early fusion.
doi:10.1371/journal.pone.0100795.g003
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MFCC+DD MFCC, and 4-dimensional pitch features correspond-

ing to the static pitch, 1st and 2nd derivatives and voiced speech

confidence respectively. The frame feature is pre-processed with

Cepstral Mean Variance Normalization (CMVN). The detailed

DNN structure has 1 input layer, 5 hidden layers and 1 output

layer, configured as n|43 -2048 -2048 - DDBF -2048 -2048 - Dout.

The input feature is constructed in a frame by frame manner. For

each fame, the corresponding DNN input is a concatenation of the

current frame with the preceding and following (n{1)=2
neighbouring frames. For example, if we set n~11, the input

comprises 5 neighbouring frames before and after the center

frame. DDBF is the number of units in the bottleneck layer, which

is empirically set to 43 as mentioned above. Dout is the number of

units in the output layer. In practice, Dout is set to 6004 and 9004

according to tri-phone tied states of Mandarin and English

separately [41]. This configuration is the baseline for training the

DBF extractor.

The training process is similar as that used in speech recognition

[41]. During pre-training, we use 6 full sweeps through all training

data for the Gaussian-Bernoulli RBM and 5 full sweeps for 4 other

Bernoulli-Bernoulli RBMs. Each RBM training is implemented

using CD learning with 1-step Gibbs sampling. In the fine-tuning

step, we set the learning rate to a small value, i.e. 0.002, for all

layers. In the fine-tuning phase, the parameters of all layers are

jointly tuned using the BP algorithm according to tied-state labels

obtained by a forced-alignment process using pre-trained GMM-

HMMs. The fine-tuning process is iteratively executed using the

following settings: 10 epochs are used for BP fine-tuning. The

learning rate is fixed for the first 3 epochs, then halve for the

remaining epochs. It is worthwhile to emphasize the difference

between ASR and LID tasks, so we experimented extensively with

different DNN configuration to find the optimal configuration of

DBF extractor for performing LID.

Relation to Existing Features
Relation to SDC. SDC, one of the most common acoustic

features for spoken LID, is considered an extension of MFCC and

PLP, which aims to capture phonemic information over a longer

time-span. This extension is achieved by a simple linear

transformation of several concatenated delta cepstral blocks. It is

a matter of trial and error to set optimal SDC parameters, and

these may vary with different LID tasks [14]. In addition, SDC is

generally prone to distortion by language independent nuisance,

such as speaker and channel variabilities, and specific content for a

given utterance.

Similar to SDC, the DBF extractor takes the features extracted

from concatenated frames as input. However, DBF exploits long-

term temporal information in input features through a non-linear

transformation. Futhermore, by taking into consideration the

labeling information contained in the training corpus, the DBF is

extracted with discriminative training, which is more robust to

language-independent nuisance. Finally, DBF can be considered

as a fusion of the middle-level representation between the high-

level phonetic and low-level acoustic features.

Proposed LID Systems Using DBF
In this section, we present two TV based acoustic systems to

evaluate the effectiveness of the DBF for spoken LID, termed

DBF-TV and PDBF-TV. The TV approach was first introduced

in the context of speaker verification [24] and has become the

state-of-the-art modeling technique both in speaker and language

communities [25].

DBF-TV
The basic DBF-TV framework is derived from our previous

work [31], and consists of two main parts, the acoustic frontend

and TV modeling back-end, as shown in Figure 2. The acoustic

frontend mainly consists of acoustic preprocessing and DBF

extraction, as illustrated in the previous section, which transforms

the multiple frames of MFCC and prosodic features into DBFs.

The TV modeling back-end consists of the following phases, i-

vector extraction, intersession compensation, and cosine scoring,

which are described in the following paragraphs.

Table 1. Comparison of Performances between DBF-TV system and SDC-TV system on LRE09.

30 s 10 s 3 s

system EER Cavg EER Cavg EER Cavg

SDC-TV 2.08 2.07 5.35 5.32 16.74 16.70

MIT SDC-TV [25] 2.40 N/A 4.80 N/A 14.20 N/A

MA DBF-TV 1.51 1.37 2.62 2.59 9.28 9.18

EN DBF-TV 1.42 1.41 2.67 2.61 10.14 10.04

doi:10.1371/journal.pone.0100795.t001

Figure 4. DET curves comparison between MA DBF-TV and
SDC-TV.
doi:10.1371/journal.pone.0100795.g004
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I-Vector Extraction. I-vectors are extracted via TV model-

ing approach, which is motivated by the success of Joint Factor

Analysis (JFA) for speaker recognition task [43]. The classical JFA

technique models both speaker and channel subspaces separately.

However, the channel and speaker informations are difficult to

separate [44]. To address this issue, TV approach was proposed to

cover the total variability in an utterance using only one subspace

[24]. Specifically, given an utterance, the GMM super-vector M,

which is created by stacking the mean vectors of a GMM adapted

to that utterance, can be modeled as follows

M~mzTw ð8Þ

where m is the UBM super-vector, T is a low rank rectangular

matrix. w is the required low-dimensional i-vector with normal

distribution N (0,I).

The training process of loading matrix T is similar to the

eigenvoice method [45]. The difference is that in TV modeling,

the loading matrix T is estimated based on the variance

information derived from all utterances.

Intersession Compensation. After i-vector extraction, two

intersession compensation techniques are applied to remove the

nuisance in i-vectors. The first is linear discriminant analysis

(LDA) which is a popular dimension reduction method in the

machine learning community. Generally, LDA is based on the

discriminative criterion that attempts to define new axes minimiz-

ing the within-class variance, while maximizing the between-class

variance. The LDA projection matrix A contains the eigenvectors

with respect to the decreasing order of corresponding eigenvalues

in decomposition. This is obtained by solving the following

generalized eigenvalue problem

Sbv~lSwv: ð9Þ

where l is the diagonal matrix of eigenvalues. The matrices Sb

and Sw denote the between-class variance and within-class

variance, respectively.

Sb~

X

L

l~1

(wl{w)(wl{w)T ð10Þ

Sw~

X

L

l~1

1

nl

X

nl

i~1

(wl
i{wl)(w

l
i{wl)

T ð11Þ

where L is the number of target languages, nl is the number of

utterances for each language l: �wwl ~
1

nl

Xnl

i~1
wl
i . is the mean of i-

vectors for each language and wl
i represents the i-th sample of

language l.

The second intersession compensation technique we used is

within-class covariance normalization (WCCN), which normalizes

the cosine kernel between utterances with an inverse of the within-

class covariance [24]. The within class covariance matrix W is

estimated as follows:

W~
1

L

X

L

l~1

1

nl

X

nl

i~1

(ATwl
i{wl)(A

Twl
i{wl)

T ð12Þ

where wl~
1
nl

Pnl
i~1 A

Twl
i is the mean of the LDA projected i-

vectors for each language. The projection matrix B is obtained

through Cholesky decomposition of matrix W{1
~BBT . With the

matrix A and B, the compensated i-vector ŵw

ŵw~BTATw ð13Þ

Cosine Scoring. After obtaining intersession compensated i-

vectors, the representation of l-th target language ul can be simply

obtained by taking the mean of the corresponding i-vectors.

ul~
1

nl

X

nl

i~1

ŵwl
i

ŵwl
i

�

�

�

�

ð14Þ

Given a test utterances, the detection score for a target language l

can be estimated using the cosine similarity measure between the

target i-vector ul and the test i-vector ŵwtest:

s(ŵwtest,ul)~
ŵwT
testul

ŵwtestk k ulk k
ð15Þ

Table 2. Comparison of Performances between different temporal context sizes using 43-dimensional DBF on LRE09.

30 s 10 s 3 s

Temporal Window

Size EER Cavg EER Cavg EER Cavg

5-1-5 1.51 1.37 2.62 2.59 9.28 9.18

10-1-10 1.31 1.22 2.36 2.34 9.64 9.60

15-1-15 1.39 1.29 2.47 2.43 9.72 9.69

20-1-20 1.34 1.23 2.49 2.44 10.03 10.00

doi:10.1371/journal.pone.0100795.t002
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PDBF-TV
As aforementioned, the DBF extractor is a part of the specially

structured DNN, which is trained on the corpus with phonemes or

phoneme states information. This labeling information may not be

sufficient to cover all LID corpus due to the limited phoneme set

for a special language. To address this, we propose a PDBF-TV

system to further improve the LID performance.

The concept of PDBF-TV is similar to PPRLM, which aims to

take advantage of complementary acoustic models. Two different

PDBF-TV systems based on having different DBF extractors as

parallel acoustic front ends, are proposed using two different fusion

schemes: early fusion and late fusion. The early scheme conducts

fusion at feature-level, where the feature from both DBF-TV

systems are combined before classification. The late fusion scheme

acts at a decision-level, where the outputs of the mono DBF-TV

systems are integrated by the use of an averaging criteria.

As shown in Figure 3, in the early fusion scheme, the features

(i.e. i-vectors from different DBFs) are concatenated as the input to

the TV-modeling backend. After concatenation, the following

process is used in the same way as in DBF-TV, including

intersession compensation and cosine scoring. In the late fusion

scheme, the similarities estimated from different DBF-TV systems

are averaged to form the final decision.

Results and Discussion

Experimental Setup
LID Database. To evaluate the effectiveness of the proposed

DBF-based systems, we conducted extensive experiments using the

LRE09 dataset, comprising 23 target languages, i.e. Amharic,

Bosnian, Cantonese, Creole, Croatian, Dari, English-American,

English-Indian, Farsi, French, Georgian, Hausa, Hindi, Korean,

Mandarin, Pashto, Portuguese, Russian, Spanish, Turkish, Ukrai-

nian, Urdu and Vietnamese. The training utterances for each

language came from two different channels, i.e. the dataset of

Conversational Telephone Speech (CTS) and narrow band Voice

of America (VOA) radio broadcasts.

N CTS partition: Data from the previous evaluations conducted

by NIST, including LRE 1996, LRE 2003, LRE 2005 and

LRE 2007. These utterance are mainly collected from

CallFriend, CallHome and Mixer databases

N VOA partition: Most of the utterances are from the NIST-

provided datasets: VOA2 and VOA3.

It should be noted that the training data for each language is

imbalanced. Languages such as English and Mandarin enjoy more

than 100 hours of data while languages such as English-Indian are

represented by less than 5 hours of data. In addition, some

language data is collected from only one channel source. In

implementation, we limit the training data set to at most 15 hours

for each target language and divide the LID corpus into two parts:

a training dataset and a development dataset. For each target

language, around 80 audited segments of approximately 30 s

duration are used as the development dataset, the rest are used as

training.

The test utterances are also divided into three duration groups,

i.e. 30 s, 10 s and 3 s, comprising 10,376, 10,427 and 10,375

speech utterances respectively.

The LRE09 dataset is very challenging in that 1) There are 23

languages, far more than in the previous evaluations. 2) Some

language pairs are highly confused, such as Hindi and Urdu,

Figure 5. EER obtained from the MA DBF-TV system based on different dimensions of DBF on LRE09. Left panel shows the results of
30 s. Middle panel shows the results of 10s. Right panel shows the results of 3 s.
doi:10.1371/journal.pone.0100795.g005

Table 3. Comparison of Performance between two different PDBF-TV systems on LRE09.

30 s 10 s 3 s

System EER Cavg EER Cavg EER Cavg

MA DBF-TV 1.33 1.25 2.29 2.27 9.22 9.17

EN DBF-TV 1.38 1.27 2.58 2.56 9.98 9.91

PDBF-TV1 (later) 1.31 1.28 2.24 2.20 7.45 7.45

PDBF-TV2 (early) 1.22 1.16 2.09 2.05 7.93 7.87

doi:10.1371/journal.pone.0100795.t003
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Russian and Ukrainian. 3) The data is collected from different

channel sources, and is highly imbalanced.

Performance Measurement. The core test of LRE09 is the

language detection task: Given a segment of speech and a

hypothesized target language, determine whether the target

language is spoken in the test segment or not [9]. According to

the duration of the test utterance, the performance is evaluated on

30 s, 10 s and 3 s of data respectively.

Three different metrics are used to assess the performance of

LID, all evaluating the capabilities of one-versus-all language

detection. The first metric is the average decision cost function

(Cavg) [9], which is a measure of the cost of taking bad decisions.

The second one is the DET curves [46], which are used to

represent the range of possible system operating points of detection

systems and measure the system discrimination capability. We also

compute the classical equal error rate (EER) as the performance

measure.

LID Systems. The LID systems used for comparison are

SDC-TV and PPR-LM, which rely on conventional acoustic and

phonotactic features respectively.

In the SDC-TV baseline system, the SDC are extracted as

follows: 1) MFCC features are extracted for each 20 ms analysis

frame, with 10 ms frame shift. 2) The SDC features comprise the

static and stacked MFCCs with parameter 7-1-3-7 [15]. 3) The

non-speech frames are gated out by using voice activity detection

(VAD). 4) SDC features are normalized to a standard distribution.

The TV space is estimated using a GMM-UBM with 2048

Gaussian components and with the dimension of the i-vector set to

400 [25].

The PPRLM baseline system is implemented as described in Xu

et.al. [27], with different PR frontends, i.e. BUT TRAPs/NN

phone decoders for Hungarian (HU) and Russian (RU) [47].

Using the proposed DBF extractor for front end feature vector

formation, we implemented the two DBF-based acoustic systems,

i.e. DBF-TV and PDBF-TV. Furthermore, we built a phonotactic

representation using the GMM-HMM based PR, trained using the

DBF which will be compared against published PPRLM systems.

These systems will now be evaluated and compared in the

following section.

Comparison with Baseline
The proposed MA DBF-TV and EN DBF-TV systems (i.e. with

DBF extractors tuned on Mandarin and English speech respec-

tively) are now compared with the baseline SDC-TV system. The

DBF extractor in each DBF-TV system is configured to be 5-1-5

for inputs, which consists of 11 frames of 43-dimension MFCC

and prosodic features, and 43 hidden nodes for output. In

addition, we also compare against the MIT SDC-TV setup having

state-of-the-art performance. The performance published in [25]

was tested on exactly the same evaluation data set. Results are

shown in Table 1, where it is evident that our SDC-TV

implementation is comparable to the MIT SDC-TV system. This

implies that, since they having the same acoustic frontend (i.e.

SDC), their back-end TV modelling implementations are also

similar.

Most importantly, we can see clearly in Table 1 that the

performances of the DBF-TV systems is very promising. For the

MA DBF-TV system, the EERs of 30 s, 10 s and 3 s test

utterances are 1.51%, 2.62% and 9.28% respectively, whereas for

the EN DBF-TV system, they are 1.42%, 2.67% and 10.14%. The

relative improvements of DBF-TV over the baseline range from

62.7% to 82.7%, with the highest improvements seen for 10 s test

utterances.

Since we have established that the back-end TV modelling is

similar in each case, this significant performance improvement is

mainly due to ability of the DBF frontends. It demonstrates that

the DBF features are powerful and have good discriminative and

descriptive capabilities for the LID. To explore further, Figure 4

shows a DET curve comparison between the SDC-TV and MA

DBF-TV systems.

In the DBF-TV systems, the configuration of the DBF extractor

is fixed. Despite the significant performance improvement seen,

this configuration may not be optimal. In the following subsection,

we therefore compare the performance of different DBF extractor

configurations, and propose an optimal configuration for the

LRE09 dataset.

DBF Configurations
In this section we construct experiments to evaluate the effect of

DBF extractor configurations, using the MA DBF-TV system as

baseline. The experiments separately assess different input

temporal window sizes as well as the number of hidden nodes

for the DBF extractor output, in order to find an optimal

configuration for the LRE09 dataset.

Temporal Window Size Investigation. It is known that

temporal context information plays an important role for LID

performance. For SDC, extensive trials have been conducted [14],

leading to a relatively stable and optimal configuration. Taking a

similar approach, we experimentally assess the performance of

different temporal window size configurations for DBF extraction.

The resulting LRE09 performance is evaluated for four different

DBF extractor configurations, i.e. 5-1-5, 10-1-10, 15-1-15 and 20-

1-20, and shown in Table 2 with best results shown in bold text.

We can see that, for 30 s and 10 s test utterances, the 10-1-10 DBF

extractor configuration (i.e. a temporal window size of 21)

performs best whereas for 3 s test utterances, the 5-1-5 DBF

extractor configuration performs slightly better. Taken overall, the

10-1-10 configuration with window size 21 is optimal. In fact, this

result coincides with the configuration of conventional SDC, i.e. 7-

1-3-7 with window size 21.

Figure 6. DET curves comparison between PPRLM, PDBF-TV
(MA+EN) and their fusion on LRE09.
doi:10.1371/journal.pone.0100795.g006
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DBF Extractor Output Hidden Nodes Investigation. In

order to assess the effect of the number of hidden nodes at the

output of the DBF extractor, we construct several experiments.

Two baseline DBF extractor configurations are used, having 10-1-

10 and 5-1-5 temporal input windows respectively (since these

yielded best performance for the 30 s, 10 s, and 3 s test utterances

in the previous subsection). The EER of 30 s, 10 s and 3 s test

utterances are determined for each for hidden node numbers

ranging from 20 to 60 (with 43 being the nominal value, set to

match the dimension of the input vector). The results are plotted in

Figure 5. We can conclude that, for 30 s utterances, the number of

hidden nodes in the test does not directly affect LID performance.

For 10 s and 3 s test utterances, performance tends to improve as

the number of hidden nodes increases. Performance improvement

in those cases appears to saturate around dimension 50. Therefore

an optimal configuration is chosen: an input of 10-1-10 with

temporal window size 21, and 50 hidden nodes in the DBF output

layer. This configuration can achieve an EER performance of

1.33%, 2.29% and 9.22% on 30 s, 10 s, 3 s test utterances

respectively.

With longer test utterances, the statistics of speech content may

already be sufficient for LID. However for shorter utterances, with

insufficient statistics, the additional ability of the DBF extractor

appears to be more effective at improving system performance.

As a summary, our study on the input and output of DBF

extractor is consistent with previous studies, such as the

configuration of SDC. And with powerful modelling capability

of DNN, the system performance can be significantly improved

with optimal configuration.

Performance of the Proposed PDBF-TV System
This section presents the results of the proposed PDBF-TV

system which combines both the MA and EN DBF extractors in

parallel. Both use the optimal configuration obtained in the

experiments of the previous subsections. Two schemes are used for

fusion, one is early-fusion where the i-vectors are concatenated for

the final LID feature vector, and the other is later-fusion which

performs a weighted mean of the output scores. Results from these

two schemes are given in Table 3, with best scores for each test

given in bold text. From this, we can see that both early fusion and

later fusion schemes achieve an improvement over the baseline

DBF-TV system, however early fusion performs slightly better –

although at the cost of a slightly increased computational

complexity.

Performance Comparison with State-of-the-Art
To further demonstrate the effectiveness of the proposed DBF,

we now investigate fusing the acoustic and phonotactic approach-

es. The acoustic approach is the PDBF-TV2 system as defined in

the previous subsection. The phonotactic representation is

constructed using 4 PRs, i.e. RU, HU, MA and EN.

The RU and HU phone recognizers are from Brno University

of Technology (BUT), trained using TRAP features and a NN

method [47]. The MA and EN recognizers are trained with the

corresponding DBFs using classical GMM-HMM training. The

experimental results are shown in Table 4, with best scores shown

in bold text. From this we can see that the performance of DBF/

GMM-HMM based PRLM, P3 and P4, is comparable to the

TRAPs/NN based PRLM, P1 and P2. The performance of both

F1 and F2 PPRLM systems is inferior to the DBF-TV and PDBF-

TV systems. By fusing the outputs of all these acoustic and

phonotactic systems, EERs of 1.08%, 1.89% and 7.01% can be

achieved. We also list the results from the MITLL [26] and BUT-

AGNITIO [48] systems, both of which similarly fuse acoustic and

phonotactic methods. It is evident that the fusion results from the

proposed system significantly exceed the performance of these

reported state-of-the-art LID systems, especially for short duration

test utterances. In Figure 6, DET plots of the PPRLM, PDBF-TV2

and fusion systems are shown, again highlighting the effectiveness

of the proposed DBF.

Conclusions

In this paper, we have proposed and evaluated the use of DBF

for spoken LID. The DBF extractor is generated from a structured

DNN having a narrow internal bottleneck layer. It has been shown

that DBFs can form a low-dimensional compact representation of

the original inputs, and have a powerful descriptive and

discriminative capability, when the DNN is carefully constructed

and trained. Two acoustic approaches, i.e. DBF-TV and PDBF-

TV, were constructed and evaluated to demonstrate the effective-

ness of the proposed DBF. Compared to conventional SDC-TV

approaches, the experimental results on the challenging LRE09

core test show significant performance improvement, especially for

Table 4. Fusion results between PDBF-TV system with PPRLM system on LRE09.

30 s 10 s 3 s

System EER Cavg EER Cavg EER

P1: PRLM with RU 2.42 2.40 6.42 6.38 18.92 18.70

P2: PRLM with HU 2.62 2.62 6.65 6.62 18.88 18.82

F1: PPRLM(P1+P2) 1.78 1.78 4.70 4.65 15.24 15.15

P3: PRLM with MA 3.08 3.03 7.79 7.78 21.93 21.65

P4: PRLM with EN 2.58 2.58 6.09 6.07 17.30 17.29

F2: PPRLM(P3+P4) 2.13 2.10 4.51 4.46 13.50 13.45

F3: PPRLM(F1+F2) 1.53 1.49 3.31 3.29 10.71 10.65

F4: PDBF-TV2 1.22 1.16 2.09 2.05 7.93 7.87

Fusion:(F3+F4) 1.08 1.05 1.89 1.85 7.01 6.96

MITLL LRE09 [26] N/A 1.64 N/A 3.14 N/A 10.50

BUT-AGNITIO LRE09 [48] N/A 1.57 N/A 2.76 N/A 10.22

doi:10.1371/journal.pone.0100795.t004
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short duration utterances. Furthermore, different configurations of

DBF extractor have been studied, with an optimal system being

proposed for spoken LID. By fusing the output of phonotactic and

acoustic representations based on DBFs, final results are achieved

which outperform existing published state-of-the-art systems.

It is believed that this work is the first step towards effective

representations for LID through applying the ideas of deep

learning. In future, several extensions may be worthwhile. Firstly,

all experiments in this paper are carried out on the LRE09 closed-

set task. It is worth examining the effectiveness of DBF on even

more challenging LID tasks, such as dialect recognition, and open-

set tasks. Secondly, there are many parameters in the DNN

structure that are empirically determined. The work presented in

this paper focuses on the input and output parameters of the

corresponding DBF extractor, yet it may be interesting to further

investigate other configuration options effective for spoken LID,

such as the number of nodes in hidden layers as well as the

number of hidden layers. Thirdly, this work mainly considers

acoustic approaches. For the phonotactic approach, only PPRLM

systems based on DBF were evaluated. Further performance

improvement may be achievable by using more powerful

modelling techniques, such as SVM and Binary Tree.
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